

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ş.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Compilarea sistemuluiCompilarea sistemului

● în mod tradițional compilarea sistemului
embedded se realizează prin compilarea sistemului
de operare și a aplicațiilor într-o singură imagine
– rezultă într-un singur fișier binar ce poate fi încărcat în

memoria nevolatilă a sistemului

– legarea împreună permite înlăturarea codului nefolosit
din sistemul de operare rezultând în dimensiuni reduse
a sistemului

– se poate realiza o optimizare a codului între kernel și
aplicații rezultând în sistem mai mic și mai rapid

Compilarea embedded LinuxCompilarea embedded Linux

● Linux urmărește principiul de pe desktop: sistemul
de operare și aplicațiile sunt compilate separat
– ușurință în dezvoltarea aplicațiilor și în modificarea

funcționalității sistemului

– portabilitate crescută

– siguranță ridicată

– dimensiunea sistemului este mai mare, cu funcții din
kernel nefolosite, cu rutine speciale de interfațare
aplicații – kernel

– complexitatea compilării sistemului crește

Compilarea kerneluluiCompilarea kernelului

● kernelul Linux vine cu un sistem de compilare
încorporat (kbuild) bazat pe GNU make

● mecanismul kbuild oferă un sistem simplificat și
ușor de folosit pentru configurarea și compilarea
kernelului

● sistemul kbuild poate fi ușor extins cu rutine
proprii de configurare și scripturi de automatizare
ce permit adaptarea ușoară la diferite sisteme

Pașii necesari pentru compilarea Pașii necesari pentru compilarea
kerneluluikernelului

● instalarea unui mediu de cross-compilare
– implicit sistemul vine cu un mediu de compilare pentru

host (binutils, gcc)

– compilarea pentru sistemul embedded are nevoie de un
cross-compiler: compilatorul este executat pe un host,
dar creează cod pentru sistemul țintă (ex: gcc-arm, gcc-
mips, etc.)

● configurarea kernelului
– procesul de selectare a componentelor din kernel ce vor

fi compilate

– mai multe metode: make [config | menuconfig |
xconfig]

Pașii necesari pentru compilarea Pașii necesari pentru compilarea
kerneluluikernelului

● compilarea surselor și legarea fișierelor obiect
– make

– se compilează sursele selectate la faza de compilarea și
se leagă toate împreună într-o imagine vmlinux

– pe 2.4 este nevoie de crearea dependințelor de fișiere
header (make dep) înainte de comanda make, pe 2.6 nu
este necesar

– pe 2.4 dacă comanda make se emite înainte de
terminarea configurării, se intră într-o interfață
interactivă make config, pe 2.6 se generează un mesaje
de eroare

Pașii necesari pentru compilarea Pașii necesari pentru compilarea
kerneluluikernelului

● poate exista o fază de postprocesare a imaginii
kernelului dependent de arhitectură și de sistemul
de compilare
– de obicei inclus în faza make, dar nu e standardizat

– poate include comprimarea imaginii (vmlinuz), crearea
unei imagini de root, cod de bootstrap, etc..

● compilarea modulelor
– dacă kernelul a fost configurat să folosească anumite

componente ca module încărcate dinamic, acestea
trebuie compilate separat

– make modules

Compilarea kernelului pe diferite Compilarea kernelului pe diferite
arhitecturiarhitecturi

● la configurare utilizatorul poate seta arhitectura
țintă: tipul procesorului, placa folosită, etc.

● fiecare placă are propriile setări și surse în
subdirectorul arch

● make va parcurge aceste subdirectoare căutând
config.in (2.4) sau Kconfig (2.6) în care sunt stocate
configurările posibile pentru arhitectura specifică

● un BSP trebuie plasat în aceste directoare, cu
fișiere de configurare corespunzătoare pentru a
putea fi compilat în kernel

Configurarea kerneluluiConfigurarea kernelului

Configurarea kerneluluiConfigurarea kernelului

● pasul cel mai important în compilarea sistemului
● poate fi realizat prin comenzile

– make config
● sistem bazat pe interacţiune la linia de comandă

– make menuconfig
● sistem bazat pe meniuri (în mod text)

– make gconfig
● sistem grafic bazat pe GTK

– make xconfig
● sistem grafic bazat pe Qt

Fișiere de configurareFișiere de configurare

● configurarea este apelată de make, dar folosește
propriul sistem de configurare cu fișiere dedicate
(config.in în 2.4, Kconfig în 2.6) și propriul limbaj
script pentru acestea

