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Embedded LinuxEmbedded Linux

● oferă suport pentru dispozitive embedded
● kernel foarte modularizat
● compatibil POSIX
● ușor de portat aplicații din domeniul desktop
● suportă a gamă mare de dispozitive
● poate fi configurat pentru procesare real-time (în 

anumite condiții)



  

Mic istoricMic istoric

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT
Local: Sun, Aug 25 1991 10:57 pm
Subject: What would you like to see most in minix?

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones.  This has been brewing
since april, and is starting to get ready.  I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want.  Any suggestions
are welcome, but I won't promise I'll implement them :-)

                Linus (torvalds@kruuna.helsinki.fi)

PS.  Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(. 



  

Istoric embedded LinuxIstoric embedded Linux

● 1996 – RTLinux
– nucleu mic RTOS care rulează Linux ca un proces

● 1997 – uCLinux
– Linux pentru sisteme fără MMU

● 1999 – caracteristici soft real-time în kernel
– Montavista Linux (distribuție cu suport real-time)

● 2000 – Qt/Embedded
– PDA-uri cu Linux

● 2001 – uClibc



  

Avantaje embedded LinuxAvantaje embedded Linux

● independență de furnizori (de SO)
– schimbarea între furnizori de distribuții ușoară

● time-to-market
– existența multitudinii de soluții open-source (pentru 

desktop și embedded)

● costuri mici
– royalty free, costuri mici de training prin documentație 

vastă pe Internet

● compatibil POSIX
– aplicațiile sunt ușor portabile



  

Distribuții embedded LinuxDistribuții embedded Linux

● există distribuții dedicate embedded
● configurații de kernel orientate embedded

– posibilități mai mari de eliminare componente 
nefolosite din kernel (MMU, FS, NET)

● includ toolchain-uri dedicate arhitecturii
● portate pe diferite arhitecturi şi plăci de evaluare

– Board Support Packages



  

DistribuţiiDistribuţii

● BlueCat Linux
● Cadenux
● Denx
● Embedded Debian / Embedded Ubuntu
● ElinOS
● Metrowerks
● MontaVista Linux
● RTLinux
● Timesys Linux



  

Arhitectura LinuxArhitectura Linux

● nucleul Linux conține modulele principale:
– HAL (Hardware Abstraction Layer)

– MM (Memory Manager)

– Scheduler

– FS (File System)

– IO subsytem

– Networking subsystem

– IPC (InterProcess Communication)



  

Hardware Abstraction LayerHardware Abstraction Layer

● HAL virtualizează platforma hardware pentru a 
permite o portare ușoară a diferitelor drivere

● conține practic BSP (Board Support Package) 
pentru arhitectura hardware țintă
– nu oferă însă un API standard din motive tradiționale 

(Linux dezvoltat prima dată pentru 386 fără gândul la 
portări ulterioare)

– există însă tentative de standardizare a interfeței (mai 
ales în cazul ARM și PowerPC)



  

Componente HALComponente HAL

● HAL suportă următoarele componente principale:
– procesor, cache, MMU

– interrupt controller

– DMA

– timere

– consolă sistem

– controler de magistrală

– power management



  

Planificatorul (scheduler)Planificatorul (scheduler)

● planificatorul permite funcționarea multitasking a 
sistemului
– aplicațiile rulează pseudoparalel

● firele executate de scheduler pot fi:
– kernel threads (fire de execuție în interiorul kernelului 

fără context)
– user process (fire de execuție, împreună cu context, 

date, stivă, heap, text, bss + stivă kernel)

– user threads (fire de execuție, cu instanță de execuție 
separată, dar heap, code, bss şi data partajată cu alte 
fire din cadrul aceluiași proces)



  

Planificatorul pentru real-timePlanificatorul pentru real-time

● începând cu apariția nevoii de portare a Linuxului 
pentru sisteme embedded, planificatorul a suferit 
îmbunătățiri continue pentru a permite a rulare cât 
mai rapidă

● începând cu versiunea 2.6.8, planificatorul din 
Linux este unul care rulează în O(1), permițând 
astfel o operare deterministă a sistemului (cerință 
importantă pentru a satisface criteriul de real-time)
– de la versiunea 2.6.23 kernelul Linux a trecut la un 

planificator O(log n) Completely Fair Scheduler, 
distribuțiile embedded rămânând pe O(1)



  

Managerul de memorieManagerul de memorie

● realizează alocarea dinamică a memoriei pentru 
componentele SO (scheduler, FS, networking, 
drivere)

● implementează memoria virtuală pentru aplicații 
(paginare)
– memoria este împărțită în pagini de 4kB (de obicei) și 

pot fi alocate independent kernelului sau aplicațiilor

● separă zonele de memorie alocate diferitelor 
procese pentru protecție între ele (segmentare)



  

Managerul de memorieManagerul de memorie

● Linux oferă a separare între memoria alocată 
kernelului și memoria alocată proceselor
– kernelul poate vede toate paginile, procesele numai 

paginile alocate procesului respectiv

– paginile alocate proceselor pot fi supuse paginării (între 
memorie și storage) reducând dimensiunea necesară a 
memoriei

● Pe sistemele fără MMU, dezvoltatorul trebuie să 
aibă grijă de această separare



  

Sistemul de fișiereSistemul de fișiere

● Linux combină diferitele sisteme de fișiere într-un 
strat comun Virtual File System

