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FreeRTOSFreeRTOS
● http://freertos.org
● kernel real-time executiv
● special gândit pentru microcontrolere cu resurse 

limitate:
– 6-12 kB ROM

– 4 kB RAM

● suport pentru peste 30 de arhitecturi de 
microcontrolere
– Atmel AVR, AVR32, SAM, Cypress PSoC, Infineon 

TriCore, Fujitsu 16FX, 32FR, Microchip PIC32, PIC24, 
dsPIC, NXP LPC, Renesas RX, RL78, ST STM32, TI 
MSP430, Xilinx Zync, MicroBlaze, PPC, ...



  

Real-time cu FreeRTOSReal-time cu FreeRTOS

● preemptive
● planificări multiple:

– priorități

– Round Robin

– cooperativ

● posibilitate de a nu dezactiva anumite întreruperi 
niciodată

● sincronizare (mutex, semafor binar, semafor 
numărător)
– disponibil și în întreruperi



  

Real-time cu FreeRTOSReal-time cu FreeRTOS

● temporizare software foarte eficientă
– nu folosește procesorul sau variabile din memorie

● flaguri de evenimente non-deterministe ce nu 
afectează execuția întreruperilor
– accesul la flag-uri este atomic

– întreruperile și taskurile de timp-real funcționează cât 
timp flagurile trezesc taskurile de servire



  

FreeRTOS în sisteme încorporateFreeRTOS în sisteme încorporate

● poate rula fără tickuri (treziri periodice) în aplicații 
low-power

● footprint mic (6-12 kB)
● are nevoie de un singur timer, restul perifericelor 

pot fi accesate direct de către utilizator
● obiecte pot fi alocate atât static cât și dinamic 

pentru folosire deterministă și eficientă a memoriei



  

Dezvoltare cu FreeRTOSDezvoltare cu FreeRTOS

● demouri pentru toate platformele suportate
● legare cu doar 3 fișiere C pentru nucleu și un fișier 

specific platformei
– pentru anumite funcționalități în plus pot fi adăugate și 

alte fișiere sursă

● opțiuni de depanare:
– detecția depășirii stivei

– trace interactiv

– urmărire explicită a taskurilor



  

Structura sistemului de operareStructura sistemului de operare

● sursele FreeRTOS pot fi descărcate sub forma unui 
zip care conține 2 directoare:
– FreeRTOS: conține sistemul de operare propriu-zis

– FreeRTOS-Plus: conține o serie de biblioteci oferind 
funcționalități avansate pentru anumite tipuri de 
aplicație:

● interpretor de linie de comandă
● sistem de fișiere (FAT)
● TCP/UDP
● trace
● BSP
● IoT



  

Structura sistemului de operareStructura sistemului de operare

● directorul FreeRTOS conține:
– Source: sursele sistemului de operare

– Demo: proiecte demo pentru toate arhitecturile și 
compilatoarele folosite

● aceasta conține și niște surse comune ce implementează 
diferite drivere pentru periferice, comunicații pe rețea și 
algoritmi des întâlnite în taskuri de timp-real (abort, reset, 
semnalizări, polling, evenimente, etc.)



  

Structura sistemului de operareStructura sistemului de operare

● Source
– include: toate headerele folosite (trebuie inclus în 

directiva de compilare)

– portable: sursele dependente de arhitectură
● organizat pe compilator și apoi tipul microcontrolerului

– croutine.c: corutine (rutine cooperative)

– event_groups.c: flaguri de evenimente

– list.c: liste dinamice

– queue.c: cozi de mesaje

– tasks.c: planificare

– timers.c: timere software



  

Structura sistemului de operareStructura sistemului de operare

● tasks.c
– conține rutinele aparținând planificatorului:

● creare de taskuri
● terminare de taskuri
● schimbare între taskuri
● algoritmul de planificare (priorități, yield cooperativ)
● bucla principală
● taskul idle



  

Structura sistemului de operareStructura sistemului de operare

● queue.c
– implementarea cozilor de mesaje

– mutex

– semafor binar

– semafor de numărare

– mutecși și semafoarele sunt defapt niște macrouri 
pentru cozi de mesaje specializate



  

Structura sistemului de operareStructura sistemului de operare

● list.c
– suport pentru o listă dinamică

● folosește listă înlănțuită

– aceste liste sunt folosite pentru stocarea obiectelor din 
sistemul de operare:

● tabela de procese (taskuri)
● stivele
● mesajele, sincronizări, evenimente



  

Structura sistemului de operareStructura sistemului de operare

● croutine.c
– implementarea co-rutinelor (rutine cooperative)

– execuție până la yield

– soluții hibride de planificare

● event_groups.c
– flaguri de evenimente asociate taskurilor

– acces atomic la flaguri

– deservirea flagurilor non-determinist



  

