

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Drivere embeddedDrivere embedded

● driverele Linux sunt părți ai subsistemului IO
● subsistemul IO permite aplicațiilor să acceseze

hardware de nivel jos prin intermediul unei
interfețe de apeluri sistem bine definite

● tipuri de drivere Linux
– character device

– block device

– network device

Dispozitive de tip caracterDispozitive de tip caracter

● sunt drivere pentru dispozitive care pot fi accesate
în mod secvențial

● accesul poate fi făcut pe octeți sau pe blocuri de
diferite dimensiuni

● aplicațiile accesează aceste dispozitive prin
intermediul apelurilor sistem open, read, write

● aplicațiile pot influența funcționarea dispozitivului
prin apeluri ioctl

● exemple:
– UART, SPI, I²C, USB (CDC)

Dispozitive de tip blocDispozitive de tip bloc

● modelează dispozitive care pot fi accesate aleator
● accesul se face de obicei pe blocuri de date
● aceste dispozitive sunt folosite pentru stocarea

unor sisteme de fișiere
● aplicațiile nu pot accesa direct driverul, ele trebuie

să accese sistemul de fișiere montat deasupra
driverului

● exemple:
– HDD, CD-ROM, USB (mass storage)

Dispozitive de tip rețeaDispozitive de tip rețea

● astfel de drivere deși modelează dispozitive care
sunt accesate secvențial sunt tratate ca o clasă
sperată, ele interacționând cu stiva de protocoale
de rețea

● aplicațiile nu au acces direct la aceste drivere
● numai subsistemul de rețea poate interacționa cu

ele
● exemple:

– Ethernet

Arhitectura sistemului de drivereArhitectura sistemului de drivere

Aplicații

Apeluri sistem

FS / Networking

Drivere

Hardware

Driverul de serialăDriverul de serială

● interfața serială în Linux este strâns legată de
subsistemul TTY

● nivelul TTY este o clasă speciala de dispozitive de
tip caracter care se intercalează deasupra driverului
de nivel jos

● TTY tratează toate dispozitivele seriale indiferent
de modul cum este folosit interfața

● aplicațiile nu accesează direct driverul de serială, ci
driverele TTY

Subsistemul TTYSubsistemul TTY

Aplicații

TTY IO

Discipline de linie

Driverul de nivel jos

Hardware

Discipline de linieDiscipline de linie

● fiecare dispozitiv de tip TTY este asociat cu o
disciplină de linie, care tratează modul cum sunt
transmise datele pe linia serială

● implicit disciplina de linie (integrate în fiecare
kernel) este N_TTY, care oferă un terminal simplu
pe serială

● pot fi implementate și alte discipline de linie
pentru protocoalele mai complicate folosite pe
interfețe seriale (X.25, PPP/SLIP)

TerminaleTerminale

● fiecare proces în Linux are asociat un terminal de
control
– procesul asociază intrarea standard (stdin) și ieșirea

standard (stdout) respectiv ieșirea pentru erori (stderr)
cu acest terminal de control

● subsistemul TTY împreună cu subsistemul de
management a proceselor alocă automat terminalul
de control a proceselor

● CTTY asociat unui proces poate fi o interfață
serială, tastatura, monitorul în mod text

Pseudo-terminalePseudo-terminale

● datorită faptului că nu există suficiente interfețe
seriale pentru terminalele de control a tuturor
proceselor, subsistemul TTY implementează și o
serie de pseudo-terminale (PTY)

● aceste pseudoterminale pot fi folosite și pentru IPC
– terminalele PTY pot fi redirecționate între procese

– procesele pot fi pornite cu terminale de control ascunse
(la care utilizatorul nu are acces direct)