● punctul de pornire este fișierul de configurare
specific arhitecturii (în subdirectorul arch)
– aceasta este și primul punct în meniul de configurare

– acest fișier invocă celelalte fișiere de configurare a
subsistemelor din kernel (fs, net, etc..) în funcție de
posibilitățile oferite de placă

Elemente de configurareElemente de configurare

● fiecare element de configurare este stocat în forma
nume=valoare
– valoarea poate fi

● bool: oferă valorile y,n
● tristate: oferă valorile y,n,m
● string: orice șir de caractere ce trebuie inclus în kernel ca

atare
● integer: un număr oarecare ce trebuie inclus în kernel
● hexadecimal: similar cu integer

– elementele pot avea o valoare implicită, și pot fi
dependente de alte elemente

Exemplu de configurare unui driverExemplu de configurare unui driver

● în subdirectorul arch specific procesorului, se creează
un subdirector pentru driverul respectiv cu codul sursă
de ex. driverul_nostru.c

● în fișierul Kconfig se include o intrare:
config DRIVERUL_NOSTRU

bool
help

Aceasta este driverul nostru

● în fișierul Makefile se include
obj-$(CONFIG_DRIVERUL_NOSTRU) += driverul_nostru.c

● la configurare se va genera un fișier .config ce conține
CONFIG_DRIVERUL_NOSTRU = y

Compilarea aplicațiilorCompilarea aplicațiilor

● compilarea aplicațiilor trebuie făcută de asemenea
prin cross-compilare

● pentru a ușura portabilitatea pentru compilare se
pot folosi tool-uri GNU:
– autoconf

– automake

– libtool

● aceste tool-uri permit generarea unor sisteme de
compilare make generalizate și portabile pornind
de la Makefile-uri simple

Configurarea aplicațiilorConfigurarea aplicațiilor

● prin folosirea tool-urilor autoconf/automake pentru
configurare se poate folosi scriptul configure:

./configure --host=<target> --build=<build-system>

● configure va genera Makefile și config.h, ce vor
compila sistemul specific arhitecturii

● probleme la cross-compilare:
– configure nu poate executa programele de test (de ex.

sizeof(int))

– acestea vor trebui introduse manual în config.cache

Crearea sistemului rootCrearea sistemului root

● ultima fază în crearea sistemului embedded
● se realizează o imagine a sistemului, ce conține

kernelul și aplicațiile, și care poate fi montat la
bootarea sistemului pentru a permite inițializarea
sistemului și încărcarea aplicațiilor

● pot fi create două tipuri de sisteme de fișiere
pentru root: ramdisk și ramfs
– ramdisk emulează un dispozitiv bloc în memorie

– ramfs stochează toate datele asociate fișierelor cacheul
kernelului

– pentru a crea imaginile se folosesc comenzile mkinitrd
respectiv mkinitramfs

Portarea aplicațiilorPortarea aplicațiilor

● avantajul principal al sistemelor de operare este
posibilitatea unei portări ușoare ale aplicațiilor de
pe un sistem pe alta

● dificultăți mai mari poate reprezenta portarea
aplicațiilor între diferite sisteme de operare:
– de pe RTOS (sau RT executive) clasic pe Linux, datorită

nevoii de flexibilitate mai mare sau pentru a permite
folosirea unor subsisteme gata făcute (stiva TCP/IP,
servere, FS, ...)

– de pe PC (cu Linux) către un dispozitiv embedded
(RTLinux sau uCLinux)

Portarea între RTOS clasic și Portarea între RTOS clasic și
embedded Linuxembedded Linux

● pentru portarea aplicațiilor trebuie rezolvate
diferențele arhitecturale între sistemele de operare:
– kernel API

– managementul memoriei

– managementul proceselor

– IPC

– operațiile IO

Kernel APIKernel API

● interfața prin intermediul căreia aplicațiile
comunică cu kernelul

● sistemele RTOS de obicei furnizează o serie de
funcții (care conțin tot codul OS) care se leagă
împreună cu aplicațiile
– aplicațiile pot apela aceste funcții pentru a realiza

operații cu kernel
– totalitatea acestor funcții reprezintă kernel API
– ex FreeRTOS: vTaskSuspend, vTaskResume

