Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan

Drivere embedded

 driverele Linux sunt parti ai subsistemului IO

* subsistemul IO permite aplicatiilor sa acceseze
hardware de nivel jos prin intermediul unei
interfete de apeluri sistem bine definite

e tipuri de drivere Linux

— character device
— block device

— network device

Dispozitive de tip caracter

sunt drivere pentru dispozitive care pot fi accesate
in mod secvential

accesul poate fi facut pe octeti sau pe blocuri de
diferite dimensiuni

aplicatiile acceseaza aceste dispozitive prin
intermediul apelurilor sistem open, read, write

aplicatiile pot influenta functionarea dispozitivului
prin apeluri ioctl

exemple:

— UART, SPI, I2C, USB (CDC)

Dispozitive de tip bloc

modeleaza dispozitive care pot fi accesate aleator
accesul se face de obicei pe blocuri de date

aceste dispozitive sunt folosite pentru stocarea
unor sisteme de fisiere

aplicatiile nu pot accesa direct driverul, ele trebuie
sa accese sistemul de fisiere montat deasupra
driverului

exemple:
- HDD, CD-ROM, USB (mass storage)

Dispozitive de tip retea

astfel de drivere desi modeleaza dispozitive care
sunt accesate secvential sunt tratate ca o clasa
sperata, ele interactionand cu stiva de protocoale
de retea

aplicatiile nu au acces direct la aceste drivere

numai subsistemul de retea poate interactiona cu
ele

exemple:

— Ethernet

Arhitectura sistemului de drivere

Aplicatii
Apeluri sistem
FS / Networking
Drivere

Hardware

Driverul de seriald

interfata seriala in Linux este strans legata de
subsistemul TTY

nivelul TTY este o clasa speciala de dispozitive de
tip caracter care se intercaleaza deasupra driverului
de nivel jos

TTY trateaza toate dispozitivele seriale indiferent
de modul cum este folosit interfata

aplicatiile nu acceseaza direct driverul de seriala, ci
driverele TTY

Subsistemul TTY

Hardware

Discipline de linie

 fiecare dispozitiv de tip TTY este asociat cu o
disciplina de linie, care trateaza modul cum sunt
transmise datele pe linia seriala

* implicit disciplina de linie (integrate in fiecare
kernel) este N_TTY, care ofera un terminal simplu
ve seriala

* pot fi implementate si alte discipline de linie

pentru protocoalele mai complicate folosite pe
interfete seriale (X.25, PPP/SLIP)

Terminale

 fiecare proces In Linux are asociat un terminal de
control

— procesul asociaza intrarea standard (stdin) si iesirea
standard (stdout) respectiv iesirea pentru erori (stderr)
cu acest terminal de control

e subsistemul TTY impreuna cu subsistemul de
management a proceselor aloca automat terminalul
de control a proceselor

o CTTY asociat unui proces poate fi o interfata
seriala, tastatura, monitorul in mod text

Pseudo-terminale

» datorita faptului ca nu exista suficiente interfete
seriale pentru terminalele de control a tuturor
proceselor, subsistemul TTY implementeaza si o
serie de pseudo-terminale (PTY)

» aceste pseudoterminale pot fi folosite si pentru IPC

— terminalele PTY pot fi redirectionate intre procese

— procesele pot fi pornite cu terminale de control ascunse
(la care utilizatorul nu are acces direct)

— de ex.: telnet, ssh

Driverul de seriald in Linux

interfata UART are un driver in kernelul Linux

driverul acceseaza dispozitivul prin intermediul
structurilor:

— uart_driver
* interfata comuna pentru apeluri sistem
— uart_state

* fiecare port serial are asociat aceasta structura care contine
starea actuala

— uart_port
 configuratia hardware
— uart_ops

e functii low level de acces

Folosirea serialei in Linux

o driverul tty se acceseaza cu functiile open (cu
optiuni specifice TTY), read, write (operatii pe
siruri de caractere blocante, cu timeout)

» controlul interfetei seriale se realizeaza printr-o
structura termios

— permite setarea ratei de transfer, formatul cadrului de
date (nr. biti de date, de stop, de paritate)

— permite asociere unei discipline de linii

— pentru setarea flagurilor din termios se foloseste functia
tcsetattr

Driverul de Ethernet

e driverul de retea in Linux este o clasa de drivere
speciale

» aceste drivere nu se acceseaza prin intermediul
fisierelor, ci prin intermediul socketilor oferite de
subsistemul retea

e Linux ofera suport implicit pentru o interfata de
driver Ethernet (fiind orientat mult pe retea) prin
intermediul structurii net device

 driverul ofera o rutina de proba: kernelul probeaza
toate driverele de retea existent la pornire

