

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Linux și real-timeLinux și real-time

● sistem timp-real:
– răspunsul sistemului la apariția unui eveniment este

realizat într-un timp corespunzător

● clasificare:
– hard real-time

● sistemul garantează un timp de răspuns pentru cel mai rău
caz, care este realizat în toate condițiile

– soft real-time
● sistemul nu garantează timpul de răspuns pentru orice

condiție, dar în marea majoritate a cazurilor, răspunsul vine
în timp corespunzător

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

● un sistem RTOS trebuie să satisfacă următoarele
caracteristici
– multitasking / multithreading

● RTOS trebuie să ofere suport pentru rularea aplicațiilor
pseudoparalel

– priorități
● taskurile trebuie să aibă asociate priorități diferite, taskurile

critice având priorități mai ridicate

– moștenire de priorități
● RTOS trebuie să suporte un mecanism de moștenire a

priorităților

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

– preemption
● când un task de prioritate mai mare devine ready, taskul de

prioritate mai mică în rulare trebuie întrerupt

– latența întreruperilor
● RTOS trebuie să aibă o latență a întreruperilor (timpul între

apariția întreruperii și deservirea acesteia) predictibilă (și cât
mai mică)

– latența planificatorului
● timpul între momentul când un task devine rulabil și până

când începe să ruleze trebuie să fie determinist

Standardul POSIX pentru RTOSStandardul POSIX pentru RTOS

– IPC și sincronizare
● cea mai populară metodă de IPC în sisteme embedded este

message passing, RTOS trebuie să ofere suport pentru
transmisia mesajelor în timp constant

● RTOS trebuie să ofere suport pentru semafoare și mutex

– alocare dinamică de memorie
● RTOS trebuie să ofere un mecanism de alocare dinamică a

memoriei într-un timp constant

Natura non-RTOS a LinuxuluiNatura non-RTOS a Linuxului

● Linux a evoluat ca un SO de uz general, și în
consecință are următoarele caracteristici:
– latență mare la întreruperi

– latență mare a planificatorului datorită naturii non-
preemptive a kernelului

– diferite servicii a SO (IPC, alocare dinamică de
memorie, etc.) nu au un timp de execuție determinist

– alte caracteristici (ca memoria virtuală, apelurile sistem)
rezultă în timpi de răspuns a SO în general non-
deterministe

Modificare Linux pentru real-timeModificare Linux pentru real-time

● două soluții adoptate
– realizarea unui sistem hard real-time

● RTLinux
● se folosește un real-time executive (kernel simplu RTOS) care

satisface toate criteriile RTOS și rulează Linux ca un singur
task

– adăugare suport în kernel pentru execuții soft real-time
● uCLinux, MontaVista, etc.
● soluții ce modifică timpii de răspuns a sistemului
● cele mai multe au fost portate în kernelul 2.6

Linux soft real-timeLinux soft real-time

● timpii de răspuns generale a sistemului sunt reduse
în așa fel încât în majoritatea cazurilor să ofere
răspunsuri la evenimente în timp corespunzător

● pentru tratarea unui eveniment sistemul trebuie să
realizeze o multitudine de operații asociate
diferitelor subsisteme între apariția evenimentului
și lansarea procesului care răspunde la eveniment
– toate aceste operații trebuie optimizate pentru ca

timpul de răspuns general să fie corespunzător

Tratarea evenimentelorTratarea evenimentelor

● evenimentul cauzează o întrerupere la procesor
● se rulează ISR din driverul corespunzător
● ISR verifică în wait-queue dacă există un proces

care așteaptă evenimentul
● dacă se găsește astfel de procese se rulează o

funcție wake-up care scoate procesul din coada
wait și depune în coada ready

● kernelul apelează planificatorul la primul moment
în care aceasta este posibil

● planificatorul va schimba la procesul respectiv dacă
aceasta are suficientă prioritate

Caracteristici OS ce influențează Caracteristici OS ce influențează
timpul de răspunstimpul de răspuns

● latența întreruperilor
– timpul până când ISR este executat

● durata ISR
● latența planificatorului

– timpul după terminarea ISR până la rularea
planificatorului

● durata planificării

Latența întreruperilorLatența întreruperilor

● principale cauze de latență mare
– dezactivarea întreruperilor pentru un timp îndelungat

● porții din kernel și din drivere trebuie să se protejeze față de
rutine de întreruperi

● astfel de secțiuni critice sunt înconjurate de apeluri de tip
local_irq_disable sau spin_lock_irq

– înregistrarea întreruperilor greșită
● driverele scrise greșit pot să înregistreze ISR-ul în mod greșit
● există două moduri de înregistrare: fast irq și slow irq, dacă

un dispozitiv mai puțin important înregistrează fast irq atunci
poate bloca întreruperile mai importante

Durata ISR-urilorDurata ISR-urilor

● durata ISR-ului este în totalitate lăsată pe seama
programatorului de driver

● durata ISR-ului poate fi non-deterministă dacă se
folosește soft-irq
– ISR poate fi împărțit în două secțiuni: o parte critică

care se execută în interiorul ISR și nu mai poate fi
întrerupt și o parte care va fi tratat ulterior de kernel și
care poate fi întrerupt de alte irq hardware

