

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Embedded LinuxEmbedded Linux

● oferă suport pentru dispozitive embedded
● kernel foarte modularizat
● compatibil POSIX
● ușor de portat aplicații din domeniul desktop
● suportă a gamă mare de dispozitive
● poate fi configurat pentru procesare real-time (în

anumite condiții)

Mic istoricMic istoric

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT
Local: Sun, Aug 25 1991 10:57 pm
Subject: What would you like to see most in minix?

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

 Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

Istoric embedded LinuxIstoric embedded Linux

● 1996 – RTLinux
– nucleu mic RTOS care rulează Linux ca un proces

● 1997 – uCLinux
– Linux pentru sisteme fără MMU

● 1999 – caracteristici soft real-time în kernel
– Montavista Linux (distribuție cu suport real-time)

● 2000 – Qt/Embedded
– PDA-uri cu Linux

● 2001 – uClibc

Avantaje embedded LinuxAvantaje embedded Linux

● independență de furnizori (de SO)
– schimbarea între furnizori de distribuții ușoară

● time-to-market
– existența multitudinii de soluții open-source (pentru

desktop și embedded)

● costuri mici
– royalty free, costuri mici de training prin documentație

vastă pe Internet

● compatibil POSIX
– aplicațiile sunt ușor portabile

Distribuții embedded LinuxDistribuții embedded Linux

● există distribuții dedicate embedded
● configurații de kernel orientate embedded

– posibilități mai mari de eliminare componente
nefolosite din kernel (MMU, FS, NET)

● includ toolchain-uri dedicate arhitecturii
● portate pe diferite arhitecturi şi plăci de evaluare

– Board Support Packages

DistribuţiiDistribuţii

● BlueCat Linux
● Cadenux
● Denx
● Embedded Debian / Embedded Ubuntu
● ElinOS
● Metrowerks
● MontaVista Linux
● RTLinux
● Timesys Linux

Arhitectura LinuxArhitectura Linux

● nucleul Linux conține modulele principale:
– HAL (Hardware Abstraction Layer)

– MM (Memory Manager)

– Scheduler

– FS (File System)

– IO subsytem

– Networking subsystem

– IPC (InterProcess Communication)

Hardware Abstraction LayerHardware Abstraction Layer

● HAL virtualizează platforma hardware pentru a
permite o portare ușoară a diferitelor drivere

● conține practic BSP (Board Support Package)
pentru arhitectura hardware țintă
– nu oferă însă un API standard din motive tradiționale

(Linux dezvoltat prima dată pentru 386 fără gândul la
portări ulterioare)

– există însă tentative de standardizare a interfeței (mai
ales în cazul ARM și PowerPC)

Componente HALComponente HAL

● HAL suportă următoarele componente principale:
– procesor, cache, MMU

– interrupt controller

– DMA

– timere

– consolă sistem

– controler de magistrală

– power management

Planificatorul (scheduler)Planificatorul (scheduler)

● planificatorul permite funcționarea multitasking a
sistemului
– aplicațiile rulează pseudoparalel

● firele executate de scheduler pot fi:
– kernel threads (fire de execuție în interiorul kernelului

fără context)
– user process (fire de execuție, împreună cu context,

date, stivă, heap, text, bss + stivă kernel)

– user threads (fire de execuție, cu instanță de execuție
separată, dar heap, code, bss şi data partajată cu alte
fire din cadrul aceluiași proces)

Planificatorul pentru real-timePlanificatorul pentru real-time

● începând cu apariția nevoii de portare a Linuxului
pentru sisteme embedded, planificatorul a suferit
îmbunătățiri continue pentru a permite a rulare cât
mai rapidă

● începând cu versiunea 2.6.8, planificatorul din
Linux este unul care rulează în O(1), permițând
astfel o operare deterministă a sistemului (cerință
importantă pentru a satisface criteriul de real-time)
– de la versiunea 2.6.23 kernelul Linux a trecut la un

planificator O(log n) Completely Fair Scheduler,
distribuțiile embedded rămânând pe O(1)

Managerul de memorieManagerul de memorie

● realizează alocarea dinamică a memoriei pentru
componentele SO (scheduler, FS, networking,
drivere)

● implementează memoria virtuală pentru aplicații
(paginare)
– memoria este împărțită în pagini de 4kB (de obicei) și

pot fi alocate independent kernelului sau aplicațiilor

● separă zonele de memorie alocate diferitelor
procese pentru protecție între ele (segmentare)

Managerul de memorieManagerul de memorie

● Linux oferă a separare între memoria alocată
kernelului și memoria alocată proceselor
– kernelul poate vede toate paginile, procesele numai

paginile alocate procesului respectiv

– paginile alocate proceselor pot fi supuse paginării (între
memorie și storage) reducând dimensiunea necesară a
memoriei

● Pe sistemele fără MMU, dezvoltatorul trebuie să
aibă grijă de această separare

Sistemul de fișiereSistemul de fișiere

● Linux combină diferitele sisteme de fișiere într-un
strat comun Virtual File System

