Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan



Linux si real-time

* sistem timp-real:

— raspunsul sistemului la aparitia unui eveniment este
realizat intr-un timp corespunzator

e clasificare:

— hard real-time

e sistemul garanteaza un timp de raspuns pentru cel mai rau
caz, care este realizat in toate conditiile

— soft real-time

* sistemul nu garanteaza timpul de raspuns pentru orice
conditie, dar Tn marea majoritate a cazurilor, raspunsul vine
In timp corespunzator



Standardul POSIX pentru RTOS

e un sistem RTOS trebuie sa satisfaca urmatoarele
caracteristici

— multitasking / multithreading

e RTOS trebuie sa ofere suport pentru rularea aplicatiilor
pseudoparalel

— prioritati
» taskurile trebuie sa aiba asociate prioritati diferite, taskurile
critice avand prioritati mai ridicate
— mostenire de prioritati

e RTOS trebuie sa suporte un mecanism de mostenire a
prioritatilor



Standardul POSIX pentru RTOS

— preemption

e cand un task de prioritate mai mare devine ready, taskul de
prioritate mai mica in rulare trebuie intrerupt

— latenta intreruperilor

* RTOS trebuie sa aiba o latenta a intreruperilor (timpul intre
aparitia intreruperii si deservirea acesteia) predictibila (si cat
mai mica)

— latenta planificatorului

e timpul intre momentul cand un task devine rulabil si pana
cand incepe sa ruleze trebuie sa fie determinist



Standardul POSIX pentru RTOS

— |PC si sincronizare

e cea mai populara metoda de IPC in sisteme embedded este
message passing, RTOS trebuie sa ofere suport pentru
transmisia mesajelor in timp constant

e RTOS trebuie sa ofere suport pentru semafoare si mutex
— alocare dinamica de memorie

e RTOS trebuie sa ofere un mecanism de alocare dinamica a
memoriel intr-un timp constant



Natura non-RTOS a Linuxului

* Linux a evoluat ca un SO de uz general, si in
consecinta are urmatoarele caracteristici:

— latenta mare la intreruperi

— latenta mare a planificatorului datorita naturii non-
oreemptive a kernelului

— diferite servicii a SO (IPC, alocare dinamica de
memorie, etc.) nu au un timp de executie determinist

— alte caracteristici (ca memoria virtuala, apelurile sistem)
rezulta in timpi de raspuns a SO in general non-
deterministe



Moaodificare Linux pentru real-time

* doua solutii adoptate

— realizarea unui sistem hard real-time
e RTLinux

* se foloseste un real-time executive (kernel simplu RTOS) care
satisface toate criteriile RTOS si ruleaza Linux ca un singur
task

— adaugare suport in kernel pentru executii soft real-time

e uCLinux, MontaVista, etc...
o solutii ce modifica timpii de raspuns a sistemului

* cele mai multe au fost portate in kernelul 2.6



Linux soft real-time

e timpii de raspuns generale a sistemului sunt reduse
in asa fel incat in majoritatea cazurilor sa ofere
raspunsuri la evenimente in timp corespunzator

* pentru tratarea unui eveniment sistemul trebuie sa
realizeze o multitudine de operatii asociate
diferitelor subsisteme intre aparitia evenimentului
si lansarea procesului care raspunde la eveniment

— toate aceste operatii trebuie optimizate pentru ca
timpul de raspuns general sa fie corespunzator



Tratarea evenimentelor

evenimentul cauzeaza o intrerupere la procesor
se ruleaza ISR din driverul corespunzator

ISR verifica in wait-queue daca exista un proces
care asteapta evenimentul

daca se gaseste astfel de procese se ruleaza o
functie wake-up care scoate procesul din coada
wait si depune in coada ready

kernelul apeleaza planificatorul la primul moment
in care aceasta este posibi

planificatorul va schimba la procesul respectiv daca
aceasta are suficienta prioritate



Caracteristici OS ce influenteaza
timpul de raspuns

latenta intreruperilor

— timpul pana cand ISR este executat

durata ISR

latenta planificatorului

— timpul dupa terminarea ISR pana la rularea
planificatorului

durata planificarii



Latenta intreruperilor

* principale cauze de latenta mare

— dezactivarea intreruperilor pentru un timp indelungat

e portii din kernel si din drivere trebuie sa se protejeze fata de
rutine de intreruperi

e astfel de sectiuni critice sunt inconjurate de apeluri de tip
local_irq_disable sau spin_lock_1irq

— inregistrarea intreruperilor gresita

o driverele scrise gresit pot sa inregistreze ISR-ul in mod gresit

o exista doua moduri de inregistrare: fast irq si slow irq, daca
un dispozitiv mai putin important inregistreaza fast irq atunci
poate bloca intreruperile mai importante