– soft-irq este de obicei tratat de daemonul ksoft-irqd
care este non-real-time, astfel folosirea soft-irq pentru
evenimente real-time trebuie evitată

Latența planificatoruluiLatența planificatorului

● latența planificatorului (mai ales la versiuni mai
vechi) este principalul contributor la timpul de
răspuns mare

● kernelul până la 2.4 avea o natură non-preemptivă:
– procesele din user-space puteau fi înlăturate, dar

funcțiile kernel apelate din user-space nu puteau fi
întrerupte, astfel se crea și în interiorul proceselor zone
în care procesul nu putea fi întrerupt

– dezactivarea întreruperilor (ce include și întreruperea
timerului asociat cu planificatorul) putea avea impact
asupra latența planificatorului

Kernel preemptionKernel preemption

● odată cu creșterea suportului pentru SMP în Linux
au fost identificate și un număr mare de secțiuni
critice care au fost protejate cu spinlock

● s-a observat că funcțiile din kernel puteau fi
înlăturate la planificare fără probleme dacă acestea
nu se află în secțiuni critice

● pentru Montavista a fost creat un patch care
folosește acest lucru și permite înlăturarea
kernelului la planificare
– acest patch a fost mai târziu reintrodus în kernelul 2.6

Kernel preemptionKernel preemption
● pentru suportul kernel preemption a fost introdus

o variabilă preempt_count și două primitive:
– preempt_disable: incrementează preempt_count
– preempt_enable: decrementează preempt_count

– dacă preempt_count este 0 atunci kernelul poate fi
înlăturat fără probleme

● toate rutinele spinlock au fost modificate pentru a
apela preemt_disable la intrare și
preempt_enable la ieșire

● la isr-uri a fost adăugată o funcție care verifică
preempt_count și apelează planificatorul dacă
aceasta este 0

Latența planificatoruluiLatența planificatorului

user mode

Fără kernel preemption

kernel mode user mode task 1

user mode task 2 (high prio)

isr

user mode

Cu kernel preemption

user mode task 1

user mode task 2 (high prio)

isr

critical
section

Patchuri de scădere a latențeiPatchuri de scădere a latenței

● pe parcursul dezvoltări kernelului 2.6 au fost
adăugate și niște patchuri pentru micșorarea
latenței (mai ales de Ingo Molnár și Andrew
Morton)
– s-a adăugat puncte de planificare explicite în interiorul

blocurilor kernel care se execută mai îndelungat

– deseori (mai ales la parcurgerea listelor lungi) sa
introdus puncte unde spinlock-ul a fost oprit, apelat
planificatorul și restabilit spinlock-ul

● aceste patchuri deseori trebuie descărcate separat
de kernel, dar dau rezultate foarte bune

Durata planificăriiDurata planificării

● durata planificării este timpul necesar pentru
planificator ca să aleagă procesul care va fi activat,
să modifice listele (run, ready) corespunzătoare și
să-l schimbe contextul la noul proces

● inițial planificatorul din Linux (pornind cu
conceptul de SO de uz general) s-a concentrat
pentru a realiza planificare cât mai corectă, de
aceea a fost sacrificat durata deterministă a
planificării
– de obicei planificatorul rula în timp O(n) pentru

numărul proceselor

Planificatorul O(1)Planificatorul O(1)
● începând de versiunea 2.4.20 a fost introdus în

kernel planificatorul O(1) de Ingo Molnár
● acest planificator permite alegerea procesului ce

trebuie luat într-un timp constant față de numărul
proceselor
– sunt implementate 2 cozi: procesele active și procesele

expirate

– cozile sunt ordonate în funcție de priorități

– indexarea cozilor este făcut într-un bitmap,astfel
căutarea procesului cel mai prioritar devine O(1)

– la folosirea cuantei de timp asociate procesul activ va fi
depus în lista proceselor expirate

– la golirea listei active cele două liste se inversează

User-space real-timeUser-space real-time

● kernelul Linux (mai ales începând din 2.6) datorită
planificatorului O(1) și patchurilor de scădere a
latenței a devenit un SO soft real-time

● pentru ca întregul sistem să satisfacă criteriile de
real-time și aplicațiile trebuie să se ruleze într-o
manieră deterministă

● pentru aceasta Linux (începând cu versiune 2.6)
oferă suport pentru extensiile POSIX real-time

Extensii POSIX real-timeExtensii POSIX real-time

● planificare cu priorități fixe
● blocarea memoriei
● cozi de mesaje POSIX
● memorie partajată POSIX
● semnale real-time
● semafoare POSIX
● timere POSIX
● operații IO asincrone

Extensii POSIX real-timeExtensii POSIX real-time

● prioritățile fixe, memory lockingul, memoria
partajată și semnale real-time au fost suportate de
Linux chiar de la începuturi