Linux kernel APILinux kernel API

● funcțiile kernel și aplicațiile rulează în spatii
diferite

● funcțiile din user space nu pot apela direct funcții
din kernel space: numai driverele rulate în kernel
space pot apela API-ul Linux

● comunicarea între aplicații și kernel se realizează
prin interfețele FS sau system call:
– aplicațiile pot accesa fișiere speciale puse la dispoziție

de diferite drivere

– aplicațiile pot folosi un apel sistem (system call) realizat
prin intermediul unei întreruperi soft (trap)

Operating System Porting LayerOperating System Porting Layer

● pentru portarea aplicațiilor RTOS pe Linux trebuie
implementat un OSPL

● minimizează numărul de modificări asupra codului
aplicației prin maparea funcțiilor oferite de API-ul
RTOS la API-ul Linux:
– mapare unu-la-unu: unele funcții oferite de RTOS pot fi

mapate la un apel sistem oferit de Linux

– mapare unu-la-multe: când o funcție RTOS nu poate fi
realizat de un singur apel sistem

#define xTaskHandle int
void vTaskSuspend(xTaskHandle pid)
{

kill(pid, SIGSTOP);
}

OSPL pentru funcții kernel spaceOSPL pentru funcții kernel space

● unele funcții din aplicația RTOS pot fi rulate în
kernel space:
– driverele, funcții care lucrează numai cu driverele,...

● funcțiile RTOS pot fi mapate și pentru funcții din
Linux kernel API

● dacă o funcție apelează atât funcții user-space cât
și kernel-space maparea simplă devine imposibilă
– trebuie creat un kernel API driver, care va oferi o

interfață către user space pentru a apela funcția din
kernel space

Managementul memorieiManagementul memoriei

● RTOS nu oferă soluții de management al memoriei
avansate (numai malloc și free)

● harta memoriei în Linux este împărțit în kernel
space și user space (cu fiecare proces în zona lui
separată)
– chiar și în cazul uCLinux (fără MMU) împărțirile sunt

păstrate

● trebuie realizat o mapare în memorie atentă a
aplicațiilor

Variabile globaleVariabile globale

● variabilele globale nu suportă bine transferul la un
sistem cu MM

● dacă o bibliotecă partajată (o funcție care poate fi
apelat din mai multe taskuri) folosește o variabila
globală, în linux această variabilă va deveni globală
numai în cadrul unui proces:
– linux va crea datele asociate bibliotecilor partajate

pentru fiecare proces în parte (numai textul va fi
partajat între procese)

● pentru a evita modificarea codului, toate taskurile
ce apelează astfel de funcții vor trebui puse în
același proces

Managementul proceselorManagementul proceselor

● SO sunt caracterizate prin faptul că permit rularea
pseudoparalelă a mai multor aplicații

● în RTOS aceste aplicații se traduc în taskuri sau
procese:
– programe aflate în execuție cu stiva, datele și contextul

asociat
– OS permite schimbarea între aceste procese prin

intermediul planificatorului

● un task poate fi executat:
– până la terminarea funcție (de ex. rutine de init)

– într-o buclă infinită (funcțiile de bază a sistemului)

Multitasking în LinuxMultitasking în Linux

● Linux oferă două nivele pentru rularea aplicațiilor
în paralel:
– procesele

● programul aflat în execuție împreună cu datele, stiva și
contextul asociat

● numai textul poate fi partajat între procese

– fire de execuție
● programul aflat în execuție împreună cu stiva și contextul

asociat
● datele sunt partajate între fire de execuție în cadrul unui

proces

Portarea taskurilor pe LinuxPortarea taskurilor pe Linux

● fiecare task poate fi transformat într-un thread din
cadrul aceluiași proces

Task 1

Task 2

Thread 1

Thread 2

Process 1

RTOS Linux

API OSPL

Portarea taskurilor pe LinuxPortarea taskurilor pe Linux

● taskurile pot fi grupate în procese diferite

Task 1

Task 2

Thread 1

Thread 2

Process 1

RTOS Linux

API OSPL

Task 3

Task 4

Thread 1

Thread 2

Process 2

Strategii de portare a taskurilorStrategii de portare a taskurilor

● taskurile strâns cuplate (prin variabile globale
partajate) pot fi puse în threaduri separate din
cadrul unui singur proces
– este metoda de portare cea mai directă și mai ușoară

● taskurile independente sau cuplate prin
intermediul IPC oferit de SO se pun în procese
diferite

