Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan

Compilarea sistemului

* in mod traditional compilarea sistemului
embedded se realizeaza prin compilarea sistemului
de operare si a aplicatiilor intr-o singura imagine

— rezulta intr-un singur fisier binar ce poate fi incarcat in
memoria nevolatila a sistemului

— legarea impreuna permite inlaturarea codului nefolosit
din sistemul de operare rezultand in dimensiuni reduse
a sistemului

— se poate realiza o optimizare a codului intre kernel si
aplicatii rezultand in sistem mai mic si mai rapid

Compilarea embedded Linux

e Linux urmareste principiul de pe desktop: sistemul
de operare si aplicatiile sunt compilate separat

— usurinta in dezvoltarea aplicatiilor si in modificarea
functionalitatii sistemului

— portabilitate crescuta
— siguranta ridicata

— dimensiunea sistemului este mai mare, cu functii din
kernel nefolosite, cu rutine speciale de interfatare
aplicatii — kernel

— complexitatea compilarii sistemului creste

Compilarea kernelului

e kernelul Linux vine cu un sistem de compilare
incorporat (kbuild) bazat pe GNU make

* mecanismul kbuild ofera un sistem simplificat si
usor de folosit pentru configurarea si compilarea
kernelului

» sistemul kbuild poate fi usor extins cu rutine
proprii de configurare si scripturi de automatizare
ce permit adaptarea usoara la diferite sisteme

Pasii necesari pentru compilarea
kernelului

* instalarea unui mediu de cross-compilare

— implicit sistemul vine cu un mediu de compilare pentru
host (binutils, gcc)

— compilarea pentru sistemul embedded are nevoie de un
cross-compiler: compilatorul este executat pe un host,
dar creeaza cod pentru sistemul tinta (ex: gcc-arm, gec-
mips, etc.)

» configurarea kernelului

— procesul de selectare a componentelor din kernel ce vor
fi compilate

- mai multe metode: make [config | menuconfig |
xconfig]

Pasii necesari pentru compilarea
kernelului

* compilarea surselor si legarea fisierelor obiect

- make

— se compileaza sursele selectate la faza de compilarea si
se leaga toate impreuna intr-o imagine vmlinux

— pe 2.4 este nevoie de crearea dependintelor de fisiere
header (make dep) inainte de comanda make, pe 2.6 nu
este necesar

— pe 2.4 daca comanda make se emite inainte de
terminarea configurarii, se intra intr-o interfata
Interactiva make config, pe 2.6 se genereaza un mesaje
de eroare

Pasii necesari pentru compilarea
kernelului

* poate exista o faza de postprocesare a imaginii
kernelului dependent de arhitectura si de sistemul
de compilare

— de obicei inclus Tn faza make, dar nu e standardizat

— poate include comprimarea imaginii (vmlinuz), crearea
unei imagini de root, cod de bootstrap, etc..

e compilarea modulelor

— daca kernelul a fost configurat sa foloseasca anumite
componente ca module incarcate dinamic, acestea
trebuie compilate separat

- make modules

Compilarea kernelului pe diferite
arhitecturi

 la configurare utilizatorul poate seta arhitectura
tinta: tipul procesorului, placa folosita, etc.

 fiecare placa are propriile setari si surse in
subdirectorul arch

* make va parcurge aceste subdirectoare cautand
config.in (2.4) sau Kconfig (2.6) in care sunt stocate
configurarile posibile pentru arhitectura specifica

* un BSP trebuie plasat in aceste directoare, cu
fisiere de configurare corespunzatoare pentru a
putea fi compilat Tn kernel

Configurarea kernelului

Linux Kernel Configuration

B code maturity level optior

[9

L

T
o
|
E

e
Eiid |
P]
BT
ec
L

V=

Sl i e — e I e S St —iat— — el S it it v}

Configurarea kernelului

pasul cel mai important in compilarea sistemului

hoate fi realizat prin comenzile

- make config
e sistem bazat pe interactiune la linia de comanda

- make menuconfig

e sistem bazat pe meniuri (in mod text)

