

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

FreeRTOSFreeRTOS
● http://freertos.org
● kernel real-time executiv
● special gândit pentru microcontrolere cu resurse

limitate:
– 6-12 kB ROM

– 4 kB RAM

● suport pentru peste 30 de arhitecturi de
microcontrolere
– Atmel AVR, AVR32, SAM, Cypress PSoC, Infineon

TriCore, Fujitsu 16FX, 32FR, Microchip PIC32, PIC24,
dsPIC, NXP LPC, Renesas RX, RL78, ST STM32, TI
MSP430, Xilinx Zync, MicroBlaze, PPC, ...

Real-time cu FreeRTOSReal-time cu FreeRTOS

● preemptive
● planificări multiple:

– priorități

– Round Robin

– cooperativ

● posibilitate de a nu dezactiva anumite întreruperi
niciodată

● sincronizare (mutex, semafor binar, semafor
numărător)
– disponibil și în întreruperi

Real-time cu FreeRTOSReal-time cu FreeRTOS

● temporizare software foarte eficientă
– nu folosește procesorul sau variabile din memorie

● flaguri de evenimente non-deterministe ce nu
afectează execuția întreruperilor
– accesul la flag-uri este atomic

– întreruperile și taskurile de timp-real funcționează cât
timp flagurile trezesc taskurile de servire

FreeRTOS în sisteme încorporateFreeRTOS în sisteme încorporate

● poate rula fără tickuri (treziri periodice) în aplicații
low-power

● footprint mic (6-12 kB)
● are nevoie de un singur timer, restul perifericelor

pot fi accesate direct de către utilizator
● obiecte pot fi alocate atât static cât și dinamic

pentru folosire deterministă și eficientă a memoriei

Dezvoltare cu FreeRTOSDezvoltare cu FreeRTOS

● demouri pentru toate platformele suportate
● legare cu doar 3 fișiere C pentru nucleu și un fișier

specific platformei
– pentru anumite funcționalități în plus pot fi adăugate și

alte fișiere sursă

● opțiuni de depanare:
– detecția depășirii stivei

– trace interactiv

– urmărire explicită a taskurilor

Structura sistemului de operareStructura sistemului de operare

● sursele FreeRTOS pot fi descărcate sub forma unui
zip care conține 2 directoare:
– FreeRTOS: conține sistemul de operare propriu-zis

– FreeRTOS-Plus: conține o serie de biblioteci oferind
funcționalități avansate pentru anumite tipuri de
aplicație:

● interpretor de linie de comandă
● sistem de fișiere (FAT)
● TCP/UDP
● trace
● BSP
● IoT

Structura sistemului de operareStructura sistemului de operare

● directorul FreeRTOS conține:
– Source: sursele sistemului de operare

– Demo: proiecte demo pentru toate arhitecturile și
compilatoarele folosite

● aceasta conține și niște surse comune ce implementează
diferite drivere pentru periferice, comunicații pe rețea și
algoritmi des întâlnite în taskuri de timp-real (abort, reset,
semnalizări, polling, evenimente, etc.)

Structura sistemului de operareStructura sistemului de operare

● Source
– include: toate headerele folosite (trebuie inclus în

directiva de compilare)

– portable: sursele dependente de arhitectură
● organizat pe compilator și apoi tipul microcontrolerului

– croutine.c: corutine (rutine cooperative)

– event_groups.c: flaguri de evenimente

– list.c: liste dinamice

– queue.c: cozi de mesaje

– tasks.c: planificare

– timers.c: timere software

Structura sistemului de operareStructura sistemului de operare

● tasks.c
– conține rutinele aparținând planificatorului:

● creare de taskuri
● terminare de taskuri
● schimbare între taskuri
● algoritmul de planificare (priorități, yield cooperativ)
● bucla principală
● taskul idle

Structura sistemului de operareStructura sistemului de operare

● queue.c
– implementarea cozilor de mesaje

– mutex

– semafor binar

– semafor de numărare

– mutecși și semafoarele sunt defapt niște macrouri
pentru cozi de mesaje specializate

Structura sistemului de operareStructura sistemului de operare

● list.c
– suport pentru o listă dinamică

● folosește listă înlănțuită

– aceste liste sunt folosite pentru stocarea obiectelor din
sistemul de operare:

● tabela de procese (taskuri)
● stivele
● mesajele, sincronizări, evenimente

Structura sistemului de operareStructura sistemului de operare

● croutine.c
– implementarea co-rutinelor (rutine cooperative)

– execuție până la yield

– soluții hibride de planificare

● event_groups.c
– flaguri de evenimente asociate taskurilor

– acces atomic la flaguri

– deservirea flagurilor non-determinist

Structura sistemului de operareStructura sistemului de operare

● timers.c
– timere și contoare

– temporizarea este cuantificată la tick-ul sistemului

– întârzieri

– alarme

Coding styleCoding style

● notația ungară (prefix cu tipul datelor)
● numele funțiilor cu camelcase și încep cu numele

fișierului (după prefix)
● codul FreeRTOS este complet conform MISRA (cu

două deviații bine documentate)
● indentare oarecum similară cu GNU, dar folosește

tab-uri și spații goale în jurul tuturor operanzilor

PlanificatorulPlanificatorul

● se regăsește în fișierul task.c
● oferă mai multe tipuri de planificare

– preemptivă cu priorități fixe

– round-robin

– cooperativă

Pornirea sistemuluiPornirea sistemului

int main()

