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Compilarea sistemuluiCompilarea sistemului

● în mod tradițional compilarea sistemului 
embedded se realizează prin compilarea sistemului 
de operare și a aplicațiilor într-o singură imagine
– rezultă într-un singur fișier binar ce poate fi încărcat în 

memoria nevolatilă a sistemului

– legarea împreună permite înlăturarea codului nefolosit 
din sistemul de operare rezultând în dimensiuni reduse 
a sistemului

– se poate realiza o optimizare a codului între kernel și 
aplicații rezultând în sistem mai mic și mai rapid



  

Compilarea embedded LinuxCompilarea embedded Linux

● Linux urmărește principiul de pe desktop: sistemul 
de operare și aplicațiile sunt compilate separat
– ușurință în dezvoltarea aplicațiilor și în modificarea 

funcționalității sistemului

– portabilitate crescută

– siguranță ridicată

– dimensiunea sistemului este mai mare, cu funcții din 
kernel nefolosite, cu rutine speciale de interfațare 
aplicații – kernel

– complexitatea compilării sistemului crește



  

Compilarea kerneluluiCompilarea kernelului

● kernelul Linux vine cu un sistem de compilare 
încorporat (kbuild) bazat pe GNU make

● mecanismul kbuild oferă un sistem simplificat și 
ușor de folosit pentru configurarea și compilarea 
kernelului

● sistemul kbuild poate fi ușor extins cu rutine 
proprii de configurare și scripturi de automatizare 
ce permit adaptarea ușoară la diferite sisteme



  

Pașii necesari pentru compilarea Pașii necesari pentru compilarea 
kerneluluikernelului

● instalarea unui mediu de cross-compilare
– implicit sistemul vine cu un mediu de compilare pentru 

host (binutils, gcc)

– compilarea pentru sistemul embedded are nevoie de un 
cross-compiler: compilatorul este executat pe un host, 
dar creează cod pentru sistemul țintă (ex: gcc-arm, gcc-
mips, etc.)

● configurarea kernelului
– procesul de selectare a componentelor din kernel ce vor 

fi compilate

– mai multe metode: make [config | menuconfig | 
xconfig]



  

Pașii necesari pentru compilarea Pașii necesari pentru compilarea 
kerneluluikernelului

● compilarea surselor și legarea fișierelor obiect
– make

– se compilează sursele selectate la faza de compilarea și 
se leagă toate împreună într-o imagine vmlinux

– pe 2.4 este nevoie de crearea dependințelor de fișiere 
header (make dep) înainte de comanda make, pe 2.6 nu 
este necesar

– pe 2.4 dacă comanda make se emite înainte de 
terminarea configurării, se intră într-o interfață 
interactivă make config, pe 2.6 se generează un mesaje 
de eroare



  

Pașii necesari pentru compilarea Pașii necesari pentru compilarea 
kerneluluikernelului

● poate exista o fază de postprocesare a imaginii 
kernelului dependent de arhitectură și de sistemul 
de compilare
– de obicei inclus în faza make, dar nu e standardizat

– poate include comprimarea imaginii (vmlinuz), crearea 
unei imagini de root, cod de bootstrap, etc..

● compilarea modulelor
– dacă kernelul a fost configurat să folosească anumite 

componente ca module încărcate dinamic, acestea 
trebuie compilate separat

– make modules



  

Compilarea kernelului pe diferite Compilarea kernelului pe diferite 
arhitecturiarhitecturi

● la configurare utilizatorul poate seta arhitectura 
țintă: tipul procesorului, placa folosită, etc.

● fiecare placă are propriile setări și surse în 
subdirectorul arch

● make va parcurge aceste subdirectoare căutând 
config.in (2.4) sau Kconfig (2.6) în care sunt stocate 
configurările posibile pentru arhitectura specifică

● un BSP trebuie plasat în aceste directoare, cu 
fișiere de configurare corespunzătoare pentru a 
putea fi compilat în kernel



  

Configurarea kerneluluiConfigurarea kernelului



  

Configurarea kerneluluiConfigurarea kernelului

● pasul cel mai important în compilarea sistemului
● poate fi realizat prin comenzile

– make config
● sistem bazat pe interacţiune la linia de comandă

– make menuconfig
● sistem bazat pe meniuri (în mod text)

– make gconfig
● sistem grafic bazat pe GTK

– make xconfig
● sistem grafic bazat pe Qt



  

Fișiere de configurareFișiere de configurare

● configurarea este apelată de make, dar folosește 
propriul sistem de configurare cu fișiere dedicate 
(config.in în 2.4, Kconfig în 2.6) și propriul limbaj 
script pentru acestea

