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Stocarea datelor în sisteme încorporateStocarea datelor în sisteme încorporate

● stocarea programelor și datelor trebuie realizată în 
memorii nevolatile:
– ROM

● foarte ieftin în serie mare
● nu mai poate fi reprogramat

– NVRAM
● viteză mare de lucru: ideal pentru stocarea datelor
● foarte scump

– Flash
● densitate mare, relativ ieftin
● reprogramabil



  

Memorii FlashMemorii Flash

● dezvoltat în anii '80 de Toshiba și Intel
● folosește tranzistori MOS cu o poartă de control și 

o poartă flotantă
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Operații asupra celulelor FlashOperații asupra celulelor Flash

● poarta flotantă poate fi încărcată sau nu
– încărcarea normală nu este suficient pentru deschiderea 

canalului DS

– fiind complet izolată sarcinile acumulate pe poarta 
flotantă se păstrează pentru timp îndelungat

● citire:
– se aplică o tensiune (jumătate din cea necesară 

deschiderii canalului) pe poarta de control

– tensiunea aplicată împreună cu sarcinile stocate pe 
poarta flotantă este suficientă pentru a deschide 
canalul DS



  

Operații asupra celulelor FlashOperații asupra celulelor Flash

● scrierea (injecție de electroni fierbinți)
– se aplică o tensiune mare pe poarta de control (mult 

mai mare decât tensiunea de deschidere)

– datorită curentului mare pe canalul DS deschis, 
electronii „fierbinți” sar pe poarta flotantă încărcând 
aceasta

● ștergerea (efectul tunel)
– se aplică o tensiune negativă mare pe poarta de control

– sarcinile stocate pe poarta flotantă se vor extrage prin 
efectul tunel



  

Organizarea celulelor FlashOrganizarea celulelor Flash

● există două tehnologii (denumite după modul de 
legare a tranzistorilor):
– NOR (sau negat cablat)

– NAND (și negat cablat)

● organizarea în amândouă cazuri este una 
matricială cu linii de adresă care vor selecta 
celulele paralele



  

Flash NORFlash NOR

● tranzistorii sunt legați pe o parte la masă pe 
cealaltă parte pe coloana corespunzătoare

● dacă unul din tranzistori este deschis se va trage 
toată coloana la GND
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Flash NORFlash NOR

● celule sunt organizate în blocuri
– dimensiunea blocului este de ordinul 64k

● citirea și scrierea se poate face prin adresare 
directă
– liniile de adrese și date sunt organizate similar cu 

memoriile statice

● ștergerea trebuie făcută pe bloc
● tensiunile de scriere și ștergere sunt realizate intern 

prin convertoare boost integrate



  

Flash NANDFlash NAND

● tranzistorii de pe o coloană sunt legați în serie
● se activează toate liniile de adresă cu tensiunea 

normală, mai puțin adresa selectată (pe care se 
aplică jumătatea de tensiune)
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Flash NANDFlash NAND

● celule sunt organizate în pagini, iar paginile în 
blocuri

● paginile trebuie citite și scrise deodată, ștergerea se 
face pe blocuri

● conține buffer SRAM integrat pentru pagina citită 
care poate fi citit ca un flux de date pe interfața 
externă

● comunicarea externă se bazează pe comenzi către 
registrele interne



  

NOR vs. NANDNOR vs. NAND
Acces la dateAcces la date

● citire/scriere de la orice 
adresă

● ștergere pe blocuri
● interfață cu CPU 

similar cu SRAM 
(magistrală de control, 
adrese și date)

● citire foarte rapidă, 
scriere, ștergere lentă

● citire/scriere câte o 
pagină deodată

● ștergere pe blocuri
● protocol de 

comunicație special, 
comenzi către registre 
de adrese și date 
interne

● citire, scriere, ștergere 
rapidă



  

NOR vs. NANDNOR vs. NAND
AplicațiiAplicații

● fiind accesibil aleator la 
nivel de octet / cuvânt, 
poate fi folosit pentru 
rularea codului direct 
din flash

● este folosit pe post de 
memorie nevolatilă 
integrată în 
microcontrolere și pe 
post BIOS/bootloader 
extern

● lucrează în mod similar 
ca și harddiskul 
(accesare pe blocuri, cu 
controler integrat

● este folosit pe post de 
dispozitiv de stocare de 
înaltă capacitate (SSD, 
card, stick)



  

NOR vs. NANDNOR vs. NAND
Fiabilitate și costuriFiabilitate și costuri

● foarte scump datorită 
suprafeței mari ocupate 
și standardelor ridicate 
de fabricare

● sectoare bad practic 
inexistente

● mai ieftin datorită 
posibilității de 
integrare mai mare și 
proceselor tehnologice 
mai permisive

● pot să existe sectoare 
bad (fiind proiectate în 
scopul înlocuirii hard-
diskurilor)



