Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan

Stocarea datelor in sisteme incorporate

* stocarea programelor si datelor trebuie realizata in
memorii nevolatile:

- ROM

e foarte ieftin in serie mare

* nu mai poate fi reprogramat
- NVRAM

e viteza mare de lucru: ideal pentru stocarea datelor

 foarte scump
— Flash

e densitate mare, relativ ieftin

* reprogramabil

Memorii Flash

» dezvoltat in anii'80 de Toshiba si Intel

 foloseste tranzistori MOS cu o poarta de control si
o poarta flotanta

S G D

Operatii asupra celulelor Flash

e poarta flotanta poate fi incarcata sau nu

— incarcarea normala nu este suficient pentru deschiderea
canalului DS

— fiind complet izolata sarcinile acumulate pe poarta
flotanta se pastreaza pentru timp indelungat

* citire:
— se aplica o tensiune (jumatate din cea necesara
deschiderii canalului) pe poarta de control

— tensiunea aplicata impreuna cu sarcinile stocate pe
poarta flotanta este suficienta pentru a deschide
canalul DS

Operatii asupra celulelor Flash

* scrierea (injectie de electroni fierbinti)

— se aplica o tensiune mare pe poarta de control (mult
mai mare decat tensiunea de deschidere)

— datorita curentului mare pe canalul DS deschis,
electronii ,fierbinti” sar pe poarta flotanta incarcand
aceasta

» stergerea (efectul tunel)

— se aplica o tensiune negativa mare pe poarta de control

— sarcinile stocate pe poarta flotanta se vor extrage prin
efectul tunel

Organizarea celulelor Flash

» exista doua tehnologii (denumite dupa modul de
legare a tranzistorilor):

— NOR (sau negat cablat)
— NAND (si negat cablat)
e organizarea in amandoua cazuri este una

matriciala cu linii de adresa care vor selecta
celulele paralele

Flash NOR

* tranzistorii sunt legati pe o parte la masa pe
cealalta parte pe coloana corespunzatoare

e daca unul din tranzistori este deschis se va trage
toata coloana la GND i

Adrese

Flash NOR

celule sunt organizate in blocuri
— dimensiunea blocului este de ordinul 64k

citirea si scrierea se poate face prin adresare
directa

— liniile de adrese si date sunt organizate similar cu
memoriile statice

stergerea trebuie facuta pe bloc

tensiunile de scriere si stergere sunt realizate intern
prin convertoare boost integrate

Flash NAND

* tranzistorii de pe o coloana sunt legati in serie

 se activeaza toate liniile de adresa cu tensiunea
normala, mai putin adresa selectata (pe care se
aplica jumatatea de tensiune)

I I I |

Date

Adrese

Flash NAND

* celule sunt organizate in pagini, iar paginile in
blocuri

e paginile trebuie citite si scrise deodata, stergerea se
face pe blocuri

» contine buffer SRAM integrat pentru pagina citita
care poate fi citit ca un flux de date pe interfata
externa

* comunicarea externa se bazeaza pe comenzi catre
registrele interne

NOR vs. NAND

Acces la date

e citire/scriere de la orice
adresa

» stergere pe blocuri

* interfata cu CPU
similar cu SRAM
(magistrala de control,
adrese si date)

e citire foarte rapida,
scriere, stergere lenta

citire/scriere cate o
pagina deodata

stergere pe blocuri

protocol de
comunicatie special,
comenzi catre registre
de adrese si date
Interne

citire, scriere, stergere
rapida

NOR vs. NAND

Aplicatii
 fiind accesibil aleator la ¢ lucreaza in mod similar
nivel de octet / cuvant, ca si harddiskul
poate fi folosit pentru (accesare pe blocuri, cu
rularea codului direct controler integrat
din flash este folosit pe post de
 este folosit pe post de dispozitiv de stocare de
memorie nevolatila inalta capacitate (SSD,
integrata in card, stick)

microcontrolere si pe
post BIOS/bootloader
extern

NOR vs. NAND

Fiabilitate si costuri

e foarte scump datorita ~ * mai ieftin datorita
suprafetei mari ocupate posibilitatii de
si standardelor ridicate integrare mai mare si
de fabricare proceselor tehnologice
mal permisive

» sectoare bad practic
Inexistente * pot sa existe sectoare

bad (fiind proiectate in

scopul inlocuirii hard-

diskurilor)