● VFS oferă o interfață comună pentru toate 
dispozitivele din sistem

● Linux are nevoie întotdeauna de un FS (cât de cât 
minimal):
– programele sunt stocate într-o memorie nevolatilă 

(HDD, Flash) în forma unor fișiere accesibile prin 
intermediul FS

– toate dispozitivele de intrare/ieșire existente în sistem 
sunt tratate ca fișiere



  

Sistemul de fișiereSistemul de fișiere

● sistemul Linux oferă un root file system, care 
trebuie montat la pornire (dacă nu există, kernelul 
nu va porni)

● pe acest root vor fi montate celelalte sisteme de 
fișiere:
– ext2, ext3, reiserfs (pentru harddiskuri)

– romfs (memorie ROM)

– ramfs (memorie RAM)

– jffs2 (flash)

– procfs (informații despre sistem /proc)

– devfs, udev (dispozitive IO /dev)



  

Subsistemul IOSubsistemul IO

● oferă o interfață uniformă pentru dispozitivele din 
sistem
– character devices (dispozitive secvențiale)

– block devices (dispozitive accesibile aleator)

– network devices (dispozitive pe rețea)

● accesul dispozitivelor se realizează prin intermediul 
FS

● controlul dispozitivelor se realizează prin interfața 
IO (ioctl)



  

Subsistemul de rețeaSubsistemul de rețea

● una din principalele atuuri al sistemului Linux este 
orientarea spre operare în rețea

● nucleul Linux include implementări complete de 
stive de rețea, cea mai importantă fiind stiva 
TCP/IP

● foarte multe subsisteme Linux se folosesc de 
modularitatea oferită de stivele de rețea pentru 
realizarea separării și comunicării între ele



  

IPCIPC

● pentru comunicații între procese Linux include
– semnale (comunicație asincronă = întreruperi soft)

– pipe (prin intermediul FS)

– socket (prin intermediul networking)

– System V IPC (metodele IPC definite de POSIX):
● semafoare
● shared memory
● message passing



  

Pornirea unui sistem LinuxPornirea unui sistem Linux

● sistemul Linux fiind în sine un sistem complex, are 
nevoie de o secvență de pornire prin intermediul 
cărei se vor încărca diferitele componente ale 
sistemului

● pe sistemele embedded această secvență de pornire 
trebuie utilizată pentru a se realiza într-un timp cât 
mai scurt

● fazele pornirii sunt:
– boot loader
– inițializare kernel
– inițializare user-space



  

Boot loaderBoot loader

● prima fază la pornirea sistemului
● presupune o inițializare a hardwareului:

– inițializare procesor (frecvență, cache, interfață cu 
memoria)

– inițializare port serial pentru consola Linux

● încarcă kernelul din spațiul de stocare nevolatil în 
memorie

● pasează argumente pentru kernel (încarcă o zonă 
de memorie cu valori prestabilite)

● salt la punctul de început al kernelului



  

Inițializare kernelInițializare kernel

● începe cu o rutină de configurare a mediului pentru 
rutinele C (scris în asm)
– inițializează MMU (dacă există)

– resetează zonele de memorie alocate bss la 0

– setează stiva pentru prima rutină C
● start_kernel() execută a serie de rutine şi termină 

într-o buclă infinită (idle)

● setup_arch()
– restul iniţializării platformei

● trap_init()
– inițializează excepțiile (întreruperi software)



  

Inițializare kernelInițializare kernel

● init_IRQ()
– inițializează controlerul de întreruperi și descriptorii de 

întreruperi (care vor prelua întreruperile și pasa la 
rutinele utilizatorilor)

● time_init()
– inițializează un timer pentru a realiza un tick periodic 

(folosit de scheduler)

● console_init()
– inițializează portul serial pentru consolă kernel

– de acum încolo toate mesajele de pornire vor fi afișate



  

Inițializare kernelInițializare kernel

● calibrate_delay()
– inițializează rutinele de întârziere oferite de sistem

● inițializare subsisteme
– se inițializează schedulerul, managerul de memorie și 

VFS

● creare un nou proces init, după care 
start_kernel() va continua ca un proces idle

● init va inițializa driverele și va monta sistemul de 
fișiere root, după care se va trece în user-space



  

Inițializare user-spaceInițializare user-space

● este dependent de distribuție
● de obicei se realizează de /sbin/init, care citește 

configurațiile găsite în /etc/inittab și le execută
● fișierele de configurație pot conține scripturi shell 

ce vor executa și alte programe de inițializare
● se inițializează procesele care nu interacționează cu 

utilizatorul (daemon-ii)
● se oferă o consolă de login pentru utilizator



  

Compilarea cross-platformCompilarea cross-platform

● de obicei în platformele embedded nu există 
resurse suficiente pentru a permite compilarea 
sistemului

● pentru compilarea sistemului pentru o nouă 
platformă (embedded) se folosește o suită de 
compilare cross-platform

● exemplu gnu-toolchain
● acest toolchain permite compilarea pe o mașină 

host a sistemului destinat unei mașini target care 
poate fi pe o arhitectură diferită



  

GNU toolchainGNU toolchain

● binutils
– suită de programă care ajută la compilare

– ar, as, ld, nm, objcopy, objdump, ranlib, size

● gcc
– compilatorul C

● glibc
– suită de biblioteci standard

– include și toate funcțiile pentru apeluri sistem
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