Pornirea driverului Ethernet

 |la pornirea sistemului kernelul apeleaza rutina de
proba cu o structura net_device umpluta cu valori
implicite

* daca rutina de proba gaseste dispozitivul asociat
atunci completeaza structura cu valori
corespunzatoare si pune la dispozitia subsistemului

de retea rutinele de transfer de date asociate
dispozitivului

Transmisia datelor pe Ethernet

 modul de transmisie este dependent de dispozitivul
folosit, de aceea si functiile de transfer prezentate
subsistemului de retea trebuie realizate de BSP

e kernelul creeaza cozi de mesaje prin intermediul
careia subsistemul de retea comunica cu driverul

Dispozitive USB

USB este o magistrala de comunicatie seriala
master-slave

masterul (USB host) contine un USB controller
driver care controleaza dispozitivele conectate pe
magistrala

toata comunicatia pe USB este pornita de host
dispozitivele pot transmite date numai la cerere

latimea de banda poate fi alocata de host fiecarei
dispozitiv in parte

Dispozitive USB

* Linux ofera suport atat pentru host-uri USB cat si
pentru dispozitive slave

* pe partea host kernelul Linux ofera implicit drivere
hentru controllere USB existente

e pentru dispozitive slave (gadget-uri) Linux ofera
drivere generice pentru dispozitivele din clasele:
mass storage (stickuri USB, harddisk extern), HID
(tastatura, mouse, touchpad) si CDC (modem,
bluetooth, retea)

Driverul USB

e driverul de controller

— ofera abstractizare a controllerului USB si ofera API
catre gadgeturi

— ofera o interfata independenta de gadget pentru
driverele de nivel inalt

e driverul de gadget
— este driverul low level dedicat dispozitivului USB
— fiecare dispozitiv necesita un driver de gadget

o gadgeturile ofera functionalitati similare cu alte
dispozitive, de aceea drivere de gadget se
integreaza si cu aceste drivere (retea,seriala,...)

Module kernel

e modulele de kernel sunt subsisteme ale kernelului
care sunt adaugate dinamic la un kernel aflat in
rulare

e folosirea modulelor reduce dimensiunea kernelului,
pentru ca numai subsistemele ce sunt folosite vor fi
Incarcate

 modulele ofera un API standard, care permite
incarcarea/descarcare lor de catre kernel si extind
apelurile sistem standard pentru comunicarea cu
aplicatiile

Module API

 functii de intrare si iesire

— modulul trebuie sa ofere functiile module_init() si
module_exit(), care sunt apelate de kernel la incarcarea
respectiv descarcarea modulului

* pasarea parametrilor

- la incarcarea modulelor, acestora pot fi pasate
parametri intr-o maniera similara cu linia de comanda

— parametrii trebuie declarati de catre modul prin niste
tabele de asociere (nume parametru — variabila)

Module API

e reference count

— fiecare modul trebuie sa stocheze intr-o variabila
numarul de incarcari ai modului respectiv

— cand acest numar cade la 0, modulul poate fi descarcat

— pentru a evita referirile la module inexistente toate
apelurile catre module trebuie sa treaca prin referinte
tratate de kernel

e declararea licentei

— modulele Linux au obligatia de a declara licenta la
pornire

Incarcarea/descarcarea modulelor

* kernelul ofera apeluri sistem pentru incarcarea,
descarcare si accesul modulelor

e exista si programe standard pentru manipularea
modulelor

— insmod: incearca linkarea modulului la kernelul 1n
rulare prin rezolvarea tuturor simbolurilor exportate de
kernel

— modprobe: incearca sa incarce modulele de care
depinde un modul (modules.dep) dupa care incarca
modulul

— rmmod: descarca modulul (numai daca reference count
— ())

Folosirea driverelor in forma modulelor

 driverele pot fi compilate in forma modulelor

e astfel se vor incarca numai driverele folosite in
sistem

* kernelul exporteaza simboluri pentru accesare
tuturor functiilor oferite de drivere

e cand se executa un apel catre o astfel de functie
(exportata dar nerezolvata), kernelul va incerca sa
incarce modulul aferent (prin executarea functiilor
de proba din clasa driverelor)

Board Support Package

software folosit pentru initializarea dispozitivelor
hardware intalnite in sistemul incorporat

implementeaza rutinele specifice hardware-ului ce
vor fi folosite de kernel si drivere