Structura sistemului de operareStructura sistemului de operare

● timers.c
– timere și contoare

– temporizarea este cuantificată la tick-ul sistemului

– întârzieri

– alarme



  

Coding styleCoding style

● notația ungară (prefix cu tipul datelor)
● numele funțiilor cu camelcase și încep cu numele 

fișierului (după prefix)
● codul FreeRTOS este complet conform MISRA (cu 

două deviații bine documentate)
● indentare oarecum similară cu GNU, dar folosește 

tab-uri și spații goale în jurul tuturor operanzilor



  

PlanificatorulPlanificatorul

● se regăsește în fișierul task.c
● oferă mai multe tipuri de planificare

– preemptivă cu priorități fixe

– round-robin

– cooperativă



  

Pornirea sistemuluiPornirea sistemului

int main()

{

  /* … Inițializări … */

  /* … creare taskuri și alte obiecte … */

  vTaskStartScheduler();

  /* … nu se ajunge niciodată aici */

  return 0; /* avoid compiler warning */

}



  

Pornirea sistemuluiPornirea sistemului

● vTaskStartScheduler pornește sistemul de operare, 
creează toate obiectele necesare, creează un task 
idle, după care face yield pentru orice task 
disponibil

● din moment ce în interiorul programului se 
întâmplă un context switch funcția main nu mai 
este reluată (cu excepția unor cazuri de eroare)

● toate buclele și funcționalitățile sistemului trebuie 
implementate cu task-uri



  

Crearea taskurilorCrearea taskurilor

● xTaskCreate( pvTaskCode, pcName, usStackDepth, 
pvParameters, uxPriority, pxCreatedTask )
– pvTaskCode: funcția asociată taskului

– pcName: numele taskului (poate fi folosit la depanare)

– usStackDepth: dimensiunea stivei (trebuie să fie 
suficient de mare pentru apeluri de funcții)

– pvParameters: parametri opționali

– uxPriority: prioritatea taskului

– pxCreatedTask: pointer la taskul creat



  

TaskuriTaskuri

● priorități (între 0 și configMAX_PRIORITY – 1)
● task-ul idle are prioritate 0:

– poate avea un hook asociat

– folosește procesorul pentru a aștepta la trezirea 
celorlate taskuri prin apel continuu la yield

● task-urile de aceeași prioritate pot fi rulați în 
Round-Robin dacă configUSE_TIME_SLICING este 
setat, altfel rulează până la blocare sau yield



  

Co-RutineCo-Rutine

● rutine cooperative
● asemănătoare taskurilor dar folosesc mai puține 

resurse pentru că ele rulează până când întâlnesc 
un yield

● toate co-rutinele folosesc aceleași stack



  

Cozi de mesajeCozi de mesaje

● sunt definite în queue.c
● permit comunicarea sincronizată între taskuri
● dacă managementul memoriei permite pot fi 

folosite pentru a transmite o cantitate dinamică de 
date

● în practică se folosesc niște obiecte specializate:
– mutex

– semafor binar

– semafor de numărare



  

MutexMutex

● folosit pentru excludere mutuală
● permite moștenirea priorităților
● xSemaphoreCreateMutex()
● xSemaphoreCreateRecursiveMutex()

– permite luarea mutexului de mai multe ori în același 
task



  

Semafor binarSemafor binar

● asemănător mutex-ului
● cu două stări (luat și liber)
● nu are moștenire de priorități
● folosit pentru sincronizare între taskuri și nu 

pentru excludere mutuală
● xSemaphoreCreateBinary



  

Semafor de numărareSemafor de numărare

● semafor numărător între 0 și o valoare maximă 
definită

● permite sincronizare la operații multiple paralele
● xSemaphoreCreateCounting



  

Operații pe semafoareOperații pe semafoare
● xSemaphoreTake

– operația down: decrementare atomică /  blocare dacă 
semaforul e 0

● xSemaphoreTakeFromISR
– variantă specială de folosit în întreruperi, nu se 

blochează

● xSemaphoreGive
– operația up: incrementare atomică / trezirea taskurilor 

blocate

● xSemaphoreGiveFromISR
– variantă specială pentru up ce permite sincronizarea 

între taskuri și întreruperi



  

Timeout la semafoareTimeout la semafoare

● operațiile de take la semafoare permit specificarea 
unui timp pentru a ocupa semaforul

● dacă semaforul nu e disponibil nici după trecerea 
timpului definit, atunci operația eșuează și se 
întoarce (cu cod de eșuare
– permite evitarea blocării indefinite a unui task critic

● dacă se dorește blocarea indefinită a semaforului 
atunci se poate specifica un timeout ca 
portMAX_DELAY (cu condiția ca opțiunea 
INCLUDE_vTaskSuspend să fie setată)