Caracteristici specifice flashurilor

» durata de viata (calculata in numarul de stergeri)
este limitata

* pentru a creste durata de viata stergerile de blocuri
ar trebuie echilibrate in tot spatiul de flash (wear
leveling)

» operatie de rescriere este complicata

— modificarea unui bit de 11in 0 se poate face la nivel de
cuvant (sau pagina)

— modificarea unui bit de 0 in 1 necesita stergerea
completa a unui bloc intreg dupa care vor trebui
rescrise si toate datele nemodificate

Folosire flashului in Linux

 modul traditional de realizare a driverelor si a
sistemelor de fisiere in Linux nu poate fi adaptat
usor la memoriile flash

— acestea pot fi citite pe caractere, dar trebuie scrise pe
blocuri

— sistemele de fisiere din Linux nu ofera suport specific
flashurilor
* nu exista wear leveling

e blocurile din flash sunt de obicei mult mai mari decat
sectoarele folosite pe hard-diskuri

e folosirea cacheului pentru file system trebuie evitat pentru a
nu avea probleme la oprirea brusca a sistemului

MTD

e initial flashurile se integrau in Linux printr-un FTL
(Flash Translation Layer) care emula un hard-disk

- nu solutiona toate problemele legate de caracteristicile
flashurilor

— nu ofera suport pentru alte moduri de operare

— devenea din ce Tn ce mai complex cu aparitia noilor
tipuri de flashuri si noilor interfete

 solutia era introducerea subsystemului MTD
(Memory Technology Devices)

MTD

e MTD a fost conceput special pentru modul de
operatie cu flashuri

e se integreaza in Linux atat pe nivelul de drivere cat
si pe nivelul de aplicatii

 |la nivelul de drivere MTD mapeaza pentru fiecare
dispozitiv cate un driver de character si de block
device

— character device poate fi folosit in mod obisnuit cu
functiile open/read/write/ioctl

— block device poate fi folosit pentru montarea unui
sistem de fisiere clasic

Arhitectura MTD

MTD core
— implementeaza driverele character si block
drivere flash low-level

— implementeaza interfetele pentru flashuri NOR si
NAND

BSP pentru flash

— ofera suport pentru modurile de conectare a flashului
pe placa

aplicatii MTD

— aplicatii pe nivel kernel care folosesc flash (JFFS2) si
aplicatii pe nivel de utilizator (uperade)

Suport MTD in embedded Linux

* MTD pentru flashuri NOR a fost introdus in
kernelul 2.4,

» extensia pentru flashuri NAND (numai pentru
NFTL — NAND Flash Translation Layer) a fost
introdus in versiuni ulterioare a kernelului 2.4, si
suport complet in kernelul 2.6

e exista implementare completa (drivere low level)
pentru flashuri NOR cu interfata CFl si pentru
dispozitive flash NAND uzuale (SSD,
SD/MMC/MS/CF/xD)

Maparea memoriilor Flash

 sistemele embedded de obicei pornesc executia
dintr-o memorie flash (de tip NOR)

* poate exista si memorie flash NAND in sistem, care
trebuie montat ca un hard-disk, si transferat
continutul in memorie pentru a putea fi executat

e Linux are nevoie de un sistem de fisiere montat

pentru /, care poate fi un flash NAND sau o partitie
In memorie

— aceasta inseamna ca in sistemul incorporat trebuie sa
existe cel putin doua partitii (boot si /)

Sisteme de fisiere embedded

 fiindca Linux presupune existenta unui sistem de
fisiere chiar si in lipsa hard-diskurilor, este nevoie
de folosirea unor sisteme de fisiere dedicate (care
folosesc fie memoria RAM fie o memorie flash):

- Ramdisk
- RAMES
- CRAMEFS
— JFFS2

- NFS

Ramdisk

e este 0 metoda de emulare a unui hard-disk Tn
memorie

* nu este un sistem de fisiere, ci mai degraba o
tehnologie ce permite crearea sistemului / n
memorie, dupa care in acest sistem se pot monta
alte sisteme de fisiere

* de obicei initrd se creaza intr-o forma de imagine

ramdisk, ce poate fi incarcata in memorie de catre
boot-loadeer

RAMES

 este un sistem de fisiere localizata in intregime in
memorie RAM

* de multe ori este nevoie de folosirea unor
informatii (interne ale kernelului sau a
utilizatorilor) organizate in forma de fisiere pentru
un acces comod si care nu trebuie pastrate dupa
repornirea sistemului, de aceea nu merita a fi
incarcate in flash