● cozile de mesaje și timere POSIX au fost introduse
în kernelul 2.6

● operații IO asincrone inițial a fost oferite numai în
bibliotecile libc, dar începând cu 2.6 treptat și
aceste operații au fost incluse în kernel

● la momentul actual Linux oferă tot suportul pentru
extensii POSIX real-time, rămânând la latura
dezvoltatorilor să folosească acestea

Planificare cu priorități fixePlanificare cu priorități fixe

● parametrii asociați proceselor (referitor la RT):
– clasa de planificare
– prioritate
– cuanta de timp

● clasa de planificare precizează algoritmul de
planificare folosit pentru proces:
– SCHED_FIFO: procesele rulează unul după celălalt în

ordinea creării până la terminare sau blocare
– SCHED_RR: (Round Robin) procesele rulează până la

cuanta precizată după care vor fi puse la capătul listei
– SCHED_OTHER: planificatorul standard (non-RT)

Priorități specificate de utilizatorPriorități specificate de utilizator

● utilizatorul poate modifica prioritatea asociată
procesului (sched_setparam)

● clasele de planificare SCHED_FIFO și SCHED_RR
întotdeauna au o prioritate mai mare decât clasa
SCHED_OTHER (prioritate fixată pe 0)

● clasa SCHED_OTHER este tratată cu algoritm
standard de planificare pe baza unei valori nice

● valoarea nice nu are efect în cazul planificărilor
FIFO și Round Robin, însă contribuie la calcularea
cuantei de timp (la Round Robin)

Blocarea memorieiBlocarea memoriei

● aplicațiile real-time au nevoie de un timp de
răspuns determinist ce nu poate fi satisfăcut dacă
se folosește paginare

● pentru a realiza timpul de răspuns determinist un
proces poate să blocheze o parte (sau chiar toată)
memoria alocată procesului, ca această zonă să
rămână definitiv în memorie

● soluții de blocare:
– în timpul rulării cu funcțiile mlock și mlockall

– în timpul legării prin intermediul ldscript-ului
– cu atributul gcc: __section__

IPC POSIXIPC POSIX

● cozi de mesaje
– mesajele pot fi prioritizate, transmisie blocantă
– mq_open, mq_close, mq_unlink, mq_send, mq_recv

● memorie partajată
– cea mai rapidă soluție, acces fără apeluri sistem
– shm_open, shm_unlink

● semafoare
– sincronizare între procese
– sem_open, sem_close, sem_unlink, sem_wait,
sem_post

Semnale timp realSemnale timp real

● sunt folosite pentru notificarea proceselor despre
apariția unui eveniment asincron

● semnalele real-time sunt o extensie a semnalelor
native Linux:
– număr mai mare de semnale utilizator

– semnale prioritizate

– informații atașate semnalelor

– semnalele sunt salvate într-o coadă

● funcții:
– sigaction (definirea unui handler), sigqueue

(transmiterea unui semnal)

Ceasuri și timere POSIXCeasuri și timere POSIX

● oferă acces mai avansat la ceasul sistem
– CLOCK_REALTIME: ceasul universal
– CLOCK_MONOTONIC: timpul trecut de la pornirea

sistemului
– CLOCK_PROCESS_CPUTIME_ID: timpul total a unui

proces petrecut în rulare
– CLOCK_THREAD_CPUTIME_ID: similar pentru threaduri

● accesul la ceas:
– clock_settime, clock_gettime, clock_getres,

● blocarea procesul pentru o perioadă
– clock_nanosleep

TimereTimere

● folosite pentru temporizare
– timer_create, timer_delete

● pot fi setate pentru o anumită perioadă după care
vor genera un semnal ce poate fi tratat
– timer_settime

● rezoluția standard în Linux este de 1ms
● MontaVista a introdus un timer de înaltă rezoluție

(1µs)
– CLOCK_REALTIME_HR

– CLOCK_MONOTONIC_HR

Operații IO asincroneOperații IO asincrone

● operațiile IO standard sunt blocante (read, write)
● pentru un timp de răspuns mai bun poate fi nevoie ca

procesul să realizeze alte calcule în timp ce așteaptă
pentru terminarea operației IO

● aio_read (citire), aio_write (scriere), aio_error (starea
operaţiei), aio_return (numărul de octeți transferați),
aio_cancel (oprirea operației), aio_suspend (blocarea
procesului)

● operațiile nu țin la curent offsetul în fișier
● după terminarea operației IO procesul este notificat

printr-un semnal

Operații IO asincroneOperații IO asincrone

● operațiile AIO POSIX sunt oferite în Linux în user-
space prin implementarea unor thread-uri

● kernelul 2.6 introduce suport pentru AIO la nivel
kernel

● aceste AIO kernel vin cu un nou set de apeluri
sistem (definite în libaio), care este diferit de
apelurile POSIX
– io_setup (crearea operației), io_submit (pornirea

operației), io_getevents (citirea operațiilor terminate),
io_wait (blocare proces până terminarea operației),
io_cancel (oprirea operației), io_destroy (ștergerea
contextului de operație)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