- make gconfig

* sistem grafic bazat pe GTK
- make xconfig

* sistem grafic bazat pe Qt

Fisiere de configurare

» configurarea este apelata de make, dar foloseste
propriul sistem de configurare cu fisiere dedicate
(config.in in 2.4, Kconfig in 2.6) si propriul limbaj
script pentru acestea

e punctul de pornire este fisierul de configurare
specific arhitecturii (in subdirectorul arch)

— aceasta este si primul punct in meniul de configurare

— acest fisier invoca celelalte fisiere de configurare a
subsistemelor din kernel (fs, net, etc..) in functie de
posibilitatile oferite de placa

Elemente de configurare

 fiecare element de configurare este stocat in forma
nume=valoare

— valoarea poate fi

* bool: ofera valorile y,n
e tristate: ofera valorile y,n,m

e string: orice sir de caractere ce trebuie inclus in kernel ca
atare

* integer: un numar oarecare ce trebuie inclus in kernel
* hexadecimal: similar cu integer

- elementele pot avea o valoare implicita, si pot fi
dependente de alte elemente

Exemplu de configurare unui driver

* in subdirectorul arch specific procesorului, se creeaza
un subdirector pentru driverul respectiv cu codul sursa
de ex. driverul nostru.c

* in fisierul Kconfig se include o intrare:

config DRIVERUL NOSTRU
bool
help
Aceasta este driverul nostru

* in fisierul Maketfile se include
obj-$(CONFIG_DRIVERUL NOSTRU) += driverul_nostru.c

* la configurare se va genera un fisier .config ce contine
CONFIG_DRIVERUL NOSTRU =y

Compilarea aplicatiilor

* compilarea aplicatiilor trebuie facuta de asemenea
prin cross-compilare

* pentru a usura portabilitatea pentru compilare se
pot folosi tool-uri GNU:
- autoconf
- automake
- libtool

» aceste tool-uri permit generarea unor sisteme de
compilare make generalizate si portabile pornind
de la Makefile-uri simple

Configurarea aplicatiilor

 prin folosirea tool-urilor autoconf/automake pentru
configurare se poate folosi scriptul configure:

Jconfigure --host=<target> --build=<build-system>
e configure va genera Makefile si config.h, ce vor
compila sistemul specific arhitecturii

* probleme la cross-compilare:

- configure nu poate executa programele de test (de ex.
sizeof(int))

— acestea vor trebui introduse manual Th config.cache

Crearea sistemului root

e ultima faza in crearea sistemului embedded

* se realizeaza o imagine a sistemului, ce contine
kernelul si aplicatiile, si care poate fi montat la
bootarea sistemului pentru a permite initializarea
sistemului si incarcarea aplicatiilor

* pot fi create doua tipuri de sisteme de fisiere
pentru root: ramdisk si ramfs

- ramdisk emuleaza un dispozitiv bloc in memorie

- ramfs stocheaza toate datele asociate fisierelor cacheul
kernelului

— pentru a crea imaginile se folosesc comenzile mkinitrd
respectiv mkinitramfs

Portarea aplicatiilor

» avantajul principal al sistemelor de operare este
posibilitatea unei portari usoare ale aplicatiilor de
pe un sistem pe alta

o dificultati mai mari poate reprezenta portarea
aplicatiilor intre diferite sisteme de operare:

— de pe RTOS (sau RT executive) clasic pe Linux, datorita
nevoii de flexibilitate mai mare sau pentru a permite
folosirea unor subsisteme gata facute (stiva TCP/IP,
servere, FS, ...)

— de pe PC (cu Linux) catre un dispozitiv embedded
(RTLinux sau uCLinux)

Portarea intre RTOS clasic si
embedded Linux

* pentru portarea aplicatiilor trebuie rezolvate
diferentele arhitecturale intre sistemele de operare:

— kernel API

- managementul memoriei
— managementul proceselor
- IPC

— operatiile 1O

Kernel API

* interfata prin intermediul careia aplicatiile
comunica cu kernelul

e sistemele RTOS de obicei furnizeaza o serie de
functii (care contin tot codul OS) care se leaga

impreuna cu aplicatiile
— aplicatiile pot apela aceste functii pentru a realiza

operatii cu kernel

— totalitatea acestor functii reprezinta kernel API

— ex FreeRTOS: vTaskSuspend, vTaskResume

Linux kernel API

 functiile kernel si aplicatiile ruleaza in spatii
diferite

 functiile din user space nu pot apela direct functii
din kernel space: numai driverele rulate in kernel
space pot apela API-ul Linux

e comunicarea intre aplicatii si kernel se realizeaza
prin interfetele FS sau system call:

