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Linux și real-timeLinux și real-time

● sistem timp-real:
– răspunsul sistemului la apariția unui eveniment este 

realizat într-un timp corespunzător

● clasificare:
– hard real-time

● sistemul garantează un timp de răspuns pentru cel mai rău 
caz, care este realizat în toate condițiile

– soft real-time
● sistemul nu garantează timpul de răspuns pentru orice 

condiție, dar în marea majoritate a cazurilor, răspunsul vine 
în timp corespunzător



  

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

● un sistem RTOS trebuie să satisfacă următoarele 
caracteristici
– multitasking / multithreading

● RTOS trebuie să ofere suport pentru rularea aplicațiilor 
pseudoparalel

– priorități
● taskurile trebuie să aibă asociate priorități diferite, taskurile 

critice având priorități mai ridicate

– moștenire de priorități
● RTOS trebuie să suporte un mecanism de moștenire a 

priorităților



  

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

– preemption
● când un task de prioritate mai mare devine ready, taskul de 

prioritate mai mică în rulare trebuie întrerupt

– latența întreruperilor
● RTOS trebuie să aibă o latență a întreruperilor (timpul între 

apariția întreruperii și deservirea acesteia) predictibilă (și cât 
mai mică)

– latența planificatorului
● timpul între momentul când un task devine rulabil și până 

când începe să ruleze trebuie să fie determinist



  

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

– IPC și sincronizare
● cea mai populară metodă de IPC în sisteme embedded este 

message passing, RTOS trebuie să ofere suport pentru 
transmisia mesajelor în timp constant

● RTOS trebuie să ofere suport pentru semafoare și mutex

– alocare dinamică de memorie
● RTOS trebuie să ofere un mecanism de alocare dinamică a 

memoriei într-un timp constant



  

Natura non-RTOS a LinuxuluiNatura non-RTOS a Linuxului

● Linux a evoluat ca un SO de uz general, și în 
consecință are următoarele caracteristici:
– latență mare la întreruperi

– latență mare a planificatorului datorită naturii non-
preemptive a kernelului

– diferite servicii a SO (IPC, alocare dinamică de 
memorie, etc.) nu au un timp de execuție determinist

– alte caracteristici (ca memoria virtuală, apelurile sistem) 
rezultă în timpi de răspuns a SO în general non-
deterministe



  

Modificare Linux pentru real-timeModificare Linux pentru real-time

● două soluții adoptate
– realizarea unui sistem hard real-time

● RTLinux
● se folosește un real-time executive (kernel simplu RTOS) care 

satisface toate criteriile RTOS și rulează Linux ca un singur 
task

– adăugare suport în kernel pentru execuții soft real-time
● uCLinux, MontaVista, etc.
● soluții ce modifică timpii de răspuns a sistemului
● cele mai multe au fost portate în kernelul 2.6



  

Linux soft real-timeLinux soft real-time

● timpii de răspuns generale a sistemului sunt reduse 
în așa fel încât în majoritatea cazurilor să ofere 
răspunsuri la evenimente în timp corespunzător

● pentru tratarea unui eveniment sistemul trebuie să 
realizeze o multitudine de operații asociate 
diferitelor subsisteme între apariția evenimentului 
și lansarea procesului care răspunde la eveniment
– toate aceste operații trebuie optimizate pentru ca 

timpul de răspuns general să fie corespunzător



  

Tratarea evenimentelorTratarea evenimentelor

● evenimentul cauzează o întrerupere la procesor
● se rulează ISR din driverul corespunzător
● ISR verifică în wait-queue dacă există un proces 

care așteaptă evenimentul
● dacă se găsește astfel de procese se rulează o 

funcție wake-up care scoate procesul din coada 
wait și depune în coada ready

● kernelul apelează planificatorul la primul moment 
în care aceasta este posibil

● planificatorul va schimba la procesul respectiv dacă 
aceasta are suficientă prioritate



