

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Stocarea datelor în sisteme încorporateStocarea datelor în sisteme încorporate

● stocarea programelor și datelor trebuie realizată în
memorii nevolatile:
– ROM

● foarte ieftin în serie mare
● nu mai poate fi reprogramat

– NVRAM
● viteză mare de lucru: ideal pentru stocarea datelor
● foarte scump

– Flash
● densitate mare, relativ ieftin
● reprogramabil

Memorii FlashMemorii Flash

● dezvoltat în anii '80 de Toshiba și Intel
● folosește tranzistori MOS cu o poartă de control și

o poartă flotantă

N

P P

Floating gate

GS D

Operații asupra celulelor FlashOperații asupra celulelor Flash

● poarta flotantă poate fi încărcată sau nu
– încărcarea normală nu este suficient pentru deschiderea

canalului DS

– fiind complet izolată sarcinile acumulate pe poarta
flotantă se păstrează pentru timp îndelungat

● citire:
– se aplică o tensiune (jumătate din cea necesară

deschiderii canalului) pe poarta de control

– tensiunea aplicată împreună cu sarcinile stocate pe
poarta flotantă este suficientă pentru a deschide
canalul DS

Operații asupra celulelor FlashOperații asupra celulelor Flash

● scrierea (injecție de electroni fierbinți)
– se aplică o tensiune mare pe poarta de control (mult

mai mare decât tensiunea de deschidere)

– datorită curentului mare pe canalul DS deschis,
electronii „fierbinți” sar pe poarta flotantă încărcând
aceasta

● ștergerea (efectul tunel)
– se aplică o tensiune negativă mare pe poarta de control

– sarcinile stocate pe poarta flotantă se vor extrage prin
efectul tunel

Organizarea celulelor FlashOrganizarea celulelor Flash

● există două tehnologii (denumite după modul de
legare a tranzistorilor):
– NOR (sau negat cablat)

– NAND (și negat cablat)

● organizarea în amândouă cazuri este una
matricială cu linii de adresă care vor selecta
celulele paralele

Flash NORFlash NOR

● tranzistorii sunt legați pe o parte la masă pe
cealaltă parte pe coloana corespunzătoare

● dacă unul din tranzistori este deschis se va trage
toată coloana la GND

Date

Adrese

Vdd

Flash NORFlash NOR

● celule sunt organizate în blocuri
– dimensiunea blocului este de ordinul 64k

● citirea și scrierea se poate face prin adresare
directă
– liniile de adrese și date sunt organizate similar cu

memoriile statice

● ștergerea trebuie făcută pe bloc
● tensiunile de scriere și ștergere sunt realizate intern

prin convertoare boost integrate

Flash NANDFlash NAND

● tranzistorii de pe o coloană sunt legați în serie
● se activează toate liniile de adresă cu tensiunea

normală, mai puțin adresa selectată (pe care se
aplică jumătatea de tensiune)

Date

Adrese

Vdd

Flash NANDFlash NAND

● celule sunt organizate în pagini, iar paginile în
blocuri

● paginile trebuie citite și scrise deodată, ștergerea se
face pe blocuri

● conține buffer SRAM integrat pentru pagina citită
care poate fi citit ca un flux de date pe interfața
externă

● comunicarea externă se bazează pe comenzi către
registrele interne

NOR vs. NANDNOR vs. NAND
Acces la dateAcces la date

● citire/scriere de la orice
adresă

● ștergere pe blocuri
● interfață cu CPU

similar cu SRAM
(magistrală de control,
adrese și date)

● citire foarte rapidă,
scriere, ștergere lentă

● citire/scriere câte o
pagină deodată

● ștergere pe blocuri
● protocol de

comunicație special,
comenzi către registre
de adrese și date
interne

● citire, scriere, ștergere
rapidă

NOR vs. NANDNOR vs. NAND
AplicațiiAplicații

● fiind accesibil aleator la
nivel de octet / cuvânt,
poate fi folosit pentru
rularea codului direct
din flash

● este folosit pe post de
memorie nevolatilă
integrată în
microcontrolere și pe
post BIOS/bootloader
extern

● lucrează în mod similar
ca și harddiskul
(accesare pe blocuri, cu
controler integrat

● este folosit pe post de
dispozitiv de stocare de
înaltă capacitate (SSD,
card, stick)

NOR vs. NANDNOR vs. NAND
Fiabilitate și costuriFiabilitate și costuri

● foarte scump datorită
suprafeței mari ocupate
și standardelor ridicate
de fabricare

● sectoare bad practic
inexistente

● mai ieftin datorită
posibilității de
integrare mai mare și
proceselor tehnologice
mai permisive

