
Implementation Issues of an Incremental and
Decremental SVM

Honorius Gâlmeanu1 and Răzvan Andonie2

1 Electronics and Computers Department
Transilvania University, Braşov, România

galmeanu@vega.unitbv.ro
2 Computer Science Department

Central Washington University, Ellensburg, USA
andonie@cwu.edu

Abstract. Incremental and decremental processes of training a support
vector machine (SVM) resumes to the migration of vectors in and out
of the support set along with modifying the associated thresholds. This
paper gives an overview of all the boundary conditions implied by vector
migration through the incremental / decremental process. The analysis
will show that the same procedures, with very slight variations, can be
used for both the incremental and decremental learning. The case of vec-
tors with duplicate contribution is also considered. Migration of vectors
among sets on decreasing the regularization parameter is given particu-
larly attention. Experimental data show the possibility of modifying this
parameter on a large scale, varying it from complete training (overfitting)
to a calibrated value.

1 Introduction

In the last decade, datasets have grown to practically infinite sizes. Learning al-
gorithms must process increasing amounts of data using comparatively smaller
computing resources. Our learning algorithms do not scale well enough to take
advantage of such large datasets. Incremental learning is an attractive solution to
this problem. Incremental algorithms may asymptotically outperform learning
algorithms that operate by repetitively sweeping over a training set [1]. Sys-
tems for incremental learning have been proposed for different standard neural
architectures, including support vector machines.

The SVM model has gained a large recognition and two of the most popular
implementations are SVMLight ([19]) and LIBSVM([2]). Several authors dealt
with the problem of incrementally training a SVM, using various strategies ([17,
9, 14]). Other authors optimized the SVM parameters by online procedures ([20]).
Incremental learning presented by [8] and further extended in [5], opened the
opportunity of learning new data while benefiting from the previous knowledge,
combined with decremental learning which also allows selective discarding of
patterns without losing any additional information.

The problem of classifying a set of patterns (xi, yi) ∈ Rm × [−1, 1] where
i = 1 . . . N for a SVM of the form g(xi) = w·K(xi)+w0 requires the minimization
of

min
w,w0,ξ

J(w) =
1
2
‖w‖2 + C

N∑
i=1

ξi (1)

obeying the constraints

yi(w · φ(xi) + w0) ≥ 1− ξi , for ξi ≥ 0, i = 1 . . . N (2)

The set of slack variables ξi are designed to allow the system to cope with in-
correctly classified patterns, or patterns that are classified correctly but situated
within the separation boundary. The constraint problem is usually expressed us-
ing Wolfe representation in its dual form ([18]). Adopting Qij = yiyjK(xi, xj) as
a more compact way of writing the invariant product, the Karush-Kuhn-Tucker
conditions state the following necessary conditions:

w =
∑N

i=1 λiyiφ(xi) ,
∑N

i=1 λiyi = 1 and 0 ≤ λi ≤ C (3)

where the regularization parameter C limits the thresholds λi. The separating
hyperplane given by SVM and the characteristic gradients are:

g(xi) =
∑

j λj
Qij

yi
+ w0 and hi =

∑
j λjQij + w0yi − 1 (4)

In this context, an exact procedure of adiabatic training has been given in [8].
The procedure is extended in [5], allowing for batch or individual incremental
learning or unlearning of patterns. An analysis of an efficient implementation
for individual learning of Cauwenberghs&Poggio (CP) algorithm is presented in
[15], along with a similar algorithm for one-class learning. The CP algorithm
was also extended for regressions ([13, 12]).

In all these incremental SVM approaches, the SVM initialization and vector
migration through learning / unlearning is not thoroughly discussed, leading to
implementation difficulties. In our paper, we try to deal with this issue as follows.
In Section 2, we present the relations that should be iteratively evaluated during
the learning phase. In Section 3, we present all possible vector migrations be-
tween sets, showing that the procedures of vector learning and unlearning can be
coupled together. The problem of detecting duplicate contributions of patterns
is analyzed in Section 4. Section 5 describes the initial solution and the system
start-up. In Section 6 we discuss the details of decrementing the regularization
parameter. Sections 7 and 8 contain experimental results and conclusions.