BSP ascunde toate detaliile legate de procesor si
vlaca in care este incorporata, permitand astfel o
portare usoara a sistemului de operare si a
driverelor aferente

BSP (uC) = HAL (PC)

Componentele BSP

e suport pentru procesor

e trateaza caracteristicile specifice procesoarelor embedded
(MIPS, ARM, PowerPC, etc...)

e suport pentru periferice

e bootloader
e harta memoriei

e fimere

PIC (Programmable Interrupt Controller)
RTC (Real Time Clock)

seriala (UART) pentru consola si debug
magistrale (ISA, PCI)

DMA

Power management

Caracteristici BSP

nu exista un standard pentru HAL/BSP in Linux

fiecare arhitectura are propria implementare intr-
un subdirector din arch/ si fisierele header in
include/asm-XXX/ (XXX fiind numele procesorului)

referirea la HAL n restul kernelului este facut prin
secvente conditionale la compilare

configurarea folosirii acestor secvente este realizata
odata cu configurarea kernelului (make config /
make menuconfig / make xconfig) prin
selectarea optiunilor specifice arhitecturii

Configurare BSP pentru placa de
dezvoltare

* se poate realiza o setare prealabila a elementelor
din configurarea kernelului pentru a placa de
dezvoltare aparte

* in arch/XXX/ se insereaza un fisier Kconfig (sau
config.in in cazul kernelului 2.4) cu optiunile
specifice procesorului XXX

e in fisierul Kconfig se poate adauga optiuni specifice
unei placi de dezvoltare, de ex:

ifdef CONFIG_EUREKA

LIBS += arch/mips/eureka/eureka.o
SUBDIRS += arch/mips/eureka
LOADADDR := 0x80000000

endif

Optiuni de configurare

* se pot crea si optiuni de configurare specifice placii

dep_bool 'Support for EUREKA board' CONFIG_EUREKA

if ["$CONFIG_EUREKA"="y"]; then
choice 'Eureka Clock Speed' \
"75 CONFIG_SYSCLK 75\
100 CONFIG_SYSCLK 100" 100

if ["$CONFIG_EUREKA"="y"]; then
define_bool CONFIG PCly
define_bool CONFIG ISAy
define_bool CONFIG_NONCOHERENT IO y
define_bool CONFIG_NEW TIME Cvy

Interfata bootloader

* rutina cea mai specifica procesorului

 fiecare procesor prezinta o arhitectura diferita in
privinta pornirii sistemului, astfel fiecare procesor
si fiecare sistem incorporat in parte are un secventa
de boot specifica

* secventa de boot poate fi integrata in kernel,
aceasta legandu-se la adrese specifice, sau poate fi
realizat intr-un program separat care la randul sau
va apela kernelul

— majoritatea nucleelor RTOS incorporeaza secventa de
bootare

Bootloader pentru Linux

e Linux porneste de la premiza ca se ruleaza din
memoria RAM (mostenit de la 386)

— exista exceptii prin patchul XIP (eXecute In Place)
pentru arhitecturi ce nu ofera suport pentru aceasta,
dar implica modificari severe in kernel

e pentru Linux trebuie neaparat sa existe un
bootloader care initializeaza sistemul pana cand
ajunge la un punct comun pentru a putea continua
kernelul Linux implicit

Functiile bootloaderului

3

 functii obligatorii

— initializarea procesorului, a controlerului de memorie si
a dispozitivelor hardware esentiale pentru incarcarea
kernelului (de ex. flash)

— incarcarea kernelului: copiere din dispozitivul de stocare
In memorie

e functii optionale
— depind de sistemul Tncorporat in care este folosit
— poate initializa alte dispozitive

— poate pasa argumente kernelului pentru o configurare
dinamica

Secventa de bootare
(la un sistem incorporat)

e bootarea

— bootloaderul porneste din flash

- se initializeaza registrele de baza si cache-ul (daca e
cazul)

— se verifica memoria si dispozitivele hardware de pe
placa (POST)

e relocatarea

— bootloaderul se autocopiaza din flash in RAM (pentru
rulare mai rapida)

— la copiere se poate efectua si o dezarhivare daca
bootloaderul era comprimat in flash

Secventa de bootare

e initializarea dispozitivelor

- se initializeaza dispozitivele de baza necesare pentru
interactiunea cu utilizatorul (consola)

— se poate initializa si alte dispozitive necesare pentru
preluarea kernelului (flash, USB, Ethernet)

e Ul

— se prezinta o interfata utilizatorului prin intermediul
careia se poate selecta imaginea de kernel ce trebuie
Incarcata

e |[ncarcarea kernelului

— se copiaza kernelul in memorie (+ initrd)