● pot să existe sectoare
bad (fiind proiectate în
scopul înlocuirii hard-
diskurilor)

Caracteristici specifice flashurilorCaracteristici specifice flashurilor

● durata de viață (calculată în numărul de ștergeri)
este limitată

● pentru a crește durata de viață ștergerile de blocuri
ar trebuie echilibrate în tot spațiul de flash (wear
leveling)

● operație de rescriere este complicată
– modificarea unui bit de 1 în 0 se poate face la nivel de

cuvânt (sau pagină)

– modificarea unui bit de 0 în 1 necesită ștergerea
completă a unui bloc întreg după care vor trebui
rescrise și toate datele nemodificate

Folosire flashului în LinuxFolosire flashului în Linux

● modul tradițional de realizare a driverelor și a
sistemelor de fișiere în Linux nu poate fi adaptat
ușor la memoriile flash
– acestea pot fi citite pe caractere, dar trebuie scrise pe

blocuri

– sistemele de fișiere din Linux nu oferă suport specific
flashurilor

● nu există wear leveling
● blocurile din flash sunt de obicei mult mai mari decât

sectoarele folosite pe hard-diskuri
● folosirea cacheului pentru file system trebuie evitat pentru a

nu avea probleme la oprirea bruscă a sistemului

MTDMTD

● inițial flashurile se integrau în Linux printr-un FTL
(Flash Translation Layer) care emula un hard-disk
– nu soluționa toate problemele legate de caracteristicile

flashurilor

– nu ofera suport pentru alte moduri de operare

– devenea din ce în ce mai complex cu apariția noilor
tipuri de flashuri și noilor interfețe

● soluția era introducerea subsystemului MTD
(Memory Technology Devices)

MTDMTD

● MTD a fost conceput special pentru modul de
operație cu flashuri

● se integrează în Linux atât pe nivelul de drivere cât
și pe nivelul de aplicații

● la nivelul de drivere MTD mapează pentru fiecare
dispozitiv câte un driver de character și de block
device
– character device poate fi folosit în mod obișnuit cu

funcțiile open/read/write/ioctl

– block device poate fi folosit pentru montarea unui
sistem de fișiere clasic

Arhitectura MTDArhitectura MTD

● MTD core
– implementează driverele character și block

● drivere flash low-level
– implementează interfețele pentru flashuri NOR și

NAND

● BSP pentru flash
– oferă suport pentru modurile de conectare a flashului

pe placă

● aplicații MTD
– aplicații pe nivel kernel care folosesc flash (JFFS2) și

aplicații pe nivel de utilizator (upgrade)

Suport MTD în embedded LinuxSuport MTD în embedded Linux

● MTD pentru flashuri NOR a fost introdus în
kernelul 2.4,

● extensia pentru flashuri NAND (numai pentru
NFTL – NAND Flash Translation Layer) a fost
introdus în versiuni ulterioare a kernelului 2.4, și
suport complet în kernelul 2.6

● există implementare completă (drivere low level)
pentru flashuri NOR cu interfața CFI și pentru
dispozitive flash NAND uzuale (SSD,
SD/MMC/MS/CF/xD)

Maparea memoriilor FlashMaparea memoriilor Flash

● sistemele embedded de obicei pornesc execuția
dintr-o memorie flash (de tip NOR)

● poate exista și memorie flash NAND în sistem, care
trebuie montat ca un hard-disk, și transferat
conținutul în memorie pentru a putea fi executat

● Linux are nevoie de un sistem de fișiere montat
pentru /, care poate fi un flash NAND sau o partiție
în memorie
– aceasta înseamnă că în sistemul încorporat trebuie să

existe cel puțin două partiții (boot și /)

Sisteme de fișiere embeddedSisteme de fișiere embedded

● fiindcă Linux presupune existența unui sistem de
fișiere chiar și în lipsa hard-diskurilor, este nevoie
de folosirea unor sisteme de fișiere dedicate (care
folosesc fie memoria RAM fie o memorie flash):
– Ramdisk

– RAMFS

– CRAMFS

– JFFS2

– NFS

RamdiskRamdisk

● este o metodă de emulare a unui hard-disk în
memorie

● nu este un sistem de fișiere, ci mai degrabă o
tehnologie ce permite crearea sistemului / în
memorie, după care în acest sistem se pot monta
alte sisteme de fișiere

● de obicei initrd se crează într-o formă de imagine
ramdisk, ce poate fi încărcată în memorie de către
boot-loadeer

RAMFSRAMFS

● este un sistem de fișiere localizată în întregime în
memorie RAM

● de multe ori este nevoie de folosirea unor
informații (interne ale kernelului sau a
utilizatorilor) organizate în formă de fișiere pentru
un acces comod și care nu trebuie păstrate după
repornirea sistemului, de aceea nu merită a fi
încărcate în flash