* RAMES ofera suport pentru stocare a astfel de
informatii intr-o zona de memorie care isi poate
modifica dimensiunea in functie de necesitati

CRAMES

e este un sistem de fisiere read-only cu compresia
datelor

 este foarte util pentru stocarea programelor in
flash comprimate pentru a minimiza spatiul folosit

e CRAMES este un sistem de fisiere normal, care
comunica prin drivere block folosind un cache in
memorie si algoritmi de compresie din zlib pentru
pagini de 4kB

JFES2

* sistem de fisiere cu jurnal special destinat pentru
flashuri

* realizeaza wear leveling

* nu foloseste cache de scriere pentru a evita
coruperile de date la oprirea brusca a sistemului

* foloseste direct API-ul din MTD fara a trece printr-
un nivel de translatare (FTL)

Functionarea JFFS2

* modificarea fisierelor se realizeaza prin intermediul
logurilor

— logurilor contin datele ce au fost modificate
— numai aceste loguri se salveaza

— pentru citirea fisierelor se va citi toate logurile aferente
pentru a recrea fisierul

* periodic se ruleaza un garbage collector pentru a
sterge logurile inutile

— acest garbage collector realizeaza si wear leveling prin
rearanjarea datelor in zonele mai putin folosite

NES

 sistemele de fisiere desktop (ext2,3,4...) pot fi
exportate si catre retea

e kernelul Linux ofera un mecanism de montare a
astfel de sisteme de fisiere prin retea

* un sistem NFS poate fi montat chiar si ca /,
permitand astfel o depanare rapida a sistemului
(prin faptul ca aplicatiile pot fi dezvoltate pe un
desktop, iar pentru teste acestea nu trebuie inscrise

in flash)

* bootloader trebuie sa ofere suport pentru conectare
la retea (BOOTP, DHCP)

procfs

* proc este un sistem de fisiere logic, care ofera
informatii in timp real despre starea kernelului si o
interfata prin care se pot modifica anumite variabile
interne folosite de kernel

e acest sistem este pur logic, kernelul creand toate
fisierele incluse la momentul accesului

— totusi este nevoie de resurse importante din memorie

e pentru a salva memorie se poate inlatura sistemul
oroc, dar atunci multe functii de baza din sistemul
_inux nu vor fi accesibile (ps, mount)

Optimizarea spatiului de stocare

 spatiul de stocare in flash poate fi destul de limitat,
astfel e nevoie de optimizarea ocuparii acestui
spatiu

* kernelul poate fi compilat cu optiunea -Os pentru a
reduce dimensiunea codului

e kernelul 2.6 ofera o optiune CONFIG_EMBEDDED, care
permite compilarea unui kernel mai subtire prin
posibilitatea Tnlaturarii unor subsisteme esentiale

ve desktop, dar neutilizate pe embedded (de ex.
swap)

Optimizarea bibliotecilor

bibliotecile standard poate sa consume spatiu inutil
cu functii nefolosite in aplicatiile finale

in sistemele embedded de obicei aplicatiile finale
sunt cunoscute din avans, ce permite o optimizare
a bibliotecilor folosite

se pot utiliza biblioteci reduse, destinate sistemelor

€m

bib

pedded: dietlibc, uclibc

iotecile pot fi optimizate cu un tool dedicat,

dupa compilarea tuturor aplicatiilor pentru a
elimina functiile nefolosite (libraryopt)

Reducerea numarului de aplicatit

e sistemele Linux normale includ un numar mare de

programe folosite pentru a realiza anumite functii
oferite de sistemul de operare

e aproape toate comenzile ce pot fi emise in linia de
comanda sunt programe mici care implementeaza
un apel sistem

e pentru a reduce spatiul folosit toate aceste
programe pot fi integrate intr-unul singur care
incorporeaza toate apelurile sistem des folosite (de
ex. busybox)

Busybox

* este un sistem multicall, care implementeaza
functiile oferite de programele Linux:

* integreaza un shell (linie de comanda)

e programe de baza: cat, cp, mv, dd, rm, 1s, pwd, ...

* controlul proceselor: ps, k111, ...

controlul sistemului: 1n1t, reboot, ...

controlul modulelor: 1smod, rmmod, modprobe, ...

operatiuni cu retea: 1fconfig, route, ping, tftp,
telnet, wget, ..

 unelte de arhivare: tar, gzip, ...
* managementul utilizatorilor: 1ogin, adduser, passwd, ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