● punctul de pornire este fișierul de configurare 
specific arhitecturii (în subdirectorul arch)
– aceasta este și primul punct în meniul de configurare

– acest fișier invocă celelalte fișiere de configurare a 
subsistemelor din kernel (fs, net, etc..) în funcție de 
posibilitățile oferite de placă



  

Elemente de configurareElemente de configurare

● fiecare element de configurare este stocat în forma 
nume=valoare
– valoarea poate fi

● bool: oferă valorile y,n
● tristate: oferă valorile y,n,m
● string: orice șir de caractere ce trebuie inclus în kernel ca 

atare
● integer: un număr oarecare ce trebuie inclus în kernel
● hexadecimal: similar cu integer

– elementele pot avea o valoare implicită, și pot fi 
dependente de alte elemente



  

Exemplu de configurare unui driverExemplu de configurare unui driver

● în subdirectorul arch specific procesorului, se creează 
un subdirector pentru driverul respectiv cu codul sursă 
de ex. driverul_nostru.c

● în fișierul Kconfig se include o intrare:
config DRIVERUL_NOSTRU

bool
help

Aceasta este driverul nostru

● în fișierul Makefile se include
obj-$(CONFIG_DRIVERUL_NOSTRU) += driverul_nostru.c

● la configurare se va genera un fișier .config ce conține 
CONFIG_DRIVERUL_NOSTRU = y



  

Compilarea aplicațiilorCompilarea aplicațiilor

● compilarea aplicațiilor trebuie făcută de asemenea 
prin cross-compilare

● pentru a ușura portabilitatea pentru compilare se 
pot folosi tool-uri GNU:
– autoconf

– automake

– libtool

● aceste tool-uri permit generarea unor sisteme de 
compilare make generalizate și portabile pornind 
de la Makefile-uri simple



  

Configurarea aplicațiilorConfigurarea aplicațiilor

● prin folosirea tool-urilor autoconf/automake pentru 
configurare se poate folosi scriptul configure:

./configure --host=<target> --build=<build-system>

● configure va genera Makefile și config.h, ce vor 
compila sistemul specific arhitecturii

● probleme la cross-compilare:
– configure nu poate executa programele de test (de ex. 

sizeof(int) )

– acestea vor trebui introduse manual în config.cache



  

Crearea sistemului rootCrearea sistemului root

● ultima fază în crearea sistemului embedded
● se realizează o imagine a sistemului, ce conține 

kernelul și aplicațiile, și care poate fi montat la 
bootarea sistemului pentru a permite inițializarea 
sistemului și încărcarea aplicațiilor

● pot fi create două tipuri de sisteme de fișiere 
pentru root: ramdisk și ramfs
– ramdisk emulează un dispozitiv bloc în memorie

– ramfs stochează toate datele asociate fișierelor cacheul 
kernelului

– pentru a crea imaginile se folosesc comenzile mkinitrd 
respectiv mkinitramfs



  

Portarea aplicațiilorPortarea aplicațiilor

● avantajul principal al sistemelor de operare este 
posibilitatea unei portări ușoare ale aplicațiilor de 
pe un sistem pe alta

● dificultăți mai mari poate reprezenta portarea 
aplicațiilor între diferite sisteme de operare:
– de pe RTOS (sau RT executive) clasic pe Linux, datorită 

nevoii de flexibilitate mai mare sau pentru a permite 
folosirea unor subsisteme gata făcute (stiva TCP/IP, 
servere, FS, ...)

– de pe PC (cu Linux) către un dispozitiv embedded 
(RTLinux sau uCLinux)



  

Portarea între RTOS clasic și Portarea între RTOS clasic și 
embedded Linuxembedded Linux

● pentru portarea aplicațiilor trebuie rezolvate 
diferențele arhitecturale între sistemele de operare:
– kernel API

– managementul memoriei

– managementul proceselor

– IPC

– operațiile IO



  

Kernel APIKernel API

● interfața prin intermediul căreia aplicațiile 
comunică cu kernelul

● sistemele RTOS de obicei furnizează o serie de 
funcții (care conțin tot codul OS) care se leagă 
împreună cu aplicațiile
– aplicațiile pot apela aceste funcții pentru a realiza 

operații cu kernel
– totalitatea acestor funcții reprezintă kernel API
– ex FreeRTOS: vTaskSuspend, vTaskResume



  