● RAMFS oferă suport pentru stocare a astfel de
informații într-o zonă de memorie care își poate
modifica dimensiunea în funcție de necesități

CRAMFSCRAMFS

● este un sistem de fișiere read-only cu compresia
datelor

● este foarte util pentru stocarea programelor în
flash comprimate pentru a minimiza spațiul folosit

● CRAMFS este un sistem de fișiere normal, care
comunică prin drivere block folosind un cache în
memorie și algoritmi de compresie din zlib pentru
pagini de 4kB

JFFS2JFFS2

● sistem de fișiere cu jurnal special destinat pentru
flashuri

● realizează wear leveling
● nu folosește cache de scriere pentru a evita

coruperile de date la oprirea bruscă a sistemului
● folosește direct API-ul din MTD fără a trece printr-

un nivel de translatare (FTL)

Funcționarea JFFS2Funcționarea JFFS2

● modificarea fișierelor se realizează prin intermediul
logurilor
– logurilor conțin datele ce au fost modificate

– numai aceste loguri se salvează

– pentru citirea fișierelor se va citi toate logurile aferente
pentru a recrea fișierul

● periodic se rulează un garbage collector pentru a
șterge logurile inutile
– acest garbage collector realizează și wear leveling prin

rearanjarea datelor în zonele mai puțin folosite

NFSNFS

● sistemele de fișiere desktop (ext2,3,4...) pot fi
exportate și către rețea

● kernelul Linux oferă un mecanism de montare a
astfel de sisteme de fișiere prin rețea

● un sistem NFS poate fi montat chiar și ca /,
permițând astfel o depanare rapidă a sistemului
(prin faptul că aplicațiile pot fi dezvoltate pe un
desktop, iar pentru teste acestea nu trebuie înscrise
în flash)

● bootloader trebuie să ofere suport pentru conectare
la rețea (BOOTP, DHCP)

procfsprocfs

● proc este un sistem de fișiere logic, care oferă
informații în timp real despre starea kernelului și o
interfață prin care se pot modifica anumite variabile
interne folosite de kernel

● acest sistem este pur logic, kernelul creând toate
fișierele incluse la momentul accesului
– totuși este nevoie de resurse importante din memorie

● pentru a salva memorie se poate înlătura sistemul
proc, dar atunci multe funcții de bază din sistemul
Linux nu vor fi accesibile (ps, mount)

Optimizarea spațiului de stocareOptimizarea spațiului de stocare

● spațiul de stocare în flash poate fi destul de limitat,
astfel e nevoie de optimizarea ocupării acestui
spațiu

● kernelul poate fi compilat cu opțiunea -Os pentru a
reduce dimensiunea codului

● kernelul 2.6 oferă o opțiune CONFIG_EMBEDDED, care
permite compilarea unui kernel mai subțire prin
posibilitatea înlăturării unor subsisteme esențiale
pe desktop, dar neutilizate pe embedded (de ex.
swap)

Optimizarea bibliotecilorOptimizarea bibliotecilor

● bibliotecile standard poate să consume spațiu inutil
cu funcții nefolosite în aplicațiile finale

● în sistemele embedded de obicei aplicațiile finale
sunt cunoscute din avans, ce permite o optimizare
a bibliotecilor folosite

● se pot utiliza biblioteci reduse, destinate sistemelor
embedded: dietlibc, uclibc

● bibliotecile pot fi optimizate cu un tool dedicat,
după compilarea tuturor aplicațiilor pentru a
elimina funcțiile nefolosite (libraryopt)

Reducerea numărului de aplicațiiReducerea numărului de aplicații

● sistemele Linux normale includ un număr mare de
programe folosite pentru a realiza anumite funcții
oferite de sistemul de operare

● aproape toate comenzile ce pot fi emise în linia de
comandă sunt programe mici care implementează
un apel sistem

● pentru a reduce spațiul folosit toate aceste
programe pot fi integrate într-unul singur care
încorporează toate apelurile sistem des folosite (de
ex. busybox)

BusyboxBusybox

● este un sistem multicall, care implementează
funcțiile oferite de programele Linux:

● integrează un shell (linie de comandă)
● programe de bază: cat, cp, mv, dd, rm, ls, pwd, ...

● controlul proceselor: ps, kill, ...
● controlul sistemului: init, reboot, ...
● controlul modulelor: lsmod, rmmod, modprobe, ...
● operațiuni cu reţea: ifconfig, route, ping, tftp,
telnet, wget, ...

● unelte de arhivare: tar, gzip, ...
● managementul utilizatorilor: login, adduser, passwd, ...
● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