2 Incremental updates

From the KKT conditions and considering (4), the gradient can be expressed as:

hi = yig(xi)− 1 =

> 0 for λi = 0
= 0 for 0 < λi < C
< 0 for λi = C

(5)

A pattern x from training set D can be accommodated into one of the fol-
lowing categories:

– xi ∈ S ⊂ D, where S is the set of support vectors situated on the separat-
ing hyperplane, for which hi = 0 and associated non-null and unbounded
threshold value λi;

– xi ∈ O ⊂ D, where O is the set of other vectors, for which yig(xi) > 1, xi is
correctly classified, and has associated threshold value λi = 0;

– xi ∈ E ⊂ D, where E is the set of error vectors, for which yig(xi) <
1, xi, incorrectly classified or correctly classified but within the boundary
region, and having an associated non-null threshold value bounded by the
regularization parameter C.

The set R = {O ∪ E} is the set of reserve vectors. Notations of s, r, e are
used to refer a specific support, reserve, or error vector.

The CP algorithm relies on the idea of introducing a new vector xc, and then
migrate specific vectors between the sets to have the KKT conditions satisfied
again ([5, 15]). At first, a new vector to be introduced in the system has initial
threshold λc = 0. This threshold is progressively increased, watching, with every
increase, the migration of vectors between the sets. Migration is identified by
considering the variation of gradients hi. This variation between initial and final
states, that fulfill the KKT conditions, along with thresholds condition, can be
written in a compact form as ([15]):

∆hS

∆hR

∆hc

0

 =


yS QSS

yR QRS

yc QcS

0 yT
S

[
∆w0

∆λS

]
+ ∆λc


QT

cS

QT
cR

Qcc

yc

 (6)

It can be seen that any modification of ∆λc should be absorbed by the
modification of ∆λs, ∆w0 and/or the variation of gradients. For support vectors,
∆hs = 0, since the gradients for support vectors should remain zero, so from the
first and the last lines one can solve:[

∆w0

∆λS

]
= −

[
0 yT

S

yS QSS

]
︸ ︷︷ ︸

P

−1 [
yc

QT
cS

]
︸ ︷︷ ︸

β

∆λc and
[

∆hR

∆hc

]
=

[
yR QRS

yc QcS

]
β +

[
QT

cR

Qcc

]
︸ ︷︷ ︸

γ

∆λc

(7)
Details can be found in [5, 15].

3 Migration between sets and learning

The authors previously referred do not perform an exhaustive and specific dis-
cussion of the conditions for detecting migration of vectors between sets. We
present here a detailed discussion, involving both incremental and decremental
algorithms.

1. Migration of support vectors
Consider the relation ∆λs = βs∆λc, where βs is the s-th component of
vector β. ∆λs can reach the following limits:
– upper limits are reached for ∆λs ≤ C − λs, which means βs and ∆λc

having the same sign (and the support vector should migrate to E):

incremental case
∆λc > 0 , βs > 0

βs∆λc ≤ C − λs

∆λc ≤ C−λs

βs

δsp = min
s∈S

{
C − λs

βs

}
decremental case
∆λc < 0 , βs < 0

βs∆λc ≤ C − λs

∆λc ≥ C−λs

βs

δsp = max
s∈S

{
C − λs

βs

}
– lower limit is reached for ∆λs ≥ −λs, which means βs and ∆λc should

have opposite signs (and the support vector should migrate to O):

incremental case
∆λc > 0 , βs < 0

βs∆λc ≥ −λs

∆λc ≤ −λs

βs

δsm = min
s∈S

{
−λs

βs

}
decremental case
∆λc < 0 , βs > 0

βs∆λc ≥ −λs

∆λc ≥ −λs

βs

δsm = max
s∈S

{
−λs

βs

}
2. Migration of reserve vectors

Consider the relation ∆hr = γr∆λc, where γr is the r-th component of vector
γ. ∆hr can reach zero on the following cases:
– other vectors, r ∈ O, hr > 0, so migration to S takes place when