  

Caracteristici specifice flashurilorCaracteristici specifice flashurilor

● durata de viață (calculată în numărul de ștergeri) 
este limitată

● pentru a crește durata de viață ștergerile de blocuri 
ar trebuie echilibrate în tot spațiul de flash (wear 
leveling)

● operație de rescriere este complicată
– modificarea unui bit de 1 în 0 se poate face la nivel de 

cuvânt (sau pagină) 

– modificarea unui bit de 0 în 1 necesită ștergerea 
completă a unui bloc întreg după care vor trebui 
rescrise și toate datele nemodificate



  

Folosire flashului în LinuxFolosire flashului în Linux

● modul tradițional de realizare a driverelor și a 
sistemelor de fișiere în Linux nu poate fi adaptat 
ușor la memoriile flash
– acestea pot fi citite pe caractere, dar trebuie scrise pe 

blocuri

– sistemele de fișiere din Linux nu oferă suport specific 
flashurilor

● nu există wear leveling
● blocurile din flash sunt de obicei mult mai mari decât 

sectoarele folosite pe hard-diskuri
● folosirea cacheului pentru file system trebuie evitat pentru a 

nu avea probleme la oprirea bruscă a sistemului



  

MTDMTD

● inițial flashurile se integrau în Linux printr-un FTL 
(Flash Translation Layer) care emula un hard-disk
– nu soluționa toate problemele legate de caracteristicile 

flashurilor

– nu ofera suport pentru alte moduri de operare

– devenea din ce în ce mai complex cu apariția noilor 
tipuri de flashuri și noilor interfețe

● soluția era introducerea subsystemului MTD 
(Memory Technology Devices)



  

MTDMTD

● MTD a fost conceput special pentru modul de 
operație cu flashuri

● se integrează în Linux atât pe nivelul de drivere cât 
și pe nivelul de aplicații

● la nivelul de drivere MTD mapează pentru fiecare 
dispozitiv câte un driver de character și de block 
device
– character device poate fi folosit în mod obișnuit cu 

funcțiile open/read/write/ioctl

– block device poate fi folosit pentru montarea unui 
sistem de fișiere clasic



  

Arhitectura MTDArhitectura MTD

● MTD core
– implementează driverele character și block

● drivere flash low-level
– implementează interfețele pentru flashuri NOR și 

NAND

● BSP pentru flash
– oferă suport pentru modurile de conectare a flashului 

pe placă

● aplicații MTD
– aplicații pe nivel kernel care folosesc flash (JFFS2) și 

aplicații pe nivel de utilizator (upgrade)



  

Suport  MTD în embedded LinuxSuport  MTD în embedded Linux

● MTD pentru flashuri NOR a fost introdus în 
kernelul 2.4,

● extensia pentru flashuri NAND (numai pentru 
NFTL – NAND Flash Translation Layer) a fost 
introdus în versiuni ulterioare a kernelului 2.4, și 
suport complet în kernelul 2.6

● există implementare completă (drivere low level) 
pentru flashuri NOR cu interfața CFI și pentru 
dispozitive flash NAND uzuale (SSD, 
SD/MMC/MS/CF/xD)



  

Maparea memoriilor FlashMaparea memoriilor Flash

● sistemele embedded de obicei pornesc execuția 
dintr-o memorie flash (de tip NOR)

● poate exista și memorie flash NAND în sistem, care 
trebuie montat ca un hard-disk, și transferat 
conținutul în memorie pentru a putea fi executat

● Linux are nevoie de un sistem de fișiere montat 
pentru /, care poate fi un flash NAND sau o partiție 
în memorie
– aceasta înseamnă că în sistemul încorporat trebuie să 

existe cel puțin două partiții (boot și /)



  

Sisteme de fișiere embeddedSisteme de fișiere embedded

● fiindcă Linux presupune existența unui sistem de 
fișiere chiar și în lipsa hard-diskurilor, este nevoie 
de folosirea unor sisteme de fișiere dedicate (care 
folosesc fie memoria RAM fie o memorie flash):
– Ramdisk

– RAMFS

– CRAMFS

– JFFS2

– NFS



  

RamdiskRamdisk

● este o metodă de emulare a unui hard-disk în 
memorie

● nu este un sistem de fișiere, ci mai degrabă o 
tehnologie ce permite crearea sistemului / în 
memorie, după care în acest sistem se pot monta 
alte sisteme de fișiere

● de obicei initrd se crează într-o formă de imagine 
ramdisk, ce poate fi încărcată în memorie de către 
boot-loadeer



  

RAMFSRAMFS

● este un sistem de fișiere localizată în întregime în 
memorie RAM

● de multe ori este nevoie de folosirea unor 
informații (interne ale kernelului sau a 
utilizatorilor) organizate în formă de fișiere pentru 
un acces comod și care nu trebuie păstrate după 
repornirea sistemului, de aceea nu merită a fi 
încărcate în flash

