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Embedded Linux

ofera suport pentru dispozitive embedded
kernel foarte modularizat

compatibil POSIX

usor de portat aplicatii din domeniul desktop
suporta a gama mare de dispozitive

poate fi configurat pentru procesare real-time (in
anumite conditii)



Mic istoric

From: torvalds@klaava.Helsinki.Fl (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT

Local: Sun, Aug 25 1991 10:57 pm

Subject: What would you like to see most in minix?

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and

I'd like to know what features most people would want. Any suggestions
are welcome, but | won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)
PS. Yes - it's free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all | have :-(.



Istoric embedded Linux

1996 — RTLinux
— nucleu mic RTOS care ruleaza Linux ca un proces

1997 — uCLinux

— Linux pentru sisteme fara MMU

1999 — caracteristici soft real-time in kernel

— Montavista Linux (distributie cu suport real-time)
2000 — Qt/Embedded

— PDA-uri cu Linux

2001 — uClibc



Avantaje embedded Linux

independenta de furnizori (de SO)
— schimbarea intre furnizori de distributii usoara
time-to-market

— existenta multitudinii de solutii open-source (pentru

desktop si embedded)
costuri mici

- royalty free, costuri mici de training prin documentatie
vasta pe Internet

compatibil POSIX

— aplicatiile sunt usor portabile



Distributii embedded Linux

 exista distributii dedicate embedded

» configuratii de kernel orientate embedded

— posibilitati mai mari de eliminare componente
nefolosite din kernel (MMU, FS, NET)

e includ toolchain-uri dedicate arhitecturii

e portate pe diferite arhitecturi si placi de evaluare

— Board Support Packages



Distributii

BlueCat Linux
Cadenux

Denx

Embedded Debian / Embedded Ubuntu
ElinOS

Metrowerks

MontaVista Linux

RTLinux

Timesys Linux



Arhitectura Linux

* nucleul Linux contine modulele principale:

- HAL (Hardware Abstraction Layer)
- MM (Memory Manager)

— Scheduler

— FS (File System)

— 10O subsytem

- Networking subsystem

— |PC (InterProcess Communication)



Hardware Abstraction Layer

 HAL virtualizeaza platforma hardware pentru a
permite o portare usoara a diferitelor drivere

» contine practic BSP (Board Support Package)
pentru arhitectura hardware tinta

— nu ofera insa un API standard din motive traditionale
(Linux dezvoltat prima data pentru 386 fara gandul la
portari ulterioare)

— exista Tnsa tentative de standardizare a interfetei (mai
ales in cazul ARM si PowerPC)



Componente HAL

 HAL suporta urmatoarele componente principale:

— procesor, cache, MMU
— interrupt controller

- DMA

— timere

— consola sistem

— controler de magistrala

— power management



Planificatorul (scheduler)

 planificatorul permite functionarea multitasking a
sistemului

— aplicatiile ruleaza pseudoparalel
* firele executate de scheduler pot fi:

— kernel threads (fire de executie in interiorul kernelului
fara context)

— user process (fire de executie, impreuna cu context,
date, stiva, heap, text, bss + stiva kernel)

— user threads (fire de executie, cu instanta de executie
separata, dar heap, code, bss si data partajata cu alte
fire din cadrul aceluiasi proces)



Planificatorul pentru real-time

* Tncepand cu aparitia nevoii de portare a Linuxului
pentru sisteme embedded, planificatorul a suferit
imbunatatiri continue pentru a permite a rulare cat
mai rapida

e Tncepand cu versiunea 2.6.8, planificatorul din
Linux este unul care ruleaza in O(1), permitand
astfel o operare determinista a sistemului (cerinta
importanta pentru a satisface criteriul de real-time)

— de la versiunea 2.6.23 kernelul Linux a trecut la un
planificator O(log n) Completely Fair Scheduler,
distributiile embedded ramanand pe O(1)



Managerul de memorie

 realizeaza alocarea dinamica a memoriei pentru
componentele SO (scheduler, FS, networking,
drivere)

* implementeaza memoria virtuala pentru aplicatii
(paginare)
— memoria este impartita in pagini de 4kB (de obicei) si

pot fi alocate independent kernelului sau aplicatiilor

* separa zonele de memorie alocate diferitelor
procese pentru protectie intre ele (segmentare)



Managerul de memorie

* Linux ofera a separare intre memoria alocata
kernelului si memoria alocata proceselor

— kernelul poate vede toate paginile, procesele numai
naginile alocate procesului respectiv

— paginile alocate proceselor pot fi supuse paginarii (intre
memorie si storage) reducand dimensiunea necesara a
memoriel

e Pe sistemele fara MMU, dezvoltatorul trebuie sa
aiba grija de aceasta separare



Sistemul de fisiere

e Linux combina diferitele sisteme de fisiere intr-un
strat comun Virtual File System

* VFS ofera o interfata comuna pentru toate
dispozitivele din sistem

e Linux are nevoie intotdeauna de un FS (cat de cat
minimal):