● VFS oferă o interfață comună pentru toate
dispozitivele din sistem

● Linux are nevoie întotdeauna de un FS (cât de cât
minimal):
– programele sunt stocate într-o memorie nevolatilă

(HDD, Flash) în forma unor fișiere accesibile prin
intermediul FS

– toate dispozitivele de intrare/ieșire existente în sistem
sunt tratate ca fișiere

Sistemul de fișiereSistemul de fișiere

● sistemul Linux oferă un root file system, care
trebuie montat la pornire (dacă nu există, kernelul
nu va porni)

● pe acest root vor fi montate celelalte sisteme de
fișiere:
– ext2, ext3, reiserfs (pentru harddiskuri)

– romfs (memorie ROM)

– ramfs (memorie RAM)

– jffs2 (flash)

– procfs (informații despre sistem /proc)

– devfs, udev (dispozitive IO /dev)

Subsistemul IOSubsistemul IO

● oferă o interfață uniformă pentru dispozitivele din
sistem
– character devices (dispozitive secvențiale)

– block devices (dispozitive accesibile aleator)

– network devices (dispozitive pe rețea)

● accesul dispozitivelor se realizează prin intermediul
FS

● controlul dispozitivelor se realizează prin interfața
IO (ioctl)

Subsistemul de rețeaSubsistemul de rețea

● una din principalele atuuri al sistemului Linux este
orientarea spre operare în rețea

● nucleul Linux include implementări complete de
stive de rețea, cea mai importantă fiind stiva
TCP/IP

● foarte multe subsisteme Linux se folosesc de
modularitatea oferită de stivele de rețea pentru
realizarea separării și comunicării între ele

IPCIPC

● pentru comunicații între procese Linux include
– semnale (comunicație asincronă = întreruperi soft)

– pipe (prin intermediul FS)

– socket (prin intermediul networking)

– System V IPC (metodele IPC definite de POSIX):
● semafoare
● shared memory
● message passing

Pornirea unui sistem LinuxPornirea unui sistem Linux

● sistemul Linux fiind în sine un sistem complex, are
nevoie de o secvență de pornire prin intermediul
cărei se vor încărca diferitele componente ale
sistemului

● pe sistemele embedded această secvență de pornire
trebuie utilizată pentru a se realiza într-un timp cât
mai scurt

● fazele pornirii sunt:
– boot loader
– inițializare kernel
– inițializare user-space

Boot loaderBoot loader

● prima fază la pornirea sistemului
● presupune o inițializare a hardwareului:

– inițializare procesor (frecvență, cache, interfață cu
memoria)

– inițializare port serial pentru consola Linux

● încarcă kernelul din spațiul de stocare nevolatil în
memorie

● pasează argumente pentru kernel (încarcă o zonă
de memorie cu valori prestabilite)

● salt la punctul de început al kernelului

Inițializare kernelInițializare kernel

● începe cu o rutină de configurare a mediului pentru
rutinele C (scris în asm)
– inițializează MMU (dacă există)

– resetează zonele de memorie alocate bss la 0

– setează stiva pentru prima rutină C
● start_kernel() execută a serie de rutine şi termină

într-o buclă infinită (idle)

● setup_arch()
– restul iniţializării platformei

● trap_init()
– inițializează excepțiile (întreruperi software)

Inițializare kernelInițializare kernel

● init_IRQ()
– inițializează controlerul de întreruperi și descriptorii de

întreruperi (care vor prelua întreruperile și pasa la
rutinele utilizatorilor)

● time_init()
– inițializează un timer pentru a realiza un tick periodic

(folosit de scheduler)

● console_init()
– inițializează portul serial pentru consolă kernel

– de acum încolo toate mesajele de pornire vor fi afișate

Inițializare kernelInițializare kernel

● calibrate_delay()
– inițializează rutinele de întârziere oferite de sistem

● inițializare subsisteme
– se inițializează schedulerul, managerul de memorie și

VFS

● creare un nou proces init, după care
start_kernel() va continua ca un proces idle

● init va inițializa driverele și va monta sistemul de
fișiere root, după care se va trece în user-space

Inițializare user-spaceInițializare user-space

● este dependent de distribuție
● de obicei se realizează de /sbin/init, care citește

configurațiile găsite în /etc/inittab și le execută
● fișierele de configurație pot conține scripturi shell

ce vor executa și alte programe de inițializare
● se inițializează procesele care nu interacționează cu

utilizatorul (daemon-ii)
● se oferă o consolă de login pentru utilizator

Compilarea cross-platformCompilarea cross-platform

● de obicei în platformele embedded nu există
resurse suficiente pentru a permite compilarea
sistemului

● pentru compilarea sistemului pentru o nouă
platformă (embedded) se folosește o suită de
compilare cross-platform

● exemplu gnu-toolchain
● acest toolchain permite compilarea pe o mașină

host a sistemului destinat unei mașini target care
poate fi pe o arhitectură diferită

GNU toolchainGNU toolchain

● binutils
– suită de programă care ajută la compilare

– ar, as, ld, nm, objcopy, objdump, ranlib, size

● gcc
– compilatorul C

● glibc
– suită de biblioteci standard

– include și toate funcțiile pentru apeluri sistem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