Durata ISR-urilor

e durata ISR-ului este in totalitate lasata pe seama
programatorului de driver

e durata ISR-ului poate fi non-determinista daca se
foloseste soft-irg

— ISR poate fi impartit In doua sectiuni: o parte critica
care se executa in interiorul ISR si nu mai poate fi
intrerupt si o parte care va fi tratat ulterior de kernel si
care poate fi intrerupt de alte irq hardware

— soft-irq este de obicei tratat de daemonul ksoft-irqd
care este non-real-time, astfel folosirea soft-irq pentru
evenimente real-time trebuie evitata



Latenta planificatorului

 latenta planificatorului (mai ales la versiuni mai

vechi) este principalul contributor la timpul de
raspuns mare

* kernelul pana la 2.4 avea o natura non-preemptiva:

— procesele din user-space puteau fi inlaturate, dar
functiile kernel apelate din user-space nu puteau fi
intrerupte, astfel se crea si in interiorul proceselor zone
in care procesul nu putea fi intrerupt

— dezactivarea intreruperilor (ce include si intreruperea

timerului asociat cu planificatorul) putea avea impact
asupra latenta planificatorului



Kernel preemption

e odata cu cresterea suportului pentru SMP in Linux
au fost identificate si un numar mare de sectiuni
critice care au fost protejate cu spinlock

* s-a observat ca functiile din kernel puteau fi
inlaturate la planificare fara probleme daca acestea
nu se afla in sectiuni critice

* pentru Montavista a fost creat un patch care
foloseste acest lucru si permite inlaturarea
kernelului la planificare

— acest patch a fost mai tarziu reintrodus in kernelul 2.6



Kernel preemption

e pentru suportul kernel preemption a fost introdus
o variabila preempt_count si doua primitive:

- preempt_disable: incrementeaza preempt_count

- preempt_enable: decrementeaza preempt_count

— daca preempt_count este 0 atunci kernelul poate fi
inlaturat fara probleme

 toate rutinele spinlock au fost modificate pentru a
apela preemt_disable la intrare si
preempt_enable la iesire

 la isr-uri a fost adaugata o functie care verifica
preempt_count si apeleaza planificatorul daca
aceasta este 0



Latenta planificatorului

Fara kernel preemption

user mode kernel mode user mode
user mode
A
IST
Cu kernel preemption
itical
user mode Soction user mode
user mode

IST

task 1

task 2 (high prio)

task 1

task 2 (high prio)



Patchuri de scadere a latentei

* pe parcursul dezvoltari kernelului 2.6 au fost
adaugate si niste patchuri pentru micsorarea
latentei (mai ales de Ingo Molnar si Andrew
Morton)

- s-a adaugat puncte de planificare explicite in interiorul
blocurilor kernel care se executa mai indelungat

— deseori (mai ales la parcurgerea listelor lungi) sa
introdus puncte unde spinlock-ul a fost oprit, apelat
planificatorul si restabilit spinlock-ul

e aceste patchuri deseori trebuie descarcate separat
de kernel, dar dau rezultate foarte bune



Durata planificarit

e durata planificarii este timpul necesar pentru
planificator ca sa aleaga procesul care va fi activat,
sa modifice listele (run, ready) corespunzatoare si
sa-l schimbe contextul [a noul proces

e initial planificatorul din Linux (pornind cu
conceptul de SO de uz general) s-a concentrat
pentru a realiza planificare cat mai corecta, de
aceea a fost sacrificat durata determinista a
planificarii

— de obicei planificatorul rula in timp O(n) pentru
numarul proceselor



Planificatorul O(1)

* incepand de versiunea 2.4.20 a fost introdus in
kernel planificatorul O(1) de Ingo Molnar

» acest planificator permite alegerea procesului ce
trebuie luat Tntr-un timp constant fata de numarul
proceselor

- sunt implementate 2 cozi: procesele active si procesele
expirate

— cozile sunt ordonate in functie de prioritati

— indexarea cozilor este facut intr-un bitmap,astfel
cautarea procesului cel mai prioritar devine O(1)

— la folosirea cuantei de timp asociate procesul activ va fi
depus in lista proceselor expirate

— la golirea listei active cele doua liste se inverseaza



User-space real-time

atentei a devenit un SO so

e kernelul Linux (mai ales incepand din 2.6) datorita
vlanificatorului O(1) si patchurilor de scadere a

t real-time

* pentru ca intregul sistem sa satisfaca criteriile de
real-time si aplicatiile trebuie sa se ruleze intr-o

maniera determinista

e pentru aceasta Linux (incepand cu versiune 2.6)
ofera suport pentru extensiile POSIX real-time



Extensii POSIX real-time

planificare cu prioritati fixe
blocarea memoriei

cozi de mesaje POSIX
memorie partajata POSIX
semnale real-time
semafoare POSIX

timere POSIX

operatii O asincrone



Extensii POSIX real-time

orioritatile fixe, memory lockingul, memoria
partajata si semnale real-time au fost suportate de
_inux chiar de la Tnceputuri

cozile de mesaje si timere POSIX au fost introduse
in kernelul 2.6

operatii |O asincrone initial a fost oferite numai in
bibliotecile libc, dar incepand cu 2.6 treptat si
aceste operatii au fost incluse in kernel

la momentul actual Linux ofera tot suportul pentru
extensii POSIX real-time, ramanand la latura
dezvoltatorilor sa foloseasca acestea