∆hr < 0 (γr and ∆λc of different signs):

incremental case
∆λc > 0 , γr < 0

γr∆λc ≥ −hr

∆λc ≤ −hr

γr

δro = min
r∈O

{
−hr

γr

}
decremental case
∆λc < 0 , γr > 0

γr∆λc ≥ −hr

∆λc ≥ −hr

γr

δro = max
r∈O

{
−hr

γr

}
– error vectors, r ∈ E, hr < 0, so migration to S takes place when

∆hr > 0 (γr and ∆λc have the same sign):

incremental case
∆λc > 0 , γr > 0

γr∆λc ≤ −hr

∆λc ≤ −hr

γr

δre = min
r∈E

{
−hr

γr

}
decremental case
∆λc < 0 , γr < 0

γr∆λc ≤ −hr

∆λc ≥ −hr

γr

δre = max
r∈E

{
−hr

γr

}
3. Gradient hc for the current vector reaches zero. Usually a new vector with

positive gradient is classified straightforward as belonging to S, so it will not
be trained. When is considered, hc < 0 so γc∆λc = ∆hc ≤ −hc, which is
positive, so zero can be reached when γc and ∆λc have the same sign:

incremental case
∆λc > 0 , γc > 0

γc∆λc ≤ −hc

∆λc ≤ −hc

γc

δc =
{
−hc

γc

}
decremental case
∆λc < 0 , γc < 0

the objective is not to modify
hc but the decrease of λc

4. Threshold λc:

incremental case
λc should not overflow C δma = C − λc

decremental case
λc should not underrun 0 δmi = −λc

The maximum increment / decrement will be calculated as:

incremental case ∆λmax = min{δsp, δsm, δro, δre, δc, δma}
decremental case ∆λmin = max{δsp, δsm, δro, δre, δmi}

Once determined the minimum / maximum, the specific vectors whose s or
r indices were this way determined will migrate between the sets as described
by various authors ([8, 5, 15]).

4 Duplicate contribution of patterns

The introduction into the support set S of a vector with identical contribution
with an existing one would make the matrix P non-invertible. The relations
detailed so far would no longer work. We will show that there is no need of an
exhaustive search over the set of patterns {S∪R} to find a pattern with identical
contribution.

A pattern xi would have identical contribution with a pattern xj if we can
verify that:

Qis = Qjs , i 6= j , where s ∈ S (8)

and also that yi = yj . This would render duplicate lines / columns in the P
matrix, which will ruin its invertibility. The best opportunity to detect patterns
with identical contribution is to compare the patterns selected to migrate be-
tween the sets at the current iteration. We have no concern for patterns with
duplicate contribution contained in E or O. We consider the case of two vectors,
xi and xj trying to enter the set S:

∆hi = γi∆λc = 0− hi = λSQiS + w0yi − 1 (9)

∆hj = γj∆λc = 0− hj = λSQjS + w0yj − 1 (10)

The gradients, hi = hj , of the vectors that could try to enter simultaneously
into the solution could indicate that duplicate contribution vectors are detected.
For these, we suggest performing the following verifications during the training
phase:

– for a new, yet unlearned vector, if its gradient is determined to be initially
zero, check whether it does not have a duplicate contribution with a support
vector (which has, by definition, a zero gradient);

– determine if there are more than one minima with the same value, one of
which could be δc. This means the current vector could have duplicate con-
tribution with that xr ∈ R which has the same minima. The current vector
should be unlearned, until its λc reaches zero again, then disregarded;

– determine if there are more than one minima, containing δro or δre values. If
two or more are found, it means that two xo ∈ O (or two xe ∈ E) vectors try
to enter the set S. The duplicate xo vectors will be discarded; for duplicate
xe, current xc is unlearned until λc reaches zero. Then duplicate xe are
unlearned. We would resume learning of current xc vector afterward.