— programele sunt stocate Tntr-o memorie nevolatila
(HDD, Flash) in forma unor fisiere accesibile prin

intermediul FS

- toate dispozitivele de intrare/iesire existente in sistem
sunt tratate ca fisiere



Sistemul de fisiere

* sistemul Linux ofera un root file system, care
trebuie montat la pornire (daca nu exista, kernelul
nu va porni)

* pe acest root vor fi montate celelalte sisteme de
fisiere:
— ext2, ext3, reiserfs (pentru harddiskuri)
— romfs (memorie ROM)
— ramfs (memorie RAM)
— jfts2 (flash)
— procfs (informatii despre sistem /proc)

— devfs, udev (dispozitive 1O /dev)



Subsistemul 1O

» ofera o interfata uniforma pentru dispozitivele din
sistem

— character devices (dispozitive secventiale)
— block devices (dispozitive accesibile aleator)

— network devices (dispozitive pe retea)

 accesul dispozitivelor se realizeaza prin intermediul

FS

» controlul dispozitivelor se realizeaza prin interfata
1O (ioctl)



Subsistemul de retea

e una din principalele atuuri al sistemului Linux este
orientarea spre operare In retea

e nucleul Linux include implementari complete de

stive de retea, cea mai importanta fiind stiva
TCP/IP

» foarte multe subsisteme Linux se folosesc de
modularitatea oferita de stivele de retea pentru
realizarea separarii si comunicarii intre ele



IPC

e pentru comunicatii intre procese Linux include

— semnale (comunicatie asincrona = intreruperi soft)
— pipe (prin intermediul FS)

— socket (prin intermediul networking)

— System V IPC (metodele IPC definite de POSIX):

e semafoare
e shared memory

* message passing



Pornirea unui sistem Linux

* sistemul Linux fiind Tn sine un sistem complex, are
nevoie de o secventa de pornire prin intermediul
carei se vor incarca diferitele componente ale
sistemului

* pe sistemele embedded aceasta secventa de pornire

trebuie utilizata pentru a se realiza intr-un timp cat
mal scurt

 fazele pornirii sunt:

— boot loader

— initializare kernel

— Initializare user-space



Boot loader

* prima faza la pornirea sistemului

* presupune o initializare a hardwareului:

— initializare procesor (frecventa, cache, interfata cu
memoria)

— initializare port serial pentru consola Linux

* incarca kernelul din spatiul de stocare nevolatil in
memorie

* paseaza argumente pentru kernel (incarca o zona
de memorie cu valori prestabilite)

e salt la punctul de inceput al kernelului



Initializare kernel

* Tncepe cu o rutina de configurare a mediului pentru
rutinele C (scris in asm)

— initializeaza MMU (daca exista)
— reseteaza zonele de memorie alocate bss la 0

— seteaza stiva pentru prima rutina C

e start_kernel() executa a serie de rutine si termina
intr-o bucla infinita (idle)

« setup arch()
— restul initializarii platformei
o trap_Init()

— initializeaza exceptiile (intreruperi software)



Initializare kernel

+ init IRQ()

— initializeaza controlerul de intreruperi si descriptorii de
intreruperi (care vor prelua intreruperile si pasa la
rutinele utilizatorilor)

» time_Init()

— initializeaza un timer pentru a realiza un tick periodic
(folosit de scheduler)

e console Init()

— initializeaza portul serial pentru consola kernel

— de acum incolo toate mesajele de pornire vor fi afisate



Initializare kernel

 calibrate delay()
— initializeaza rutinele de intarziere oferite de sistem
e initializare subsisteme

— se initializeaza schedulerul, managerul de memorie si
VES

* creare un nou proces init, dupa care
start_kernel() va continua ca un proces idle

e init va initializa driverele si va monta sistemul de
fisiere root, dupa care se va trece in user-space



Initializare user-space

este dependent de distributie

de obicei se realizeaza de /sbin/init, care citeste
configuratiile gasite in /etc/inittab si le executa

fisierele de configuratie pot contine scripturi shell
ce vor executa si alte programe de initializare

se initializeaza procesele care nu interactioneaza cu
utilizatorul (daemon-ii)

se ofera o consola de login pentru utilizator



Compilarea cross-platform

de obicei in platformele embedded nu exista
resurse suficiente pentru a permite compilarea
sistemului

pentru compilarea sistemului pentru o noua
platforma (embedded) se foloseste o suita de
compilare cross-platform

exemplu gnu-toolchain

acest toolchain permite compilarea pe o masina
host a sistemului destinat unei masini target care
poate fi pe o arhitectura diferita



GNU toolchain

* binutils
— suita de programa care ajuta la compilare
- ar, as, ld, nm, objcopy, objdump, ranlib, size
* oCC
— compilatorul C
 glibc
— suita de biblioteci standard

— include si toate functiile pentru apeluri sistem
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