– de ex.: telnet, ssh

Driverul de serială în LinuxDriverul de serială în Linux

● interfața UART are un driver în kernelul Linux
● driverul accesează dispozitivul prin intermediul

structurilor:
– uart_driver

● interfața comună pentru apeluri sistem

– uart_state
● fiecare port serial are asociat această structură care conține

starea actuală

– uart_port
● configurația hardware

– uart_ops
● funcții low level de acces

Folosirea serialei în LinuxFolosirea serialei în Linux

● driverul tty se accesează cu funcțiile open (cu
opțiuni specifice TTY), read, write (operații pe
șiruri de caractere blocante, cu timeout)

● controlul interfeței seriale se realizează printr-o
structură termios
– permite setarea ratei de transfer, formatul cadrului de

date (nr. biți de date, de stop, de paritate)
– permite asociere unei discipline de linii
– pentru setarea flagurilor din termios se folosește funcția

tcsetattr

Driverul de EthernetDriverul de Ethernet

● driverul de rețea în Linux este o clasă de drivere
speciale

● aceste drivere nu se accesează prin intermediul
fișierelor, ci prin intermediul sockeților oferite de
subsistemul rețea

● Linux oferă suport implicit pentru o interfață de
driver Ethernet (fiind orientat mult pe rețea) prin
intermediul structurii net_device

● driverul oferă o rutină de probă: kernelul probează
toate driverele de rețea existent la pornire

Pornirea driverului EthernetPornirea driverului Ethernet

● la pornirea sistemului kernelul apelează rutina de
probă cu o structură net_device umplută cu valori
implicite

● dacă rutina de probă găsește dispozitivul asociat
atunci completează structura cu valori
corespunzătoare și pune la dispoziția subsistemului
de rețea rutinele de transfer de date asociate
dispozitivului

Transmisia datelor pe EthernetTransmisia datelor pe Ethernet

● modul de transmisie este dependent de dispozitivul
folosit, de aceea și funcțiile de transfer prezentate
subsistemului de rețea trebuie realizate de BSP

● kernelul creează cozi de mesaje prin intermediul
căreia subsistemul de rețea comunică cu driverul

Dispozitive USBDispozitive USB

● USB este o magistrală de comunicație serială
master-slave

● masterul (USB host) conține un USB controller
driver care controlează dispozitivele conectate pe
magistrală

● toată comunicația pe USB este pornită de host
● dispozitivele pot transmite date numai la cerere
● lățimea de bandă poate fi alocată de host fiecărei

dispozitiv în parte

Dispozitive USBDispozitive USB

● Linux oferă suport atât pentru host-uri USB cât și
pentru dispozitive slave

● pe partea host kernelul Linux oferă implicit drivere
pentru controllere USB existente

● pentru dispozitive slave (gadget-uri) Linux oferă
drivere generice pentru dispozitivele din clasele:
mass storage (stickuri USB, harddisk extern), HID
(tastatură, mouse, touchpad) și CDC (modem,
bluetooth, rețea)

Driverul USBDriverul USB

● driverul de controller
– oferă abstractizare a controllerului USB și oferă API

către gadgeturi

– oferă o interfață independentă de gadget pentru
driverele de nivel înalt

● driverul de gadget
– este driverul low level dedicat dispozitivului USB

– fiecare dispozitiv necesită un driver de gadget

● gadgeturile oferă funcționalități similare cu alte
dispozitive, de aceea drivere de gadget se
integrează și cu aceste drivere (rețea,serială,...)

Module kernelModule kernel

● modulele de kernel sunt subsisteme ale kernelului
care sunt adăugate dinamic la un kernel aflat în
rulare

● folosirea modulelor reduce dimensiunea kernelului,
pentru că numai subsistemele ce sunt folosite vor fi
încărcate

● modulele oferă un API standard, care permite
încărcarea/descărcare lor de către kernel și extind
apelurile sistem standard pentru comunicarea cu
aplicațiile

Module APIModule API

● funcții de intrare și ieșire
– modulul trebuie să ofere funcțiile module_init() și

module_exit(), care sunt apelate de kernel la încărcarea
respectiv descărcarea modulului