5 Initial solution

To start the incremental learning, one would need an initial set of support vec-
tors. Choosing two patterns from opposite classes (y1 = −y2), we can determine
λ1, λ2 and w0 such that:

0 = h1 = Q11λ1 + Q12λ2 + w0y1 − 1 (11)
0 = h2 = Q21λ1 + Q22λ2 + w0y2 − 1 (12)

0 = λ1y1 + λ2y2 (13)

The initial solution can be expressed as:

λ1 = λ2 =
2

Q11 + Q12 + Q21 + Q22
and w0 =

Q22 −Q11

Q11 + Q12 + Q21 + Q22
· 1
y1

The initial solution could not obey the initial regularization parameter C
given by the problem. We will use the decrement procedure given below to re-
establish the initial premises.

6 Decrement of Regularization Parameter C

Initial solution puts a constraint of threshold limit parameter C, which should
be no less than the calculated λ’s. It is possible to start the algorithm with a
greater C than the result given by initial solution. The threshold C can also be
decreased, as suggested by the original Cauwenberghs and Poggio algorithm. Let
us analyze this approach in the following.

The decrement of C can be regarded similar to the previous adiabatic trans-
formations. When trying to maintain the KKT conditions, the variation of gra-
dients can be written as:

∆hs =
∑
j∈S

Qsj∆λj +
∑
j∈E

Qsj∆C + ∆w0ys s ∈ S (14)

∆hr =
∑
j∈S

Qrj∆λj +
∑
j∈E

Qrj∆C + ∆w0yr r ∈ R (15)

0 =
∑

s inS

∆λsys +
∑
j∈E

∆Cyj (16)

These relations can be written more compact as: ∆hS

∆hR

0

 =

 yS QSS

yR QRS

0 yT
S

[
∆w0

∆λS

]
+ ∆C

 ∑
j∈E QSj∑
j∈E QT

Rj∑
j∈E yj

 (17)

For support vectors ∆hs = 0, from the first and the last lines we can solve:[
∆w0

∆λS

]
= −

[
0 yT

S

yS QSS

]−1 [∑
j∈E yj∑

j∈E QSj

]
︸ ︷︷ ︸

βe

∆C (18)

Additionally, the gradients for reserve vectors can be expressed as:

∆hR =

[
yr QrS

]
βe +

∑
j∈E

Qrj


︸ ︷︷ ︸

γe

∆C (19)

When decrementing C, the same discussion applies, with some slight differ-
ences.

1. Migration of support vectors
For the decremental approach (∆C < 0), ∆λs = βe

s∆C, modifications of
support vector thresholds should satisfy:

0 ≤ λs + ∆λs ≤ C + ∆C or 0 ≤ λs + βe
s∆C ≤ C + ∆C (20)

– when βe
s < 0, the expression is always positive so only superior limit

works:

(βe
s − 1)∆C ≤ C − λs or ∆C ≥ C − λs

βe
s − 1

so find δsp = min
s∈S

{
C − λs

βe
s − 1

}
(21)

– when 0 ≤ βe < 1, we have two relations that must be satisfied simulta-
neously:

0 ≤ ∆λs + λs

βe
s∆C + λs ≥ 0 ∆C ≥ −λs

βe
s

so find δslm = mins∈S

{
−λs

βe
s

}
∆λs + λs ≤ C + ∆C
βe

s∆C ≤ C + ∆C
∆C ≥ C−λs

βe
s−1 so find δslp = mins∈S

{
C−λs

βe
s−1

}
(22)

– when βe
s > 1, only the first constraint works, the expression can be

written as:

λs + βe
s∆C ≥ 0 or ∆C ≥ −λs

βe
s

so find δsm = min
s∈S

{
−λs

βe
s

}
(23)

2. Migration of reserve vectors
The decremental approach means ∆C < 0. Since γe

r∆C = ∆hr, modifica-
tions of gradients hr should satisfy:

other vectors r ∈ O
∆hr ≤ 0 thus γe

r > 0
γe

r∆C ≥ −hr

∆C ≥ −hr

γe
r

δro = min
r∈O

{
−hr

γe
r

}
(24)

error vectors r ∈ E
∆hr ≥ 0 thus γe

r < 0
γe

r∆C ≤ −hr

∆C ≥ −hr

γe
r

δre = min
r∈E

{
−hr

γe
r

}
(25)

