Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan

Grafica incorporata

* sistemele embedded ofera din ce Tn ce mai mult si o
interfata grafica catre utilizator

— folosire mai usoara, mai intuitiva
- tendinte de piata
* interfetele grafice pot fi

— cu LED-uri sau LCD-uri dedicate (interfatare simpla din
drivere)

— avansate: LCD grafic (monocrom sau color), TFT, OLED,
touchscreen

e aceste interfete au nevoie de sisteme grafice care
abstractizeaza continutul afisat de hardware

Sisteme grafice

* interfata dintre aplicatii si display
5. Aplicatii
4 Toolkit

3 Sistem de ferestre

2. Drivere

Sisteme grafice

e hardware-ul legat de interfata grafica:

— ecran LCD, OLED, etc, cu organizare pe pixeli

— input: touchscreen, ...

* SO include drivere pentru aceste dispozitive
— permite afisarea pe pixeli

e sistem de ferestre

— sistem ce ofera suport pentru afisarea formelor
geometrice (linii, suprafete), a fonturilor, si combinarea
acestora provenind de la diferite aplicatii

Sisteme grafice

* toolkit-urile grafice ofera un API catre aplicatii

— permite interfatare usoara intre programe si sistemul de
ferestre

— poate oferi portabilitate peste diferite sisteme de
ferestre

 aplicatiile grafice
— de obicei folosesc API-ul oferit de toolkit pentru a
desena pe ecran
— mai multe aplicatii pot sa deseneze deodata pe ecran

— in unele cazuri aplicatiile pot accesa direct driverul
grafic pentru desenare accelerata

Sistemul grafic X

 sistemul Linux pe desktop foloseste sistemul grafic
X

— Xfree86, Xorg

— incorporeaza driverele pentru ecran (VGA, SVGA) si
pentru dispozitive de input (tastatura, mouse, ...)

— are o arhitectura client-server

e serverul X ofera interfata API catre drivere

* aplicatiile se conecteaza la acest server ca niste clienti,
folosind un protocol IPC (socketi) prin intermediul careia
acceseaza API-ul oferit de server

* X poate fi extins si pe retea

* window manager este un client privilegiat (trateaza operatiile
asupra ferestrelor asociate aplicatiilor)

X pe sisteme embedded

e arhitectura X nu este conceputa pentru sisteme
Incorporate

— sistemele embedded nu beneficiaza de arhitectura
orientata pe retea

— X prezinta multe dependinte catre alte servere (X font
server) sau aplicatii (X resource manager, X window
manager) care maresc excesiv dimensiunea sistemului

— X a fost scris pentru calculatoare de uz general
performante, incluzand multe operatii care necesita
putere de procesare mare

e exista variante reduse de X, de ex. nano-X

Suport kernel pentru aplicatii grafice

* interfetele catre dispozitive grafice de obicei
incorporeaza un frame buffer

— frame buffer contine o reprezentare pe pixeli a imaginii
ce trebuie afisate

— este realizat ca un buffer de memorie de dimensiunea
wxh byte (sau x3 sau x4 byte), usor accesibil prin
operatii cu pointeri

— kernelul include suport pentru frame-buffere (incepand
cu 2.2) ce permit desenare directa intr-un frame-buffer,
care dupa aceea va fi transmis catre driverul de display
(timp 1n care se poate scrie intr-un alt frame-buffer)

Folosirea frame-bufferului

 in cazul aplicatiilor simple, acestea pot accesa
direct frame-bufferul din kernel fara a fi nevoie de
un sistem grafic (de gen X)

* aplicatiile pot deschide /dev/fb, si scrie datele in ele
(reprezentand pixeli)

— pentru acces mai rapid se poate folosi o mapare in
memorie a fisierului cu mmap()

 in cazul aplicatiilor mai complexe, care au nevoie
de acces multiplu catre ecran (de ex. mai multe
aplicatii scriu pe ecran) folosirea directa a frame-
bufferului nu este fezabila

Toolkit-uri pentru grafica embedded

 folosirea frame-bufferului din kernel este cea mai
avantajoasa pentru sisteme embedded

 exista toolkituri care implementeaza un API usor
de folosit si cu resurse minime ce permit crearea
aplicatiilor grafice ce folosesc frame-buffer

— nano-X: implementeaza un API similar cu X, dar care
are nevoie de resurse mult mai mici

— directfb: un API foarte subtire, oferind si grafica
accelerata

— Qt/Embedded: un APl aproape identic cu cel din Qt
permitand o portabilitate crescuta

Nano-X

un proiect open-source special desti
aplicatii embedded

nat pentru

are un footprint mic: 100k code, 50-250k ram

ofera o interfata catre driverele de display, mouse,

tastatura si touchscreen

suport pentru formate de pixel de 1, 2, 4, 8, 16, 24,

32 bit (usor de folosit pe diferite dis

ofera doua interfete API: Microwinc

vlayuri)

ows (similar cu

win32 sdk) si Nano-X (similar cu Xli

)

foarte configurabil la nivel de compilare

Nano-X

e nucleul nano-X ofera suport pentru desenarea
liniilor, cercurilor si poligoanelor pe ecran, pentru
afisarea imaginilor de tip BMP, JPG si PNG si un
motor de fonturi capabil sa afiseze fonturi True-
Type si Typel