  

Caracteristici OS ce influențează Caracteristici OS ce influențează 
timpul de răspunstimpul de răspuns

● latența întreruperilor
– timpul până când ISR este executat

● durata ISR
● latența planificatorului

– timpul după terminarea ISR până la rularea 
planificatorului

● durata planificării



  

Latența întreruperilorLatența întreruperilor

● principale cauze de latență mare
– dezactivarea întreruperilor pentru un timp îndelungat

● porții din kernel și din drivere trebuie să se protejeze față de 
rutine de întreruperi

● astfel de secțiuni critice sunt înconjurate de apeluri de tip 
local_irq_disable sau spin_lock_irq

– înregistrarea întreruperilor greșită
● driverele scrise greșit pot să înregistreze ISR-ul în mod greșit
● există două moduri de înregistrare: fast irq și slow irq, dacă 

un dispozitiv mai puțin important înregistrează fast irq atunci 
poate bloca întreruperile mai importante



  

Durata ISR-urilorDurata ISR-urilor

● durata ISR-ului este în totalitate lăsată pe seama 
programatorului de driver

● durata ISR-ului poate fi non-deterministă dacă se 
folosește soft-irq
– ISR poate fi împărțit în două secțiuni: o parte critică 

care se execută în interiorul ISR și nu mai poate fi 
întrerupt și o parte care va fi tratat ulterior de kernel și 
care poate fi întrerupt de alte irq hardware

– soft-irq este de obicei tratat de daemonul ksoft-irqd 
care este non-real-time, astfel folosirea soft-irq pentru 
evenimente real-time trebuie evitată



  

Latența planificatoruluiLatența planificatorului

● latența planificatorului (mai ales la versiuni mai 
vechi) este principalul contributor la timpul de 
răspuns mare

● kernelul până la 2.4 avea o natură non-preemptivă:
– procesele din user-space puteau fi înlăturate, dar 

funcțiile kernel apelate din user-space nu puteau fi 
întrerupte, astfel se crea și în interiorul proceselor zone 
în care procesul nu putea fi întrerupt

– dezactivarea întreruperilor (ce include și întreruperea 
timerului asociat cu planificatorul) putea avea impact 
asupra latența planificatorului



  

Kernel preemptionKernel preemption

● odată cu creșterea suportului pentru SMP în Linux 
au fost identificate și un număr mare de secțiuni 
critice care au fost protejate cu spinlock

● s-a observat că funcțiile din kernel puteau fi 
înlăturate la planificare fără probleme dacă acestea 
nu se află în secțiuni critice

● pentru Montavista a fost creat un patch care 
folosește acest lucru și permite înlăturarea 
kernelului la planificare
– acest patch a fost mai târziu reintrodus în kernelul 2.6



  

Kernel preemptionKernel preemption
● pentru suportul kernel preemption a fost introdus 

o variabilă preempt_count și două primitive:
– preempt_disable: incrementează preempt_count
– preempt_enable: decrementează preempt_count

– dacă preempt_count este 0 atunci kernelul poate fi 
înlăturat fără probleme

● toate rutinele spinlock au fost modificate pentru a 
apela preemt_disable la intrare și 
preempt_enable la ieșire

● la isr-uri a fost adăugată o funcție care verifică 
preempt_count și apelează planificatorul dacă 
aceasta este 0



  

Latența planificatoruluiLatența planificatorului

user mode

Fără kernel preemption

kernel mode user mode task 1

user mode task 2 (high prio)

isr

user mode

Cu kernel preemption

user mode task 1

user mode task 2 (high prio)

isr

critical
section



  

Patchuri de scădere a latențeiPatchuri de scădere a latenței

● pe parcursul dezvoltări kernelului 2.6 au fost 
adăugate și niște patchuri pentru micșorarea 
latenței (mai ales de Ingo Molnár și Andrew 
Morton)
– s-a adăugat puncte de planificare explicite în interiorul 

blocurilor kernel care se execută mai îndelungat

– deseori (mai ales la parcurgerea listelor lungi) sa 
introdus puncte unde spinlock-ul a fost oprit, apelat 
planificatorul și restabilit spinlock-ul