  

Mesaje genericeMesaje generice

● câteodată poate fi mai comod transmiterea 
mesajelor decât sincronizarea directă a resurselor 
partajate

● în acest caz nu trebuie partajate deloc resurse
● xQueueCreate(uxQueueLength, uxItemSize)

– lungimea cozii

– dimensiunea elementelor



  

Transmiterea mesajuluiTransmiterea mesajului

● xQueueSendToBack( xQueue, pvItemToQueue, 
xTicksToWait );

● xQueueSendToFront( xQueue, pvItemToQueue, 
xTicksToWait );
– xQueue: coada / stiva

– pvItemToQueue: elementul ce trebui trimis

– xTicksToWait: timpul de așteptare până la eliberarea 
cozii (indefinit cu portMAX_DELAY)

● taskul se blochează dacă nu e loc în coadă



  

Recepția mesajuluiRecepția mesajului

● xQueueReceive( xQueue, pvBuffer, xTicksToWait );
– xQueue: coada

– pvBuffer: zona în care să fie copiat elementul 
recepționat

– xTicksToWait: perioada de așteptare până la primirea 
unui element

● taskul se blochează dacă coada este goală



  

Mesaje din întreruperiMesaje din întreruperi

● trebuie folosite variante dedicate:
– xQueueSendToBackFromISR( xQueue, pvItemToQueue, 

*pxHigherPriorityTaskWoken );

– xQueueSendToFrontFromISR( xQueue, pvItemToQueue, 
*pxHigherPriorityTaskWoken );

● parametrul pxHigherPriorityTaskWoken este setat 
dacă un context switch e necesar, în acest caz 
dezvoltatorul trebuie să se asigure că apelează 
context switch-ul din rutina de întrerupere



  

Apelarea planificatoruluiApelarea planificatorului

● taskYIELD()
● pe anumite arhitecturi poate fi implementat 

separat un taskYIELD_FROM_ISR() pentru apelul 
din întreruperi

● poate fi apelat de rutinele cooperative pentru a 
ceda procesorul sau din întreruperi dacă acțiunile 
din rutina de servire au trezit un task mai prioritar

● în modul preemptiv este apelat automat în tick-ul 
sistemului sau la rutinele apelate din user space 
care trezesc task-uri



  

Blocarea / trezirea taskurilorBlocarea / trezirea taskurilor

● blocarea implicită
– funcțiile de sincronizare și de întârziere pot bloca taskul 

în mod implicit

– poate fi trezit automat de apariția evenimentului

● blocarea explicită
– vTaskSuspend()

– taskul este blocat indefinit până la trezirea explicită cu 
vTaskResume() apelat dintr-un alt task sau 
vTaskResumeFromISR() apelat dintr-o rutină de servire 
a întreruperilor



  

ÎntârzieriÎntârzieri

● taskurile pot fi blocate pentru o perioadă definită
● vTaskDelay(xTicksToDelay)

– taskul este blocat pentru xTickToDelay cuante de timp

– trezirea este garantată după trecerea a tick-urilor 
precizate relativ la tick-ul curent, dar datorită faptului 
că alte taskuri pot fi și ele rulate, această funcție nu 
poate fi folosită pentru taskuri repetitive de frecvență 
fixă



  

ÎntârzieriÎntârzieri

● vTaskDelayUntil(pxPreviousWakeTime, 
xTimeIncrement )
– întârziere până la un moment de timp absolut

– permite realizare unor taskuri repetitive de frecvență 
fixă

– pxPreviousWakeTime va conține momentul de timp 
când a fost trezit taskul, chiar dacă din cauza altor 
taskuri execuția se întâmplă mai târziu



  

Oprirea planificatorulOprirea planificatorul

● în modul preemptiv planificatorul poate fi oprit 
temporar pentru a evita înlocuirea unor secțiuni 
critice dintr-un task

● vTaskSuspendAll()
● vTaskResumeAll()
● toate context switchurile sunt oprite pe perioada 

suspendării
● apeluri de funcții blocante care cauzează context 

switch în mod normal (vTaskDelayUntil, 
xQueueSend, etc.) nu trebuie apelate pe parcursul 
suspendării



  

Configurarea sistemuluiConfigurarea sistemului

● pe lângă legarea fișierelor cod sursă a sistemului de 
operare, utilizatorul este obligat să creeze și un 
fișier numit FreeRTOSConfig.h

● în acest fișier trebuie setate toate flagurile care 
controlează sistemul de operare:
– flaguri de configurare

● de ex. configUSE_PREEMPTION

– flaguri de includere a componentelor
● de ex. INCLUDE_vTaskSuspend

– toate configurațiile posibile sunt descrise la 
http://www.freertos.org/a001110.html
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