Linux kernel APILinux kernel API

● funcțiile kernel și aplicațiile rulează în spatii 
diferite

● funcțiile din user space nu pot apela direct funcții 
din kernel space: numai driverele rulate în kernel 
space pot apela API-ul Linux

● comunicarea între aplicații și kernel se realizează 
prin interfețele FS sau system call:
– aplicațiile pot accesa fișiere speciale puse la dispoziție 

de diferite drivere

– aplicațiile pot folosi un apel sistem (system call) realizat 
prin intermediul unei întreruperi soft (trap)



  

Operating System Porting LayerOperating System Porting Layer

● pentru portarea aplicațiilor RTOS pe Linux trebuie 
implementat un OSPL

● minimizează numărul de modificări asupra codului 
aplicației prin maparea funcțiilor oferite de API-ul 
RTOS la API-ul Linux:
– mapare unu-la-unu: unele funcții oferite de RTOS pot fi 

mapate la un apel sistem oferit de Linux

– mapare unu-la-multe: când o funcție RTOS nu poate fi 
realizat de un singur apel sistem

#define xTaskHandle int
void vTaskSuspend(xTaskHandle pid)
{

kill(pid, SIGSTOP);
}



  

OSPL pentru funcții kernel spaceOSPL pentru funcții kernel space

● unele funcții din aplicația RTOS pot fi rulate în 
kernel space:
– driverele, funcții care lucrează numai cu driverele,...

● funcțiile RTOS pot fi mapate și pentru funcții din 
Linux kernel API

● dacă o funcție apelează atât funcții user-space cât 
și kernel-space maparea simplă devine imposibilă
– trebuie creat un kernel API driver, care va oferi o 

interfață către user space pentru a apela funcția din 
kernel space



  

Managementul memorieiManagementul memoriei

● RTOS nu oferă soluții de management al memoriei 
avansate (numai malloc și free)

● harta memoriei în Linux este împărțit în kernel 
space și user space (cu fiecare proces în zona lui 
separată)
– chiar și în cazul uCLinux (fără MMU) împărțirile sunt 

păstrate

● trebuie realizat o mapare în memorie atentă a 
aplicațiilor



  

Variabile globaleVariabile globale

● variabilele globale nu suportă bine transferul la un 
sistem cu MM

● dacă o bibliotecă partajată (o funcție care poate fi 
apelat din mai multe taskuri) folosește o variabila 
globală, în linux această variabilă va deveni globală 
numai în cadrul unui proces:
– linux va crea datele asociate bibliotecilor partajate 

pentru fiecare proces în parte (numai textul va fi 
partajat între procese)

● pentru a evita modificarea codului, toate taskurile 
ce apelează astfel de funcții vor trebui puse în 
același proces



  

Managementul proceselorManagementul proceselor

● SO sunt caracterizate prin faptul că permit rularea 
pseudoparalelă a mai multor aplicații

● în RTOS aceste aplicații se traduc în taskuri sau 
procese:
– programe aflate în execuție cu stiva, datele și contextul 

asociat
– OS permite schimbarea între aceste procese prin 

intermediul planificatorului

● un task poate fi executat:
– până la terminarea funcție (de ex. rutine de init)

– într-o buclă infinită (funcțiile de bază a sistemului)



  

Multitasking în LinuxMultitasking în Linux

● Linux oferă două nivele pentru rularea aplicațiilor 
în paralel:
– procesele

● programul aflat în execuție împreună cu datele, stiva și 
contextul asociat

● numai textul poate fi partajat între procese

– fire de execuție
● programul aflat în execuție împreună cu stiva și contextul 

asociat
● datele sunt partajate între fire de execuție în cadrul unui 

proces



  

Portarea taskurilor pe LinuxPortarea taskurilor pe Linux

● fiecare task poate fi transformat într-un thread din 
cadrul aceluiași proces

Task 1

Task 2

Thread 1

Thread 2

Process 1

RTOS Linux

API OSPL



  

Portarea taskurilor pe LinuxPortarea taskurilor pe Linux

● taskurile pot fi grupate în procese diferite

Task 1

Task 2

Thread 1

Thread 2

Process 1

RTOS Linux

API OSPL

Task 3

Task 4

Thread 1

Thread 2

Process 2



  

Strategii de portare a taskurilorStrategii de portare a taskurilor

● taskurile strâns cuplate (prin variabile globale 
partajate) pot fi puse în threaduri separate din 
cadrul unui singur proces
– este metoda de portare cea mai directă și mai ușoară

● taskurile independente sau cuplate prin 
intermediul IPC oferit de SO se pun în procese 
diferite

