

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Grafică încorporatăGrafică încorporată

● sistemele embedded oferă din ce în ce mai mult și o
interfață grafică către utilizator
– folosire mai ușoară, mai intuitivă

– tendințe de piață

● interfețele grafice pot fi
– cu LED-uri sau LCD-uri dedicate (interfațare simplă din

drivere)
– avansate: LCD grafic (monocrom sau color), TFT, OLED,

touchscreen
● aceste interfețe au nevoie de sisteme grafice care

abstractizează conținutul afișat de hardware

Sisteme graficeSisteme grafice

● interfața dintre aplicații și display

Display Input

Drivere

Sistem de ferestre

Toolkit

Aplicații

1.

2.

3.

4.

5.

Sisteme graficeSisteme grafice

● hardware-ul legat de interfața grafică:
– ecran LCD, OLED, etc, cu organizare pe pixeli

– input: touchscreen, ...

● SO include drivere pentru aceste dispozitive
– permite afișarea pe pixeli

● sistem de ferestre
– sistem ce oferă suport pentru afișarea formelor

geometrice (linii, suprafețe), a fonturilor, și combinarea
acestora provenind de la diferite aplicații

Sisteme graficeSisteme grafice

● toolkit-urile grafice oferă un API către aplicații
– permite interfațare ușoară între programe și sistemul de

ferestre

– poate oferi portabilitate peste diferite sisteme de
ferestre

● aplicațiile grafice
– de obicei folosesc API-ul oferit de toolkit pentru a

desena pe ecran

– mai multe aplicații pot să deseneze deodată pe ecran

– în unele cazuri aplicațiile pot accesa direct driverul
grafic pentru desenare accelerată

Sistemul grafic XSistemul grafic X

● sistemul Linux pe desktop folosește sistemul grafic
X
– Xfree86, Xorg

– încorporează driverele pentru ecran (VGA, SVGA) și
pentru dispozitive de input (tastatură, mouse, ...)

– are o arhitectură client-server
● serverul X oferă interfața API către drivere
● aplicațiile se conectează la acest server ca niște clienți,

folosind un protocol IPC (sockeți) prin intermediul căreia
accesează API-ul oferit de server

● X poate fi extins și pe rețea
● window manager este un client privilegiat (tratează operațiile

asupra ferestrelor asociate aplicațiilor)

X pe sisteme embeddedX pe sisteme embedded

● arhitectura X nu este concepută pentru sisteme
încorporate
– sistemele embedded nu beneficiază de arhitectura

orientată pe rețea

– X prezintă multe dependințe către alte servere (X font
server) sau aplicații (X resource manager, X window
manager) care măresc excesiv dimensiunea sistemului

– X a fost scris pentru calculatoare de uz general
performante, incluzând multe operații care necesită
putere de procesare mare

● există variante reduse de X, de ex. nano-X

Suport kernel pentru aplicații graficeSuport kernel pentru aplicații grafice

● interfețele către dispozitive grafice de obicei
încorporează un frame buffer
– frame buffer conține o reprezentare pe pixeli a imaginii

ce trebuie afișate

– este realizat ca un buffer de memorie de dimensiunea
w×h byte (sau ×3 sau ×4 byte), ușor accesibil prin
operații cu pointeri

– kernelul include suport pentru frame-buffere (începând
cu 2.2) ce permit desenare directă într-un frame-buffer,
care după aceea va fi transmis către driverul de display
(timp în care se poate scrie într-un alt frame-buffer)

Folosirea frame-bufferuluiFolosirea frame-bufferului

● în cazul aplicațiilor simple, acestea pot accesa
direct frame-bufferul din kernel fără a fi nevoie de
un sistem grafic (de gen X)

● aplicațiile pot deschide /dev/fb, și scrie datele în ele
(reprezentând pixeli)
– pentru acces mai rapid se poate folosi o mapare în

memorie a fișierului cu mmap()

● în cazul aplicațiilor mai complexe, care au nevoie
de acces multiplu către ecran (de ex. mai multe
aplicații scriu pe ecran) folosirea directă a frame-
bufferului nu este fezabilă

Toolkit-uri pentru grafică embeddedToolkit-uri pentru grafică embedded

● folosirea frame-bufferului din kernel este cea mai
avantajoasă pentru sisteme embedded

● există toolkituri care implementează un API ușor
de folosit și cu resurse minime ce permit crearea
aplicațiilor grafice ce folosesc frame-buffer
– nano-X: implementează un API similar cu X, dar care

are nevoie de resurse mult mai mici
– directfb: un API foarte subțire, oferind și grafică

accelerată

– Qt/Embedded: un API aproape identic cu cel din Qt
permițând o portabilitate crescută

Nano-XNano-X

● un proiect open-source special destinat pentru
aplicații embedded

● are un footprint mic: 100k code, 50-250k ram
● oferă o interfață către driverele de display, mouse,

tastatură și touchscreen
● suport pentru formate de pixel de 1, 2, 4, 8, 16, 24,

32 bit (ușor de folosit pe diferite displayuri)
● oferă două interfețe API: Microwindows (similar cu

win32 sdk) și Nano-X (similar cu Xlib)
● foarte configurabil la nivel de compilare

