Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan



Embedded Linux

ofera suport pentru dispozitive embedded
kernel foarte modularizat

compatibil POSIX

usor de portat aplicatii din domeniul desktop
suporta a gama mare de dispozitive

poate fi configurat pentru procesare real-time (in
anumite conditii)



Mic istoric

From: torvalds@klaava.Helsinki.Fl (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT

Local: Sun, Aug 25 1991 10:57 pm

Subject: What would you like to see most in minix?

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and

I'd like to know what features most people would want. Any suggestions
are welcome, but | won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)
PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all | have :-(.



Istoric embedded Linux

1996 — RTLinux
— nucleu mic RTOS care ruleaza Linux ca un proces

1997 — uCLinux

— Linux pentru sisteme fara MMU

1999 — caracteristici soft real-time in kernel

— Montavista Linux (distributie cu suport real-time)
2000 — Qt/Embedded

— PDA-uri cu Linux

2001 — uClibc



Avantaje embedded Linux

independenta de furnizori (de SO)
— schimbarea intre furnizori de distributii usoara
time-to-market

— existenta multitudinii de solutii open-source (pentru

desktop si embedded)
costuri mici

- royalty free, costuri mici de training prin documentatie
vasta pe Internet

compatibil POSIX

— aplicatiile sunt usor portabile



Distributii embedded Linux

 exista distributii dedicate embedded

» configuratii de kernel orientate embedded

— posibilitati mai mari de eliminare componente
nefolosite din kernel (MMU, FS, NET)

e includ toolchain-uri dedicate arhitecturii

e portate pe diferite arhitecturi si placi de evaluare

— Board Support Packages



Distributii

BlueCat Linux
Cadenux

Denx

Embedded Debian / Embedded Ubuntu
ElinOS

Metrowerks

MontaVista Linux

RTLinux

Timesys Linux



Arhitectura Linux

* nucleul Linux contine modulele principale:

- HAL (Hardware Abstraction Layer)
- MM (Memory Manager)

— Scheduler

— FS (File System)

— 10O subsytem

- Networking subsystem

— |PC (InterProcess Communication)



Hardware Abstraction Layer

 HAL virtualizeaza platforma hardware pentru a
permite o portare usoara a diferitelor drivere

» contine practic BSP (Board Support Package)
pentru arhitectura hardware tinta

— nu ofera insa un API standard din motive traditionale
(Linux dezvoltat prima data pentru 386 fara gandul la
portari ulterioare)

— exista Tnsa tentative de standardizare a interfetei (mai
ales in cazul ARM si PowerPC)



Componente HAL

 HAL suporta urmatoarele componente principale:

— procesor, cache, MMU
— interrupt controller

- DMA

— timere

— consola sistem

— controler de magistrala

— power management



Planificatorul (scheduler)

 planificatorul permite functionarea multitasking a
sistemului

— aplicatiile ruleaza pseudoparalel
* firele executate de scheduler pot fi:

— kernel threads (fire de executie in interiorul kernelului
fara context)

— user process (fire de executie, impreuna cu context,
date, stiva, heap, text, bss + stiva kernel)

— user threads (fire de executie, cu instanta de executie
separata, dar heap, code, bss si data partajata cu alte
fire din cadrul aceluiasi proces)



Planificatorul pentru real-time

* Tncepand cu aparitia nevoii de portare a Linuxului
pentru sisteme embedded, planificatorul a suferit
imbunatatiri continue pentru a permite a rulare cat
mai rapida

e Tncepand cu versiunea 2.6.8, planificatorul din
Linux este unul care ruleaza in O(1), permitand
astfel o operare determinista a sistemului (cerinta
importanta pentru a satisface criteriul de real-time)

— de la versiunea 2.6.23 kernelul Linux a trecut la un
planificator O(log n) Completely Fair Scheduler,
distributiile embedded ramanand pe O(1)



Managerul de memorie

 realizeaza alocarea dinamica a memoriei pentru
componentele SO (scheduler, FS, networking,
drivere)

* implementeaza memoria virtuala pentru aplicatii
(paginare)
— memoria este impartita in pagini de 4kB (de obicei) si

pot fi alocate independent kernelului sau aplicatiilor

* separa zonele de memorie alocate diferitelor
procese pentru protectie intre ele (segmentare)



Managerul de memorie

* Linux ofera a separare intre memoria alocata
kernelului si memoria alocata proceselor

— kernelul poate vede toate paginile, procesele numai
naginile alocate procesului respectiv

— paginile alocate proceselor pot fi supuse paginarii (intre
memorie si storage) reducand dimensiunea necesara a
memoriel

e Pe sistemele fara MMU, dezvoltatorul trebuie sa
aiba grija de aceasta separare



Sistemul de fisiere

e Linux combina diferitele sisteme de fisiere intr-un
strat comun Virtual File System

* VFS ofera o interfata comuna pentru toate
dispozitivele din sistem

e Linux are nevoie intotdeauna de un FS (cat de cat
minimal):