— aplicatiile pot accesa fisiere speciale puse la dispozitie
de diferite drivere

— aplicatiile pot folosi un apel sistem (system call) realizat
prin intermediul unei intreruperi soft (trap)

Operating Systermn Porting Layer

* pentru portarea aplicatiilor RTOS pe Linux trebuie
implementat un OSPL

* minimizeaza numarul de modificari asupra codului

aplicatiei prin maparea functiilor oferite de API-ul
RTOS la API-ul Linux:

— mapare unu-la-unu: unele functii oferite de RTOS pot fi

mapate la un apel sistem oferit de Linux

#define xTaskHandle int
void vTaskSuspend(xTaskHandle pid)

{

}

— mapare unu-la-multe: cand o functie RTOS nu poate fi
realizat de un singur apel sistem

kill(pid, SIGSTOP);

OSPL pentru functii kernel space

* unele functii din aplicatia RTOS pot fi rulate in
kernel space:

— driverele, functii care lucreaza numai cu driverele,...

 functiile RTOS pot fi mapate si pentru functii din
Linux kernel API

* daca o functie apeleaza atat functii user-space cat
si kernel-space maparea simpla devine imposibila
— trebuie creat un kernel API driver, care va oferi o

interfata catre user space pentru a apela functia din
kernel space

Managementul memoriel

* RTOS nu ofera solutii de management al memoriei
avansate (numai malloc si free)

* harta memoriei in Linux este impartit in kernel
space si user space (cu fiecare proces in zona lui

separata)

— chiar si in cazul uCLinux (fara MMU) impartirile sunt
pastrate

* trebuie realizat o mapare in memorie atenta a
aplicatiilor

Variabile globale

* variabilele globale nu suporta bine transferul la un
sistem cu MM

» daca o biblioteca partajata (o functie care poate fi
apelat din mai multe taskuri) foloseste o variabila
globala, in linux aceasta variabila va deveni globala
numai in cadrul unui proces:

- linux va crea datele asociate bibliotecilor partajate
pentru fiecare proces in parte (numai textul va fi
partajat Tntre procese)

e pentru a evita modificarea codului, toate taskurile
ce apeleaza astfel de functii vor trebui puse in
acelasi proces

Managementul proceselor

e SO sunt caracterizate prin faptul ca permit rularea
pseudoparalela a mai multor aplicatii

e in RTOS aceste aplicatii se traduc in taskuri sau
procese:

— programe aflate in executie cu stiva, datele si contextul
asociat

— OS permite schimbarea intre aceste procese prin
intermediul planificatorului

* un task poate fi executat:

— pana la terminarea functie (de ex. rutine de init)

— intr-o bucla infinita (functiile de baza a sistemului)

Multitasking in Linux

* Linux ofera doua nivele pentru rularea aplicatiilor
in paralel:

— procesele

e programul aflat in executie impreuna cu datele, stiva si
contextul asociat

* numai textul poate fi partajat intre procese
— fire de executie

» programul aflat in executie impreuna cu stiva si contextul
asoclat

 datele sunt partajate intre fire de executie in cadrul unui
proces

Portarea taskurilor pe Linux

 fiecare task poate fi transformat intr-un thread din
cadrul aceluiasi proces

Task 1 — Thread 1

Task 2 — Thread 2

Process 1

RTOS Linux

Portarea taskurilor pe Linux

 taskurile pot fi grupate in procese diferite

Task 1 M Thread 1
Task 2 M Thread 2

Process 1

Task 3 M Thread 1
Task 4 % Thread 2

Process 2

RTOS Linux

Strategii de portare a taskurilor

* taskurile strans cuplate (prin variabile globale
partajate) pot fi puse in threaduri separate din
cadrul unui singur proces