● pasarea parametrilor
– la încărcarea modulelor, acestora pot fi pasate

parametri într-o manieră similară cu linia de comandă

– parametrii trebuie declarați de către modul prin niște
tabele de asociere (nume parametru – variabilă)

Module APIModule API

● reference count
– fiecare modul trebuie să stocheze într-o variabilă

numărul de încărcări ai modului respectiv

– când acest număr cade la 0, modulul poate fi descărcat

– pentru a evita referirile la module inexistente toate
apelurile către module trebuie să treacă prin referințe
tratate de kernel

● declararea licenței
– modulele Linux au obligația de a declara licența la

pornire

Încărcarea/descărcarea modulelorÎncărcarea/descărcarea modulelor

● kernelul oferă apeluri sistem pentru încărcarea,
descărcare și accesul modulelor

● există și programe standard pentru manipularea
modulelor
– insmod: încearcă linkarea modulului la kernelul în

rulare prin rezolvarea tuturor simbolurilor exportate de
kernel

– modprobe: încearcă să încarce modulele de care
depinde un modul (modules.dep) după care încarcă
modulul

– rmmod: descarcă modulul (numai dacă reference count
= 0)

Folosirea driverelor în forma modulelorFolosirea driverelor în forma modulelor

● driverele pot fi compilate în forma modulelor
● astfel se vor încărca numai driverele folosite în

sistem
● kernelul exportează simboluri pentru accesare

tuturor funcțiilor oferite de drivere
● când se execută un apel către o astfel de funcție

(exportată dar nerezolvată), kernelul va încerca să
încarce modulul aferent (prin executarea funcțiilor
de probă din clasa driverelor)

Board Support PackageBoard Support Package

● software folosit pentru inițializarea dispozitivelor
hardware întâlnite în sistemul încorporat

● implementează rutinele specifice hardware-ului ce
vor fi folosite de kernel și drivere

● BSP ascunde toate detaliile legate de procesor și
placa în care este încorporată, permițând astfel o
portare ușoară a sistemului de operare și a
driverelor aferente

● BSP (µC) = HAL (PC)

Componentele BSPComponentele BSP

● suport pentru procesor
● tratează caracteristicile specifice procesoarelor embedded

(MIPS, ARM, PowerPC, etc.)

● suport pentru periferice
● bootloader
● harta memoriei
● timere
● PIC (Programmable Interrupt Controller)
● RTC (Real Time Clock)
● serială (UART) pentru consolă și debug
● magistrale (ISA, PCI)
● DMA
● Power management

Caracteristici BSPCaracteristici BSP

● nu există un standard pentru HAL/BSP în Linux
● fiecare arhitectură are propria implementare într-

un subdirector din arch/ și fișierele header în
include/asm-XXX/ (XXX fiind numele procesorului)

● referirea la HAL în restul kernelului este făcut prin
secvențe condiționale la compilare

● configurarea folosirii acestor secvențe este realizată
odată cu configurarea kernelului (make config /
make menuconfig / make xconfig) prin
selectarea opțiunilor specifice arhitecturii

Configurare BSP pentru placa de Configurare BSP pentru placa de
dezvoltaredezvoltare

● se poate realiza o setare prealabilă a elementelor
din configurarea kernelului pentru a placă de
dezvoltare aparte

● în arch/XXX/ se inserează un fișier Kconfig (sau
config.in în cazul kernelului 2.4) cu opțiunile
specifice procesorului XXX

● în fișierul Kconfig se poate adăuga opțiuni specifice
unei plăci de dezvoltare, de ex:

ifdef CONFIG_EUREKA
LIBS += arch/mips/eureka/eureka.o
SUBDIRS += arch/mips/eureka
LOADADDR := 0x80000000
endif