● aceste patchuri deseori trebuie descărcate separat 
de kernel, dar dau rezultate foarte bune



  

Durata planificăriiDurata planificării

● durata planificării este timpul necesar pentru 
planificator ca să aleagă procesul care va fi activat, 
să modifice listele (run, ready) corespunzătoare și 
să-l schimbe contextul la noul proces

● inițial planificatorul din Linux (pornind cu 
conceptul de SO de uz general) s-a concentrat 
pentru a realiza planificare cât mai corectă, de 
aceea a fost sacrificat durata deterministă a 
planificării
– de obicei planificatorul rula în timp O(n) pentru 

numărul proceselor



  

Planificatorul O(1)Planificatorul O(1)
● începând de versiunea 2.4.20 a fost introdus în 

kernel planificatorul O(1) de Ingo Molnár
● acest planificator permite alegerea procesului ce 

trebuie luat într-un timp constant față de numărul 
proceselor
– sunt implementate 2 cozi: procesele active și procesele 

expirate

– cozile sunt ordonate în funcție de priorități

– indexarea cozilor este făcut într-un bitmap,astfel 
căutarea procesului cel mai prioritar devine O(1)

– la folosirea cuantei de timp asociate procesul activ va fi 
depus în lista proceselor expirate

– la golirea listei active cele două liste se inversează



  

User-space real-timeUser-space real-time

● kernelul Linux (mai ales începând din 2.6) datorită 
planificatorului O(1) și patchurilor de scădere a 
latenței a devenit un SO soft real-time

● pentru ca întregul sistem să satisfacă criteriile de 
real-time și aplicațiile trebuie să se ruleze într-o 
manieră deterministă

● pentru aceasta Linux (începând cu versiune 2.6) 
oferă suport pentru extensiile POSIX real-time



  

Extensii POSIX real-timeExtensii POSIX real-time

● planificare cu priorități fixe
● blocarea memoriei
● cozi de mesaje POSIX
● memorie partajată POSIX
● semnale real-time
● semafoare POSIX
● timere POSIX
● operații IO asincrone



  

Extensii POSIX real-timeExtensii POSIX real-time

● prioritățile fixe, memory lockingul, memoria 
partajată și semnale real-time au fost suportate de 
Linux chiar de la începuturi

● cozile de mesaje și timere POSIX au fost introduse 
în kernelul 2.6

● operații IO asincrone inițial a fost oferite numai  în 
bibliotecile libc, dar începând cu 2.6 treptat și 
aceste operații au fost incluse în kernel

● la momentul actual Linux oferă tot suportul pentru 
extensii POSIX real-time, rămânând la latura 
dezvoltatorilor să folosească acestea



  

Planificare cu priorități fixePlanificare cu priorități fixe

● parametrii asociați proceselor (referitor la RT):
– clasa de planificare
– prioritate
– cuanta de timp

● clasa de planificare precizează algoritmul de 
planificare folosit pentru proces:
– SCHED_FIFO: procesele rulează unul după celălalt în 

ordinea creării până la terminare sau blocare
– SCHED_RR: (Round Robin) procesele rulează până la 

cuanta precizată după care vor fi puse la capătul listei
– SCHED_OTHER: planificatorul standard (non-RT)



  

Priorități specificate de utilizatorPriorități specificate de utilizator

● utilizatorul poate modifica prioritatea asociată 
procesului (sched_setparam)

● clasele de planificare SCHED_FIFO și SCHED_RR 
întotdeauna au o prioritate mai mare decât clasa 
SCHED_OTHER (prioritate fixată pe 0)

● clasa SCHED_OTHER este tratată cu algoritm 
standard de planificare pe baza unei valori nice