Nano-XNano-X

● nucleul nano-X oferă suport pentru desenarea
liniilor, cercurilor și poligoanelor pe ecran, pentru
afișarea imaginilor de tip BMP, JPG și PNG și un
motor de fonturi capabil să afișeze fonturi True-
Type și Type1

● nano-X poate fi rulat într-un mod similar cu X:
există un server nano-X la care aplicațiile se
conectează prin IPC, dar poate fi legat și împreună
cu aplicații pentru a înlătura apelurile IPC

Nano-XNano-X

● complexitatea programării crescută
– ex.: redimensionarea unei ferestre

 if (net_wm_moveresize)
 {
 //if _NET_WM_MOVERESIZE is supported
 //create an X Event
 XEvent xev;
 xev.xclient.type = ClientMessage;
 xev.xclient.message_type = net_wm_moveresize;
 xev.xclient.display = x11Info().display();
 xev.xclient.window = winId();
 xev.xclient.format = 32;
 xev.xclient.data.l[0] = event->globalPos().x(); //x_root
 xev.xclient.data.l[1] = event->globalPos().y(); //y_root
 xev.xclient.data.l[2] = 8; //direction
 xev.xclient.data.l[3] = Button1; //button
 xev.xclient.data.l[4] = 0; //source indication
 //release the mouse to the window manager
 XUngrabPointer(x11Info().display(), CurrentTime);
 //send event
 XSendEvent(x11Info().display(), QX11Info::appRootWindow(x11Info().screen()), False,
 SubstructureRedirectMask | SubstructureNotifyMask, &xev);
 return;
 }

Qt/EmbeddedQt/Embedded

● este toolkit-ul Qt destinat pentru Linux embedded
(apelând direct kernelul fără alte sisteme de
ferestre)

● sistemul se bazează pe nucleul Qt: este scris în C++
și are un footprint relativ mare până la 9MB
(necomprimat)

● permite o portare foarte ușoară a aplicațiilor,
practic toate aplicațiile Qt rulează nemodificat și
pe Qt/Embedded

Qt/EmbeddedQt/Embedded

● codul sursă devine mai simplă și mai inteligibilă
– ex.: redimensionarea unei ferestre

● codul compilat însă devine mult mai mare și
consumă mai multe resurse

● recomandat numai pentru sisteme puternice, care
au nevoie de experiență utilizator sofisticat

 setGeometry(geometry().translated(event->globalPos() - m_lastPos));

Embedded WizardEmbedded Wizard

● pentru sisteme cu resurse limitate
– footprint redus

– suport pentru nuclee simple de RTOS

– poate fi creat o singură imagine cu toată aplicația

● oferă suport pentru mai multe platforme
embedded (de performanțe acceptabile pentru ux)
– există suport și pentru portarea pe platforme noi

● costuri unice de dezvoltare relativ mari
● versiune de evaluare pentru microcontrollere

STM32Fx

Embedded WizardEmbedded Wizard

● limbaj de programare dedicat – chora
– orientat pe obiecte

– are primitive pentru lucrul cu interfețe grafice: puncte,
dreptunghiuri, culori

– poate include cod nativ C

– posibilitate de reconfigurare prin metadate integrate în
cod

– are un generator de cod asociat care creează cod C
automat din fișierele sursă chora

– codul generat se leagă împreună cu o bibliotecă
dedicată platformei și poate fi compilat direct pentru a
crea aplicația pe target

Embedded WizardEmbedded Wizard

● design grafic și prototipare vizuală a aplicației
– se creează interfața grafică din elemente de bază

(puncte, linii, dreptunghiuri, imagini, etc…)

– comportamentul interfeței poate fi vizualizat chiar în
editor

● depanare ușoară a aplicației grafice pe calculatorul
gazdă
– sistem de prototipare care rulează partea grafică a

aplicației independent de platformă

– urmărire în timp real a tuturor variabilelor interne și a
tuturor obiectelor folosite

Limbajul choraLimbajul chora

● bazat pe C (fără caracteristicile limbajului
considerate periculoase – v. MISRA)
– nu are pointeri

– vectori statici

● orientat pe obiecte
– moștenire

– încapsulare

● garbage collector automat

Limbajul choraLimbajul chora

● primitive de date
– int8, int16, int32, uint8, uint16, uint32

– bool

– float

– point

– rect

– color

– char, string

Limbajul choraLimbajul chora

● clase
– variabile

– proprietăți (metode setter și getter asociate)

– metode

– sloturi (pot fi notificate asincron)

● metadate
– profiluri (compilare condiționată, diferite platforme)

– stiluri (skinning automat)

– generator optimizat (va genera cod exlusiv pentru
părțile folosite)

Toolkit-ul MosaicToolkit-ul Mosaic

● include funcționalități de bază pentru crearea
aplicațiilor grafice
– widgeturi de bază (View, Group, liste, butoane, imagini,

icoane, text, etc…)

– evenimente (timer-e, apăsare de taste, touch)

– resurse (bitmap-uri rasterizate, font-uri)

– grafică 3D

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