Opțiuni de configurareOpțiuni de configurare

● se pot crea și opțiuni de configurare specifice plăcii

dep_bool 'Support for EUREKA board' CONFIG_EUREKA

if ["$CONFIG_EUREKA"="y"]; then
 choice 'Eureka Clock Speed' \
 "75 CONFIG_SYSCLK_75 \
 100 CONFIG_SYSCLK_100" 100
fi

...

if ["$CONFIG_EUREKA"="y"]; then
 define_bool CONFIG_PCI y
 define_bool CONFIG_ISA y
 define_bool CONFIG_NONCOHERENT_IO y
 define_bool CONFIG_NEW_TIME_C y
fi

Interfața bootloaderInterfața bootloader

● rutina cea mai specifică procesorului
● fiecare procesor prezintă o arhitectură diferită în

privința pornirii sistemului, astfel fiecare procesor
și fiecare sistem încorporat în parte are un secvență
de boot specifică

● secvența de boot poate fi integrată în kernel,
aceasta legându-se la adrese specifice, sau poate fi
realizat într-un program separat care la rândul său
va apela kernelul
– majoritatea nucleelor RTOS încorporează secvența de

bootare

Bootloader pentru LinuxBootloader pentru Linux

● Linux pornește de la premiza că se rulează din
memoria RAM (moștenit de la 386)
– există excepții prin patchul XIP (eXecute In Place)

pentru arhitecturi ce nu oferă suport pentru aceasta,
dar implică modificări severe în kernel

● pentru Linux trebuie neapărat să existe un
bootloader care inițializează sistemul până când
ajunge la un punct comun pentru a putea continua
kernelul Linux implicit

Funcțiile bootloaderuluiFuncțiile bootloaderului

● funcții obligatorii
– inițializarea procesorului, a controlerului de memorie și

a dispozitivelor hardware esențiale pentru încărcarea
kernelului (de ex. flash)

– încărcarea kernelului: copiere din dispozitivul de stocare
în memorie

● funcții opționale
– depind de sistemul încorporat în care este folosit

– poate inițializa alte dispozitive

– poate pasa argumente kernelului pentru o configurare
dinamică

Secvența de bootareSecvența de bootare
(la un sistem încorporat)(la un sistem încorporat)

● bootarea
– bootloaderul pornește din flash

– se inițializează registrele de bază și cache-ul (dacă e
cazul)

– se verifică memoria și dispozitivele hardware de pe
placă (POST)

● relocatarea
– bootloaderul se autocopiază din flash în RAM (pentru

rulare mai rapidă)

– la copiere se poate efectua și o dezarhivare dacă
bootloaderul era comprimat în flash

Secvența de bootareSecvența de bootare

● inițializarea dispozitivelor
– se inițializează dispozitivele de bază necesare pentru

interacțiunea cu utilizatorul (consola)

– se poate inițializa și alte dispozitive necesare pentru
preluarea kernelului (flash, USB, Ethernet)

● UI
– se prezintă o interfață utilizatorului prin intermediul

căreia se poate selecta imaginea de kernel ce trebuie
încărcată

● Încărcarea kernelului
– se copiază kernelul în memorie (+ initrd)

Secvența de bootareSecvența de bootare

● prepararea kernelului
– argumente pot fi pasate kernelului

– se completează argumentele din linia de comandă și se
plasează în adrese fixe cunoscute de kernel

● se bootează kernelul
– se va face un salt la punctul de intrarea în kernel

– în mod normal bootloaderul nu mai este folosit, așa că
zona de memorie ocupată de aceasta este eliberată de
kernel în timpul mapării memoriei

Criterii de selecție a bootloaderuluiCriterii de selecție a bootloaderului

● suport pentru procesor
– grub: numai pentru x86

– pmon, yamon, blob, etc.