● taskurile importante (la funcționalitatea
sistemului) ar trebui puse în procese diferite pentru
protecție maximă

Lucrul cu threaduri POSIXLucrul cu threaduri POSIX

● Linux implementează threaduri POSIX (pthreads)
● pentru portarea taskurilor în pthreaduri, aplicațiile

trebuie adaptate la standardul pthread API
● crearea threadurilor

– se crează un nou fir de execuție pornind de la funcția
start_routine

int pthread_create(pthread_t* thread_id,
 pthread_attr_t* thread_attributes,
 void* (*start_routine)(void*),
 void* arg);

Terminarea threadurilorTerminarea threadurilor

● pentru a transmite starea de terminare threadul
poate apela funcţia

– similar cu funcția exit, dar va termina numai threadul
care a apelat

– dacă funcția asociată thread-ului se termină atunci nu
se va transmite stare de terminare

● pentru ca un thread sa citească starea de terminare
se folosește funcția

– similar cu funcția wait

void pthread_exit(void* return_val);

int pthread_join(pthread_t tid, void** thread_return_val);

Terminarea threadurilorTerminarea threadurilor

● dacă starea de terminare a unui thread nu a fost
citit, atunci resursele asociate threadurilor nu vor fi
eliberate

● în cazul în care un thread nu furnizează starea de
terminare atunci aceasta nu poate fi citită, pentru a
permite totuși eliberarea resurselor, threadul
trebuie detașat de threadul care l-a creat

● portarea unei aplicații în care taskurile își încheie
rularea la un moment dat, necesită și modificarea
codurilor aplicației

int pthread_detach(pthread_t tid);

OSPL RTOS - threaduriOSPL RTOS - threaduri

● portarea aplicațiilor RTOS alcătuite din funcții în
bucle infinite este foarte ușoară în threaduri

● fiecărei task va corespunde un thread (care nu se
termină niciodată)

● variabilele globale accesate de taskuri pot fi
accesate de threaduri ca o variabilă globală de
proces

● funcția în care sunt create threadurile trebuie să
aibă și el o buclă infinită el reprezentând cadrul
procesului în care se execută threadurile

Sincronizarea threadurilorSincronizarea threadurilor

● pthreads oferă metode robuste pentru sincronizare
prin intermediul unui API userspace

● mutex

● semafoare

void pthread_mutex_init(pthread_mutex_t* mutex,
 const pthread_mutexattr_t* mutexattr);
int pthread_mutex_lock(pthread_mutex_t* mutex);
int pthread_mutex_unlock(pthread_mutex_t* mutex);

void sem_init(sem_t* sem,
 int pshared,
 unsigned int value);
int sem_wait(sem_t* sem);
int sem_post(sem_t* sem);

Metode IPCMetode IPC

● Linux oferă metodele IPC POSIX:
– cozi de mesaje

– semafoare

– memoria partajată

● portarea taskurilor în procese independente,
presupune portarea IPC existente în astfel de IPC
– semafoare

● interfețe către structuri păstrate de kernel

int semget(key_t key, int nsems, int semflg);
int semop(int semid, struct sembuf* sops, unsigned nsops);

IPC în kernel spaceIPC în kernel space

● threadurile rulate în kernel space (ex. driverele) pot
accesa direct structurile kernel asociate cu
metodele IPC

● astfel aceste threaduri pot folosi metodele IPC prin
intermediul unor funcții API simple

● portarea unor aplicații RTOS pe Linux cu procese
independente poate fi ușurată prin implementarea
unor drivere de kernel API, care vor interfața
funcțiile IPC folosite din RTOS

Portarea în kernel spacePortarea în kernel space

● toată funcția este portată în kernel space:
– cel mai ușor de realizat

– nu oferă nici o protecție

● se extinde funcțiile de apel sistem pentru a crea
interfețele aplicație kernel necesare
– toate apelurile sistem sunt înregistrate în tabela system

calls din kernel
– upgrade-ul la un kernel nou presupune crearea din nou

a apelurilor sistem

Portarea în kernel spacePortarea în kernel space

● se realizează funcții user space care vor apela la un
driver kernel API încărcat ca un modul

● driverul crează o intrare în /dev și furnizează o
funcție de ioctl pentru dispozitivul respectiv

● funcțiile user space (care emulează funcțiile API din
RTOS) vor deschide acest dispozitiv și vor executa
un ioctl corespunzător

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