● valoarea nice nu are efect în cazul planificărilor 
FIFO și Round Robin, însă contribuie la calcularea 
cuantei de timp (la Round Robin)



  

Blocarea memorieiBlocarea memoriei

● aplicațiile real-time au nevoie de un timp de 
răspuns determinist ce nu poate fi satisfăcut dacă 
se folosește paginare

● pentru a realiza timpul de răspuns determinist un 
proces poate să blocheze o parte (sau chiar toată) 
memoria alocată procesului, ca această zonă să 
rămână definitiv în memorie

● soluții de blocare:
– în timpul rulării cu funcțiile mlock și mlockall

– în timpul legării prin intermediul ldscript-ului
– cu atributul gcc: __section__



  

IPC POSIXIPC POSIX

● cozi de mesaje
– mesajele pot fi prioritizate, transmisie blocantă
– mq_open, mq_close, mq_unlink, mq_send, mq_recv

● memorie partajată
– cea mai rapidă soluție, acces fără apeluri sistem
– shm_open, shm_unlink

● semafoare
– sincronizare între procese
– sem_open, sem_close, sem_unlink, sem_wait, 
sem_post



  

Semnale timp realSemnale timp real

● sunt folosite pentru notificarea proceselor despre 
apariția unui eveniment asincron

● semnalele real-time sunt o extensie a semnalelor 
native Linux:
– număr mai mare de semnale utilizator

– semnale prioritizate

– informații atașate semnalelor

– semnalele sunt salvate într-o coadă

● funcții:
– sigaction (definirea unui handler), sigqueue 

(transmiterea unui semnal)



  

Ceasuri și timere POSIXCeasuri și timere POSIX

● oferă acces mai avansat la ceasul sistem
– CLOCK_REALTIME: ceasul universal
– CLOCK_MONOTONIC: timpul trecut de la pornirea 

sistemului
– CLOCK_PROCESS_CPUTIME_ID: timpul total a unui 

proces petrecut în rulare
– CLOCK_THREAD_CPUTIME_ID: similar pentru threaduri

● accesul la ceas:
– clock_settime, clock_gettime, clock_getres, 

● blocarea procesul pentru o perioadă
–  clock_nanosleep



  

TimereTimere

● folosite pentru temporizare
– timer_create, timer_delete

● pot fi setate pentru o anumită perioadă după care 
vor genera un semnal ce poate fi tratat
– timer_settime

● rezoluția standard în Linux este de 1ms
● MontaVista a introdus un timer de înaltă rezoluție 

(1µs)
– CLOCK_REALTIME_HR

– CLOCK_MONOTONIC_HR



  

Operații IO asincroneOperații IO asincrone

● operațiile IO standard sunt blocante (read, write)
● pentru un timp de răspuns mai bun poate fi nevoie ca 

procesul să realizeze alte calcule în timp ce așteaptă 
pentru terminarea operației IO

● aio_read (citire), aio_write (scriere), aio_error (starea 
operaţiei), aio_return (numărul de octeți transferați), 
aio_cancel (oprirea operației), aio_suspend (blocarea 
procesului)

● operațiile nu țin la curent offsetul în fișier
● după terminarea operației IO procesul este notificat 

printr-un semnal



  

Operații IO asincroneOperații IO asincrone

● operațiile AIO POSIX sunt oferite în Linux în user-
space prin implementarea unor thread-uri

● kernelul 2.6 introduce suport pentru AIO la nivel 
kernel

● aceste AIO kernel vin cu un nou set de apeluri 
sistem (definite în libaio), care este diferit de 
apelurile POSIX
– io_setup (crearea operației), io_submit (pornirea 

operației), io_getevents (citirea operațiilor terminate), 
io_wait (blocare proces până terminarea operației), 
io_cancel (oprirea operației), io_destroy (ștergerea 
contextului de operație)
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