● dimensiunea ocupată în flash
● suport pentru bootare din rețea

– important pentru depanare

● existența UI în consolă
● posibilitate de upgrade

– rutine de ștergere/scriere flash încorporat

Argumentele kerneluluiArgumentele kernelului

● argumente pot fi pasate kernelului într-o manieră
similară cu linia de comandă

● aceste argumente permit rezolvarea unor probleme
hardware prin configurarea dinamică a kernelului

● lista parametrilor poate fi văzută în /proc/cmdline

● parametrii mai importanți
● root: dispozitivul folosit ca root în FS
● nfsroot: FS montat în rețea
● mem: dimensiunea existentă a memoriei
● debug: mesaje de depanare la pornirea kernelului

Maparea memorieiMaparea memoriei

● prima rutină importantă realizată de kernel
● sistemul va crea spațiul de adrese virtuale în care

vor fi mapate toate memoriile și dispozitivele din
sistem

● se alocă adresele fixate pentru diferite dispozitive
ce nu mai pot fi alterate ulterior

● marchează zonele importante în memorie (de ex.
cele alocate kernelului)

● inițializează sistemul de translatare adrese virtuale
-> adrese fizice

Mapări de memorie în LinuxMapări de memorie în Linux

● processor map
– folosit pentru politicile de MM realizate în procesor

(depinde de arhitectura procesorului)

● board map
– folosit pentru maparea dispozitivelor (de obicei acestea

având niște adrese fixe)

● software map
– aici vor fi plasate componentele software

– este realizat în timpul linkării programelor (în cazul
kernelului în arch/XXX/ld.script.in

Managementul întreruperilorManagementul întreruperilor

● fiecare sistem tratează întreruperile în mod diferite
● de obicei există un controler de întreruperi specific

(PIC – Programmable Interrupt Controller)
● întreruperile hardware sunt tratate mai întâi de

PIC, care poate devia întreruperile acordând
prioritate hardware și metode diferite de tratare

● pentru programarea PIC trebuie să există driver
special, care însă trebuie mascat prin BSP pentru
portare ușoară

Tratarea întreruperilor în LinuxTratarea întreruperilor în Linux

● Linux tratează toate întreruperile ca întreruperi
logice (un număr de obicei 128 sau 256 întreruperi)

● driverul pentru PIC va redirecționa întreruperile
hardware către una din aceste întreruperi logice
(prin intermediul funcţiei request_irq())

● BSP va realiza interfațarea între întreruperi hard și
soft prin structurile
– hw_interrupt_type (pointeri la funcțiile de tratare

hardware)
– irq_desc_t (pointeri la handlere logice)

Funcțiile BSP pentru tratarea Funcțiile BSP pentru tratarea
întreruperilorîntreruperilor

● initialization: inițializarea întreruperii
● startup function: funcția apelată la cererea de

întrerupere, activează întreruperile
● shutdown: dezactivează întreruperile
● enable: activează o întrerupere particulară
● disable: dezactivează o întrerupere particulară
● acknowledgement: apelat la începutul rutinei de

tratare (dezactivează întreruperea)
● end of interrupt: marchează sfârșitul unei

întreruperi (reactiveaza întreruperea)

MagistraleMagistrale

● Linux având la bază 386 așteaptă că un dispozitiv
extern (BIOS) să autodetecteze și să mapeze toate
dispozitivele hardware în memorie (în speță cele de
pe magistrala PCI)

● în cazul sistemelor încorporate, BSP trebuie să
preia și acest rol

● în general BSP va emula o interfață PCI pentru
portare ușoară și va conține rutine de inițializare
pentru maparea în acest sens a dispozitivelor

Alte dispozitive importante tratate de Alte dispozitive importante tratate de
BSPBSP

● timere
– Programmable Interval Timer: un timer este tot timpul

configurat în faza de pornire pentru a fi folosit ca tick-
ul sistem

– pentru acest timer BSP trebuie să ofere o interfață

● UART
– folosit cel mai des pe post de consolă

– kernelul așteaptă întotdeauna prezența unei console
prin care să se interfațeze cu utilizatorul (serială,
ethernet, etc.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