Secventa de bootare

* prepararea kernelului

— argumente pot fi pasate kernelului

— se completeaza argumentele din linia de comanda si se
plaseaza in adrese fixe cunoscute de kernel

e se booteaza kernelul

- se va face un salt la punctul de intrarea in kernel

— in mod normal bootloaderul nu mai este folosit, asa ca
zona de memorie ocupata de aceasta este eliberata de
kernel Tn timpul maparii memoriei

Criterii de selectie a bootloaderului

suport pentru procesor

— grub: numai pentru x86

— pmon, yamon, blob, etc...

dimensiunea ocupata in flash

suport pentru bootare din retea
— important pentru depanare

existenta Ul in consola

posibilitate de upgrade

— rutine de stergere/scriere flash incorporat

Argumentele kernelului

» argumente pot fi pasate kernelului intr-o maniera
similara cu linia de comanda

» aceste argumente permit rezolvarea unor probleme
nardware prin configurarea dinamica a kernelului

o lista parametrilor poate fi vazuta in /proc/cmdline
* parametrii mal importanti

e root: dispozitivul folosit ca root in FS

* nfsroot: FS montat in retea

e mem: dimensiunea existenta a memoriei

e debug: mesaje de depanare la pornirea kernelului

Maparea memoriei

prima rutina importanta realizata de kernel

sistemul va crea spatiul de adrese virtuale in care
vor fi mapate toate memoriile si dispozitivele din
sistem

se aloca adresele fixate pentru diferite dispozitive
ce nu mai pot fi alterate ulterior

marcheaza zonele importante in memorie (de ex.
cele alocate kernelului)

initializeaza sistemul de translatare adrese virtuale
-> adrese fizice

Mapari de memorie in Linux

®* processor map

— folosit pentru politicile de MM realizate in procesor
(depinde de arhitectura procesorului)

* board map

— folosit pentru maparea dispozitivelor (de obicei acestea
avand niste adrese fixe)

e software map

— aici vor fi plasate componentele software

— este realizat in timpul linkarii programelor (in cazul
kernelului in arch/XXX/ld.script.in

Managementul intreruperilor

 fiecare sistem trateaza intreruperile in mod diferite

* de obicei exista un controler de intreruperi specific
(PIC — Programmable Interrupt Controller)

* intreruperile hardware sunt

e pentru programarea PIC tre

tratate mai intai de

PIC, care poate devia intreruperile acordand
orioritate hardware si metode diferite de tratare

buie sa exista driver

special, care insa trebuie mascat prin BSP pentru

portare usoara

Tratarea intreruperilor in Linux

e Linux trateaza toate intreruperile ca intreruperi
logice (un numar de obicei 128 sau 256 intreruperi)

 driverul pentru PIC va redirectiona intreruperile
hardware catre una din aceste intreruperi logice
(prin intermediul functiei request_irq())

* BSP va realiza interfatarea intre intreruperi hard si
soft prin structurile

- hw_interrupt_type (pointeri la functiile de tratare
hardware)

- irg_desc_t (pointeri la handlere logice)

Functiile BSP pentru tratarea
intreruperilor
initialization: initializarea intreruperii

startup function: functia apelata la cererea de
Intrerupere, activeaza intreruperile

shutdown: dezactiveaza intreruperile

enable: activeaza o Intrerupere particulara
disable: dezactiveaza o Intrerupere particulara

acknowledgement: apelat la inceputul rutinei de
tratare (dezactiveaza intreruperea)

end of interrupt: marcheaza sfarsitul unei
intreruperi (reactiveaza intreruperea)

Magistrale

* Linux avand la baza 386 asteapta ca un dispozitiv
extern (BIOS) sa autodetecteze si sa mapeze toate
dispozitivele hardware Tn memorie (in speta cele de
pe magistrala PCI)

* Tn cazul sistemelor incorporate, BSP trebuie sa
preia si acest rol

* in general BSP va emula o interfata PCI pentru
portare usoara si va contine rutine de initializare
pentru maparea in acest sens a dispozitivelor

Alte dispozitive importante tratate de
BSP

e timere

— Programmable Interval Timer: un timer este tot timpul
configurat in faza de pornire pentru a fi folosit ca tick-
ul sistem

— pentru acest timer BSP trebuie sa ofere o interfata
e UART

— folosit cel mai des pe post de consola

— kernelul asteapta intotdeauna prezenta unei console
prin care sa se interfateze cu utilizatorul (seriala,
ethernet, etc...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