* nano-X poate fi rulat intr-un mod similar cu X:
exista un server nano-X la care aplicatiile se
conecteaza prin IPC, dar poate fi legat si impreuna
cu aplicatii pentru a inlatura apelurile IPC

Nano-X

e complexitatea programarii crescuta

— ex.: redimensionarea unei ferestre

if (net_wm_moveresize)
{

//if _NET_WM_MOVERESIZE is supported
//create an X Event
XEvent xev;
xev.xclient.type = ClientMessage;
xev.xclient.message_type = net_wm_moveresize;
xev.xclient.display = x11Info().display();
xev.xclient.window = winId();
xev.xclient.format = 32;
xev.xclient.data.l[0]
xev.xclient.data.l[1]

event->globalPos().x(); //x_root
event->globalPos().y(); //y_root

xev.xclient.data.l[2] 8; //direction
xev.xclient.data.l[3] Buttonil, //button
xev.xclient.data.l[4] 0, //source indication

//release the mouse to the window manager

XUngrabPointer (x11Info().display(), CurrentTime);

//send event

XSendEvent (x11Info().display(), QX11Info::appRootWindow(x11Info().screen()), False,
SubstructureRedirectMask | SubstructureNotifyMask, &xev);

return;

Ot/Embedded

 este toolkit-ul Qt destinat pentru Linux embedded
(apeland direct kernelul fara alte sisteme de
ferestre)

e sistemul se bazeaza pe nucleul Qt: este scris in C++
si are un footprint relativ mare pana la 9MB
(necomprimat)

* permite o portare foarte usoara a aplicatiilor,
oractic toate aplicatiile Qt ruleaza nemodificat si

re Qt/Embedded

Ot/Embedded

codul sursa devine mai simpla si mai inteligibila

— ex.: redimensionarea unei ferestre

setGeometry(geometry().translated(event->globalPos() - m_lastPos));

codul compilat insa devine mult mai mare si
consuma mai multe resurse

recomandat numai pentru sisteme puternice, care
au nevoie de experienta utilizator sofisticat

Embedded Wizard

pentru sisteme cu resurse limitate

— footprint redus
— suport pentru nuclee simple de RTOS
— poate fi creat o singura imagine cu toata aplicatia

ofera suport pentru mai multe platforme
embedded (de performante acceptabile pentru ux)

— exista suport si pentru portarea pe platforme noi

costuri unice de dezvoltare relativ mari

versiune de evaluare pentru microcontrollere
STM32Fx

Embedded Wizard

* limbaj de programare dedicat — chora

— orientat pe obiecte

— are primitive pentru lucrul cu interfete grafice: puncte,
dreptunghiuri, culori

— poate include cod nativ C

— posibilitate de reconfigurare prin metadate integrate in
cod

— are un generator de cod asociat care creeaza cod C
automat din fisierele sursa chora

— codul generat se leaga impreuna cu o biblioteca
dedicata platformei si poate fi compilat direct pentru a
crea aplicatia pe target

Embedded Wizard

* design grafic si prototipare vizuala a aplicatiei
— se creeaza interfata grafica din elemente de baza
(puncte, linii, dreptunghiuri, imagini, etc...)

— comportamentul interfetei poate fi vizualizat chiar in
editor

* depanare usoara a aplicatiei grafice pe calculatorul

gazda

— sistem de prototipare care ruleaza partea grafica a
aplicatiei independent de platforma

— urmarire in timp real a tuturor variabilelor interne si a
tuturor obiectelor folosite

Limbajul chora

* bazat pe C (fara caracteristicile limbajului
considerate periculoase — v. MISRA)

— nu are pointeri
— vectori statici
e orientat pe obiecte
— mostenire
— incapsulare

e garbage collector automat

Limbajul chora

* primitive de date
— Int8, int16, Int32, uint8, uint16, uint32
— bool
— float
— point
— rect
— color

— char, string

Limbajul chora

e clase

— variabile
— proprietati (metode setter si getter asociate)
— metode

— sloturi (pot fi notificate asincron)
 metadate

— profiluri (compilare conditionata, diferite platforme)
— stiluri (skinning automat)

— generator optimizat (va genera cod exlusiv pentru
partile folosite)

Toolkit-ul Mosaic

* include functionalitati de baza pentru crearea
aplicatiilor grafice
— widgeturi de baza (View, Group, liste, butoane, imagini,
icoane, text, etc...)
— evenimente (timer-e, apasare de taste, touch)

— resurse (bitmap-uri rasterizate, font-uri)

— grafica 3D

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