3. Limit decrease of C
Decreasing of C should stop when reaching zero so C+∆C ≥ 0 which brings:

δma = −C (26)

Determining the first migration means finding the maximum decrease of C:

∆λmax = min {δsp, δsm, δslp, δslm, δro, δre, δma} (27)

7 Experimental results

To illustrate the relations presented so far we constructed an incremental and
decremental SVM machine3 based on CP algorithm4, where we considered all
the relations described. We have trained the system on the USPS ([10]) dataset,
which contains 7291 training and 2007 testing patterns, with 256 features. Since
this is a multiple-class dataset (10 classes), we have used a randomly selected
subset of 1925 training vectors and 557 test vectors for the same two-class prob-
lem. For small values of the regularization parameter C, the number of training
errors increases and the system is underfitted. For large values, the number of
support vectors increases to the extent system performs similar to a hard-margin
SVM ([6, 19, 11]). Practice shows that varying C over a wide range and noting
performance progress on a separate validation set can lead to tuning the system
for optimal performance. Decrementing C is performed obeying KKT conditions,
so each intermediary state is a solution. Train and test accuracies are referred
in Table 1, along with the number of migrations.

For each of the configuration obtained, a corresponding system, with the same
C and γ (the RBF kernel parameter) values, was trained using the LIBSVM
software ([2]). The two very different implementations performed identically,
resulting in the same number of misclassified or correctly classified patterns , for
each of the C values. It is shown in [3] that obtaining identical solutions is the
usual, rather than the exception.

3 The source code of the incremental / decremental machine can be downloaded from
http://vega.unitbv.ro/˜galmeanu/idsvm.

4 We have not included a detailed pseudo code of the algorithm, the incremental
version can be found in [15] and the decremental version follows straightforward.

Table 1. Classifier performance as constraint C decreases, for USPS subset

USPS training subset, σ = 0.0070922

C value 10 7 3 1 0.8 0.5 0.3 0.1 0.08 0.05 0.03

#SV 489 478 377 217 202 162 132 58 44 41 16
#migrations - 122 149 421 96 221 273 775 179 390 298
Train acc. 1.0000 0.9990 0.9922 0.9745 0.9704 0.9569 0.9496 0.9345 0.9273 0.9075 0.8499
Test acc. 0.9605 0.9623 0.9515 0.9425 0.9408 0.9390 0.9318 0.9300 0.9210 0.8959 0.8492

For the second experiment, we used the Pima Indians Diabetes dataset ([4]).
The set originally has 768 training patterns with 8 features. It is a two-class clas-
sification problem, with no test data. We randomly selected 510 training patterns
and 255 test patterns. Table (2) shows how the system progressed from over-
fitting to an acceptable classification performance when decreasing parameter
C. Again, the system presented the same accuracy and classified/miss-classified
patterns, for every iteration, when compared with the LIBSVM software.

Table 2. Accuracy performance for Pima Indians subset

Pima Indians Diabetes training subset, σ = 0.125

C value 10000 5000 1000 500 100 50 10 5 1 0.5 0.1

#SV 134 122 91 75 51 43 26 19 11 7 6
#migrations - 77 138 47 101 51 114 44 119 67 88
Train acc. 0.8882 0.8725 0.8294 0.8176 0.8118 0.8078 0.7882 0.7824 0.7745 0.7608 0.6392

Test acc. 0.7882 0.8000 0.8039 0.8078 0.8157 0.8039 0.8039 0.8039 0.7961 0.7201 0.6745

Finally, we used a polynomial kernel to train a subset of the Reuters collection
([16]). There are 600 train samples and 600 completely different test samples,
belonging to two categories. Each vector has a maximum of 9947 features. Table
3 presents the decrease of the classifier’s train and test accuracies as C decreases
from the initial overfit state.