● taskurile importante (la funcționalitatea 
sistemului) ar trebui puse în procese diferite pentru 
protecție maximă



  

Lucrul cu threaduri POSIXLucrul cu threaduri POSIX

● Linux implementează threaduri POSIX (pthreads)
● pentru portarea taskurilor în pthreaduri, aplicațiile 

trebuie adaptate la standardul pthread API
● crearea threadurilor

– se crează un nou fir de execuție pornind de la funcția 
start_routine

int pthread_create(pthread_t* thread_id,
                   pthread_attr_t* thread_attributes,
                   void* (*start_routine)(void*),
                   void* arg);



  

Terminarea threadurilorTerminarea threadurilor

● pentru a transmite starea de terminare threadul 
poate apela funcţia

– similar cu funcția exit, dar va termina numai threadul 
care a apelat

– dacă funcția asociată thread-ului se termină atunci nu 
se va transmite stare de terminare

● pentru ca un thread sa citească starea de terminare 
se folosește funcția

– similar cu funcția wait

void pthread_exit(void* return_val);

int pthread_join(pthread_t tid, void** thread_return_val);



  

Terminarea threadurilorTerminarea threadurilor

● dacă starea de terminare a unui thread nu a fost 
citit, atunci resursele asociate threadurilor nu vor fi 
eliberate

● în cazul în care un thread nu furnizează starea de 
terminare atunci aceasta nu poate fi citită, pentru a 
permite totuși eliberarea resurselor, threadul 
trebuie detașat de threadul care l-a creat

● portarea unei aplicații în care taskurile își încheie 
rularea la un moment dat, necesită și modificarea 
codurilor aplicației

int pthread_detach(pthread_t tid);



  

OSPL RTOS - threaduriOSPL RTOS - threaduri

● portarea aplicațiilor RTOS alcătuite din funcții în 
bucle infinite este foarte ușoară în threaduri

● fiecărei task va corespunde un thread (care nu se 
termină niciodată)

● variabilele globale accesate de taskuri pot fi 
accesate de threaduri ca o variabilă globală de 
proces

● funcția în care sunt create threadurile trebuie să 
aibă și el o buclă infinită el reprezentând cadrul 
procesului în care se execută threadurile



  

Sincronizarea threadurilorSincronizarea threadurilor

● pthreads oferă metode robuste pentru sincronizare 
prin intermediul unui API userspace

● mutex

● semafoare

void pthread_mutex_init(pthread_mutex_t* mutex,
                        const pthread_mutexattr_t* mutexattr);
int pthread_mutex_lock(pthread_mutex_t* mutex);
int pthread_mutex_unlock(pthread_mutex_t* mutex);

void sem_init(sem_t* sem,
              int pshared,
              unsigned int value);
int sem_wait(sem_t* sem);
int sem_post(sem_t* sem);



  

Metode IPCMetode IPC

● Linux oferă metodele IPC POSIX:
– cozi de mesaje

– semafoare

– memoria partajată

● portarea taskurilor în procese independente, 
presupune portarea IPC existente în astfel de IPC
– semafoare

● interfețe către structuri păstrate de kernel

int semget(key_t key, int nsems, int semflg);
int semop(int semid, struct sembuf* sops, unsigned nsops);



  

IPC în kernel spaceIPC în kernel space

● threadurile rulate în kernel space (ex. driverele) pot 
accesa direct structurile kernel asociate cu 
metodele IPC

● astfel aceste threaduri pot folosi metodele IPC prin 
intermediul unor funcții API simple

● portarea unor aplicații RTOS pe Linux cu procese 
independente poate fi ușurată prin implementarea 
unor drivere de kernel API, care vor interfața 
funcțiile IPC folosite din RTOS



  

Portarea în kernel spacePortarea în kernel space

● toată funcția este portată în kernel space:
– cel mai ușor de realizat

– nu oferă nici o protecție

● se extinde funcțiile de apel sistem pentru a crea 
interfețele aplicație kernel necesare
– toate apelurile sistem sunt înregistrate în tabela system 

calls din kernel
– upgrade-ul la un kernel nou presupune crearea din nou 

a apelurilor sistem



  

Portarea în kernel spacePortarea în kernel space

● se realizează funcții user space care vor apela la un 
driver kernel API încărcat ca un modul

● driverul crează o intrare în /dev și furnizează o 
funcție de ioctl pentru dispozitivul respectiv

● funcțiile user space (care emulează funcțiile API din 
RTOS) vor deschide acest dispozitiv și vor executa 
un ioctl corespunzător
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