Planificare cu prioritati fixe

* parametrii asociati proceselor (referitor la RT):

- clasa de planificare
— prioritate
— cuanta de timp

* clasa de planificare precizeaza algoritmul de
planificare folosit pentru proces:

- SCHED_FIFO: procesele ruleaza unul dupa celalalt Tn
ordinea crearii pana la terminare sau blocare

- SCHED_RR: (Round Robin) procesele ruleaza pana la
cuanta precizata dupa care vor fi puse la capatul listei

- SCHED_OTHER: planificatorul standard (non-RT)



Prioritati specificate de utilizator

utilizatorul poate modifica prioritatea asociata
procesului (sched _setparam)

clasele de planificare SCHED FIFO si SCHED_RR
intotdeauna au o prioritate mai mare decat clasa
SCHED_OTHER (prioritate fixata pe 0)

clasa SCHED OTHER este tratata cu algoritm
standard de planificare pe baza unei valori nice

valoarea nice nu are efect in cazul planificarilor
FIFO si Round Robin, insa contribuie la calcularea
cuantei de timp (la Round Robin)



Blocarea meroriei

 aplicatiile real-time au nevoie de un timp de

raspuns determinist ce nu poate fi satisfacut daca
se foloseste paginare

e pentru a realiza timpul de raspuns determinist un
proces poate sa blocheze o parte (sau chiar toata)
memoria alocata procesului, ca aceasta zona sa
ramana definitiv in memorie

* solutii de blocare:

— in timpul rularii cu functiile mlock si mlockall
— in timpul legarii prin intermediul Idscript-ului

— cu atributul gcc: __section



IPC POSIX

e cozi de mesaje

— mesajele pot fi prioritizate, transmisie blocanta

- mqg_open, mg_close, mqg_unlink, mg_send, mq_recv
* memorle partajata

— cea mai rapida solutie, acces fara apeluri sistem

- shm_open, shm_unlink
e semafoare

— sincronizare intre procese

- sem_open, sem_close, sem_unlink, sem_wait,
sem_post



Semnale timp real

* sunt folosite pentru notificarea proceselor despre
aparitia unui eveniment asincron

e semnalele real-time sunt o extensie a semnalelor
native Linux:

— numar mai mare de semnale utilizator
— semnale prioritizate
— informatii atasate semnalelor
— semnalele sunt salvate intr-o coada
e functii:

- sigaction (definirea unui handler), sigqueue
(transmiterea unui semnal)



Ceasuri si timere POSIX

e ofera acces mai avansat la ceasul sistem

- CLOCK REALTIME: ceasul universal

- CLOCK_MONOTONIC: timpul trecut de la pornirea
sistemului

- CLOCK PROCESS CPUTIME_ID: timpul total a unui
proces petrecut in rulare

- CLOCK THREAD_CPUTIME_ID: similar pentru threaduri
e accesul la ceas:

- clock settime, clock gettime, clock getres,
* blocarea procesul pentru o perioada

— clock nanosleep



Timere

folosite pentru temporizare
- timer _create, timer_delete

pot fi setate pentru o anumita perioada dupa care
vor genera un semnal ce poate fi tratat

- timer_settime

rezolutia standard in Linux este de Tms

MontaVista a introdus un timer de inalta rezolutie

(Tus)
- CLOCK_REALTIME_HR
- CLOCK_MONOTONIC_HR



Operatii |O asincrone

operatiile 10 standard sunt blocante (read, write)

pentru un timp de raspuns mai bun poate fi nevoie ca
procesul sa realizeze alte calcule in timp ce asteapta
pentru terminarea operatiei 10

aio _read (citire), aio write (scriere), aio_error (starea
operatiei), aio_return (numarul de octeti transferati),

aio_cancel (oprirea operatiei), aio_suspend (blocarea
procesului)

operatiile nu tin la curent offsetul in fisier

dupa terminarea operatiei 1O procesul este notificat
printr-un semnal



Operatii |O asincrone

» operatiile AIO POSIX sunt oferite in Linux in user-
space prin implementarea unor thread-uri

* kernelul 2.6 introduce suport pentru AlO la nivel
kernel

» aceste AlO kernel vin cu un nou set de apeluri

sistem (definite in libaio), care este diferit de
apelurile POSIX

- i0o_setup (crearea operatiei), io_submit (pornirea
operatiei), io_getevents (citirea operatiilor terminate),
io_wait (blocare proces pana terminarea operatiei),
io_cancel (oprirea operatiei), io_destroy (stergerea
contextului de operatie)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