Table 3. Accuracy performance for Reuters subset

Reuters training subset, σ = 0.000100563

C value 0.05 0.03 0.01 0.007 0.004 0.002 0.0017 0.0015 0.0012 0.001

#SV 393 367 237 173 96 20 16 12 6 1
#migrations - 40 213 127 194 186 25 23 21 5
Train acc. 1.000 0.9983 0.9933 0.9866 0.9716 0.8629 0.8211 0.7893 0.7157 0.6522
Test acc. 0.9617 0.9633 0.965 0.96 0.93 0.8533 0.815 0.7933 0.7467 0.6917

8 Conclusions

In this paper, we presented the intricacies one should consider when implement-
ing the incremental/decremental SVM learning algorithm. We showed that the
regularization parameter can be perturbed by various quantities and this pro-
cess does not influence the system’s expected behavior. As desired and expected,

our implementation of the incremental/decremental algorithm lead to the same
solution as the LIBSVM implementation of the non-incremental algorithm.

References

1. L. Bottou and Y. Le Cun, Large Scale Online Learning, In S. Thrun and L. Saul
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16,
MIT Press, Cambridge, MA, 2004

2. C.C. Chang, C.J. Lin, “LIBSVM: a Library for Support Vector Machines“, 2001,
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

3. C.J. Burges, D.J. Crisp, “Uniqueness of the SVM Solution“, In S.A. Solla, T.K.
Leen, K.R. Muller, editors, Advances in Neural Information Processing Systems
12, Morgan Kaufmann, 2000

4. C.L. Blake, C.J. Merz, “UCI repository of machine learning databases“, 1998,
University of California, Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/ mlearn/MLRepository.html

5. C.P. Diehl, G. Cauwenberghs, “SVM Incremental Learning, Adaptation and Op-
timization“, Proceedings of the IJCNN, Volume 4, 2003

6. E. Alpaydin, Introduction to Machine Learning, MIT Press, Cambridge, MA, 2004
7. F. d’Alche-Buc, L. Ralaivola, “Incremental Learning Algorithms for Classification

and Regression: local strategies“, American Institute of Physics Conference Proc.,
Volume 627, pp. 320-329, 2002

8. G. Cauwenberghs, T. Poggio, “Incremental and Decremental Support Vector Ma-
chine Learning“, Neural Information Processing Systems, Denver, 2000

9. G. Fung, O. Mangasarian, “Incremental Support Vector Machine Classification“,
Advances in Neural Information Processing Systems, MIT Press, MA, 2003

10. J.J. Hull, “A Database for Handwritten Text Recognition Research“, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(5):550-554, May 1994

11. J.S. Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge Uni-
versity Press, 2004

12. J. Ma, J. Thelier, S. Perkins, “Accurate On-line Support Vector Regression“, Neu-
ral Computation, 2003

13. M. Martin, “On-line Support Vector Machine Regression“, Proceedings of the 13th
European Conference on Machine Learning (ECML 2002)

14. N.A. Syed, H. Liu, K.K. Sung, “Incremental Learning with Support Vector Ma-
chines“, Proc. of the Workshop on Support Vector Machines at the International
Joint Conference on Artificial Intelligence, IJCAI-99, Stockholm, Sweden, 1999

15. P. Laskov, C. Gehl, S. Krüger, K.R. Müller, “Incremental Support Vector Learn-
ing: Analysis, Implementation and Applications“, Journal of Machine Learning
Research 7 (2006), 1909-1936

16. Reuters 21578 Text Categorization Collection, Dataset available at
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

17. S. Rüping, “Incremental Learning with Support Vector Machines“, Proceedings of
the 2001 IEEE International Conference on Data Mining, ICDM 2001

18. S. Theodoridis, K. Koutroumbas, Pattern Recognition - 2nd ed., Elsevier Academic
Press, 2003

19. T. Joachims, Learning to Classify Text using Support Vector Machines: Methods,
Theory and Algorithms, Kluwer Academic Publishers, 2002

20. W. Wang, C. Men, W. Lu, “Online Prediction Model Based on Support Vector
Machine“, Neurocomputing 71 (2008), 550-558