● RAMFS oferă suport pentru stocare a astfel de 
informații într-o zonă de memorie care își poate 
modifica dimensiunea în funcție de necesități



  

CRAMFSCRAMFS

● este un sistem de fișiere read-only cu compresia 
datelor

● este foarte util pentru stocarea programelor în 
flash comprimate pentru a minimiza spațiul folosit

● CRAMFS este un sistem de fișiere normal, care 
comunică prin drivere block folosind un cache în 
memorie și algoritmi de compresie din zlib pentru 
pagini de 4kB



  

JFFS2JFFS2

● sistem de fișiere cu jurnal special destinat pentru 
flashuri

● realizează wear leveling
● nu folosește cache de scriere pentru a evita 

coruperile de date la oprirea bruscă a sistemului
● folosește direct API-ul din MTD fără a trece printr-

un nivel de translatare (FTL)



  

Funcționarea JFFS2Funcționarea JFFS2

● modificarea fișierelor se realizează prin intermediul 
logurilor
– logurilor conțin datele ce au fost modificate

– numai aceste loguri se salvează

– pentru citirea fișierelor se va citi toate logurile aferente 
pentru a recrea fișierul

● periodic se rulează un garbage collector pentru a 
șterge logurile inutile
– acest garbage collector realizează și wear leveling prin 

rearanjarea datelor în zonele mai puțin folosite



  

NFSNFS

● sistemele de fișiere desktop (ext2,3,4...) pot fi 
exportate și către rețea

● kernelul Linux oferă un mecanism de montare a 
astfel de sisteme de fișiere prin rețea

● un sistem NFS poate fi montat chiar și ca /, 
permițând astfel o depanare rapidă a sistemului 
(prin faptul că aplicațiile pot fi dezvoltate pe un 
desktop, iar pentru teste acestea nu trebuie înscrise 
în flash)

● bootloader trebuie să ofere suport pentru conectare 
la rețea (BOOTP, DHCP)



  

procfsprocfs

● proc este un sistem de fișiere logic, care oferă 
informații în timp real despre starea kernelului și o 
interfață prin care se pot modifica anumite variabile 
interne folosite de kernel

● acest sistem este pur logic, kernelul creând toate 
fișierele incluse la momentul accesului
– totuși este nevoie de resurse importante din memorie

● pentru a salva memorie se poate înlătura sistemul 
proc, dar atunci multe funcții de bază din sistemul 
Linux nu vor fi accesibile (ps, mount)



  

Optimizarea spațiului de stocareOptimizarea spațiului de stocare

● spațiul de stocare în flash poate fi destul de limitat, 
astfel e nevoie de optimizarea ocupării acestui 
spațiu

● kernelul poate fi compilat cu opțiunea -Os pentru a 
reduce dimensiunea codului

● kernelul 2.6 oferă o opțiune CONFIG_EMBEDDED, care 
permite compilarea unui kernel mai subțire prin 
posibilitatea înlăturării unor subsisteme esențiale 
pe desktop, dar neutilizate pe embedded (de ex. 
swap)



  

Optimizarea bibliotecilorOptimizarea bibliotecilor

● bibliotecile standard poate să consume spațiu inutil 
cu funcții nefolosite în aplicațiile finale

● în sistemele embedded de obicei aplicațiile finale 
sunt cunoscute din avans, ce permite o optimizare 
a bibliotecilor folosite

● se pot utiliza biblioteci reduse, destinate sistemelor 
embedded: dietlibc, uclibc

● bibliotecile pot fi optimizate cu un tool dedicat, 
după compilarea tuturor aplicațiilor pentru a 
elimina funcțiile nefolosite (libraryopt)



  

Reducerea numărului de aplicațiiReducerea numărului de aplicații

● sistemele Linux normale includ un număr mare de 
programe folosite pentru a realiza anumite funcții 
oferite de sistemul de operare

● aproape toate comenzile ce pot fi emise în linia de 
comandă sunt programe mici care implementează 
un apel sistem

● pentru a reduce spațiul folosit toate aceste 
programe pot fi integrate într-unul singur care 
încorporează toate apelurile sistem des folosite (de 
ex. busybox)



  

BusyboxBusybox

● este un sistem multicall, care implementează 
funcțiile oferite de programele Linux:

● integrează un shell (linie de comandă)
● programe de bază: cat, cp, mv, dd, rm, ls, pwd, ...

● controlul proceselor: ps, kill, ...
● controlul sistemului: init, reboot, ...
● controlul modulelor: lsmod, rmmod, modprobe, ...
● operațiuni cu reţea: ifconfig, route, ping, tftp, 
telnet, wget, ...

● unelte de arhivare: tar, gzip, ...
● managementul utilizatorilor: login, adduser, passwd, ...
● ...
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