— este metoda de portare cea mai directa si mai usoara

o taskurile independente sau cuplate prin
intermediul IPC oferit de SO se pun in procese
diferite

 taskurile importante (la functionalitatea

sistemului) ar trebui puse in procese diferite pentru
protectie maxima

Lucrul cu threaduri POSIX

* Linux implementeaza threaduri POSIX (pthreads)

* pentru portarea taskurilor Tn pthreaduri, aplicatiile
trebuie adaptate la standardul pthread API

e crearea threadurilor

int pthread create(pthread t* thread id,
pthread_attr t* thread_attributes,

void* (*start routine)(void*),
void* arg);

— se creaza un nou fir de executie pornind de la functia
start_routine

Terminarea threadurilor

* pentru a transmite starea de terminare threadul
poate apela functia

void pthread_exit(void* return_val);

— similar cu functia exit, dar va termina numai threadul
care a apelat

— daca functia asociata thread-ului se termina atunci nu
se va transmite stare de terminare

e pentru ca un thread sa citeasca starea de terminare
se foloseste functia

int pthread_join(pthread _t tid, void** thread return_val);

— similar cu functia wait

Terminarea threadurilor

e daca starea de terminare a unui thread nu a fost

citit, atunci resursele asociate threadurilor nu vor fi
eliberate

* in cazul in care un thread nu furnizeaza starea de
terminare atunci aceasta nu poate fi citita, pentru a
permite totusi eliberarea resurselor, threadul

trebuie detasat de threadul care I|-a creat
int pthread_detach(pthread t tid);

* portarea unei aplicatii in care taskurile Tsi Tncheie
rularea [a un moment dat, necesita si modificarea
codurilor aplicatiei

OSPL RTOS - threaduri

* portarea aplicatiilor RTOS alcatuite din functii in
bucle infinite este foarte usoara in threaduri

 fiecarei task va corespunde un thread (care nu se
termina niciodata)

 variabilele globale accesate de taskuri pot fi
accesate de threaduri ca o variabila globala de
proces

e functia in care sunt create threadurile trebuie sa
aiba si el o bucla infinita el reprezentand cadrul
procesului in care se executa threadurile

Sincronizarea threadurilor

e pthreads ofera metode robuste pentru sincronizare
prin intermediul unui APl userspace

e mutex

void pthread_mutex init(pthread mutex_t* mutex,
const pthread _mutexattr_t* mutexattr);

int pthread_mutex_lock(pthread mutex_t* mutex);

int pthread_mutex_unlock(pthread mutex_t* mutex);

e semafoare

void sem_init(sem_t* sem,
int pshared,
unsigned int value);

int sem_wait(sem_t* sem);

int sem_post(sem_t* sem);

Metode IPC

e Linux ofera metodele IPC POSIX:

— cozi de mesaje
— semafoare

— memoria partajata

e portarea taskurilor in procese independente,
presupune portarea IPC existente in astfel de IPC

— semafoare
* interfete catre structuri pastrate de kernel

int semget(key t key, int nsems, int semflg);
iInt semop(int semid, struct sembuf* sops, unsigned nsops);

IPC in kernel space

* threadurile rulate in kernel space (ex. driverele) pot

accesa direct structurile kernel asociate cu
metodele IPC

o astfel aceste threaduri pot folosi metodele IPC prin
intermediul unor functii APl simple

* portarea unor aplicatii RTOS pe Linux cu procese
independente poate fi usurata prin implementarea

unor drivere de kernel API, care vor interfata
functiile IPC folosite din RTOS

Portarea in kernel space

 toata functia este portata in kernel space:

— cel mai usor de realizat
— nu ofera nici o protectie

 se extinde functiile de apel sistem pentru a crea
interfetele aplicatie kernel necesare

— toate apelurile sistem sunt inregistrate in tabela system
calls din kernel

— upgrade-ul [a un kernel nou presupune crearea din nou
a apelurilor sistem

Portarea in kernel space

* se realizeaza functii user space care vor apela la un
driver kernel APl incarcat ca un modul

e driverul creaza o intrare in /dev si furnizeaza o
functie de ioctl pentru dispozitivul respectiv

 functiile user space (care emuleaza functiile APl din
RTOS) vor deschide acest dispozitiv si vor executa
un ioctl corespunzator

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