— programele sunt stocate Tntr-o memorie nevolatila
(HDD, Flash) in forma unor fisiere accesibile prin

intermediul FS

- toate dispozitivele de intrare/iesire existente in sistem
sunt tratate ca fisiere



Sistemul de fisiere

* sistemul Linux ofera un root file system, care
trebuie montat la pornire (daca nu exista, kernelul
nu va porni)

* pe acest root vor fi montate celelalte sisteme de
fisiere:
— ext2, ext3, reiserfs (pentru harddiskuri)
— romfs (memorie ROM)
— ramfs (memorie RAM)
— jfts2 (flash)
— procfs (informatii despre sistem /proc)

— devfs, udev (dispozitive 1O /dev)



Subsistemul 1O

» ofera o interfata uniforma pentru dispozitivele din
sistem

— character devices (dispozitive secventiale)
— block devices (dispozitive accesibile aleator)

— network devices (dispozitive pe retea)

 accesul dispozitivelor se realizeaza prin intermediul

FS

» controlul dispozitivelor se realizeaza prin interfata
1O (ioctl)



Subsistemul de retea

e una din principalele atuuri al sistemului Linux este
orientarea spre operare In retea

e nucleul Linux include implementari complete de

stive de retea, cea mai importanta fiind stiva
TCP/IP

» foarte multe subsisteme Linux se folosesc de
modularitatea oferita de stivele de retea pentru
realizarea separarii si comunicarii intre ele



IPC

e pentru comunicatii intre procese Linux include

— semnale (comunicatie asincrona = intreruperi soft)
— pipe (prin intermediul FS)

— socket (prin intermediul networking)

— System V IPC (metodele IPC definite de POSIX):

e semafoare
e shared memory

* message passing



Pornirea unui sistem Linux

* sistemul Linux fiind Tn sine un sistem complex, are
nevoie de o secventa de pornire prin intermediul
carei se vor incarca diferitele componente ale
sistemului

* pe sistemele embedded aceasta secventa de pornire

trebuie utilizata pentru a se realiza intr-un timp cat
mal scurt

 fazele pornirii sunt:

— boot loader

— initializare kernel

— Initializare user-space



Boot loader

* prima faza la pornirea sistemului

* presupune o initializare a hardwareului:

— initializare procesor (frecventa, cache, interfata cu
memoria)

— initializare port serial pentru consola Linux

* incarca kernelul din spatiul de stocare nevolatil in
memorie

* paseaza argumente pentru kernel (incarca o zona
de memorie cu valori prestabilite)

e salt la punctul de inceput al kernelului



Initializare kernel

* Tncepe cu o rutina de configurare a mediului pentru
rutinele C (scris in asm)

— initializeaza MMU (daca exista)
— reseteaza zonele de memorie alocate bss la 0

— seteaza stiva pentru prima rutina C

e start_kernel() executa a serie de rutine si termina
intr-o bucla infinita (idle)

« setup arch()
— restul initializarii platformei
o trap_Init()

— initializeaza exceptiile (intreruperi software)



Initializare kernel

+ init IRQ()

— initializeaza controlerul de intreruperi si descriptorii de
intreruperi (care vor prelua intreruperile si pasa la
rutinele utilizatorilor)

» time_Init()

— initializeaza un timer pentru a realiza un tick periodic
(folosit de scheduler)

e console Init()

— initializeaza portul serial pentru consola kernel

— de acum incolo toate mesajele de pornire vor fi afisate



Initializare kernel

 calibrate delay()
— initializeaza rutinele de intarziere oferite de sistem
e initializare subsisteme

— se initializeaza schedulerul, managerul de memorie si
VES

* creare un nou proces init, dupa care
start_kernel() va continua ca un proces idle

e init va initializa driverele si va monta sistemul de
fisiere root, dupa care se va trece in user-space



Initializare user-space

este dependent de distributie

de obicei se realizeaza de /sbin/init, care citeste
configuratiile gasite in /etc/inittab si le executa

fisierele de configuratie pot contine scripturi shell
ce vor executa si alte programe de initializare

se initializeaza procesele care nu interactioneaza cu
utilizatorul (daemon-ii)

se ofera o consola de login pentru utilizator



Compilarea cross-platform

de obicei in platformele embedded nu exista
resurse suficiente pentru a permite compilarea
sistemului

pentru compilarea sistemului pentru o noua
platforma (embedded) se foloseste o suita de
compilare cross-platform

exemplu gnu-toolchain

acest toolchain permite compilarea pe o masina
host a sistemului destinat unei masini target care
poate fi pe o arhitectura diferita



GNU toolchain

* binutils
— suita de programa care ajuta la compilare
- ar, as, ld, nm, objcopy, objdump, ranlib, size
* oCC
— compilatorul C
 glibc
— suita de biblioteci standard

— include si toate functiile pentru apeluri sistem



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