{

 /* … Inițializări … */

 /* … creare taskuri și alte obiecte … */

 vTaskStartScheduler();

 /* … nu se ajunge niciodată aici */

 return 0; /* avoid compiler warning */

}

Pornirea sistemuluiPornirea sistemului

● vTaskStartScheduler pornește sistemul de operare,
creează toate obiectele necesare, creează un task
idle, după care face yield pentru orice task
disponibil

● din moment ce în interiorul programului se
întâmplă un context switch funcția main nu mai
este reluată (cu excepția unor cazuri de eroare)

● toate buclele și funcționalitățile sistemului trebuie
implementate cu task-uri

Crearea taskurilorCrearea taskurilor

● xTaskCreate(pvTaskCode, pcName, usStackDepth,
pvParameters, uxPriority, pxCreatedTask)
– pvTaskCode: funcția asociată taskului

– pcName: numele taskului (poate fi folosit la depanare)

– usStackDepth: dimensiunea stivei (trebuie să fie
suficient de mare pentru apeluri de funcții)

– pvParameters: parametri opționali

– uxPriority: prioritatea taskului

– pxCreatedTask: pointer la taskul creat

TaskuriTaskuri

● priorități (între 0 și configMAX_PRIORITY – 1)
● task-ul idle are prioritate 0:

– poate avea un hook asociat

– folosește procesorul pentru a aștepta la trezirea
celorlate taskuri prin apel continuu la yield

● task-urile de aceeași prioritate pot fi rulați în
Round-Robin dacă configUSE_TIME_SLICING este
setat, altfel rulează până la blocare sau yield

Co-RutineCo-Rutine

● rutine cooperative
● asemănătoare taskurilor dar folosesc mai puține

resurse pentru că ele rulează până când întâlnesc
un yield

● toate co-rutinele folosesc aceleași stack

Cozi de mesajeCozi de mesaje

● sunt definite în queue.c
● permit comunicarea sincronizată între taskuri
● dacă managementul memoriei permite pot fi

folosite pentru a transmite o cantitate dinamică de
date

● în practică se folosesc niște obiecte specializate:
– mutex

– semafor binar

– semafor de numărare

MutexMutex

● folosit pentru excludere mutuală
● permite moștenirea priorităților
● xSemaphoreCreateMutex()
● xSemaphoreCreateRecursiveMutex()

– permite luarea mutexului de mai multe ori în același
task

Semafor binarSemafor binar

● asemănător mutex-ului
● cu două stări (luat și liber)
● nu are moștenire de priorități
● folosit pentru sincronizare între taskuri și nu

pentru excludere mutuală
● xSemaphoreCreateBinary

Semafor de numărareSemafor de numărare

● semafor numărător între 0 și o valoare maximă
definită

● permite sincronizare la operații multiple paralele
● xSemaphoreCreateCounting

Operații pe semafoareOperații pe semafoare
● xSemaphoreTake

– operația down: decrementare atomică / blocare dacă
semaforul e 0

● xSemaphoreTakeFromISR
– variantă specială de folosit în întreruperi, nu se

blochează

● xSemaphoreGive
– operația up: incrementare atomică / trezirea taskurilor

blocate

● xSemaphoreGiveFromISR
– variantă specială pentru up ce permite sincronizarea

între taskuri și întreruperi

Timeout la semafoareTimeout la semafoare

● operațiile de take la semafoare permit specificarea
unui timp pentru a ocupa semaforul

● dacă semaforul nu e disponibil nici după trecerea
timpului definit, atunci operația eșuează și se
întoarce (cu cod de eșuare
– permite evitarea blocării indefinite a unui task critic

● dacă se dorește blocarea indefinită a semaforului
atunci se poate specifica un timeout ca
portMAX_DELAY (cu condiția ca opțiunea
INCLUDE_vTaskSuspend să fie setată)

Mesaje genericeMesaje generice

● câteodată poate fi mai comod transmiterea
mesajelor decât sincronizarea directă a resurselor
partajate

● în acest caz nu trebuie partajate deloc resurse
● xQueueCreate(uxQueueLength, uxItemSize)

– lungimea cozii

– dimensiunea elementelor

Transmiterea mesajuluiTransmiterea mesajului

● xQueueSendToBack(xQueue, pvItemToQueue,
xTicksToWait);

● xQueueSendToFront(xQueue, pvItemToQueue,
xTicksToWait);
– xQueue: coada / stiva

– pvItemToQueue: elementul ce trebui trimis

– xTicksToWait: timpul de așteptare până la eliberarea
cozii (indefinit cu portMAX_DELAY)

● taskul se blochează dacă nu e loc în coadă

Recepția mesajuluiRecepția mesajului

● xQueueReceive(xQueue, pvBuffer, xTicksToWait);
– xQueue: coada

– pvBuffer: zona în care să fie copiat elementul
recepționat

– xTicksToWait: perioada de așteptare până la primirea
unui element

● taskul se blochează dacă coada este goală

Mesaje din întreruperiMesaje din întreruperi

● trebuie folosite variante dedicate:
– xQueueSendToBackFromISR(xQueue, pvItemToQueue,

*pxHigherPriorityTaskWoken);

– xQueueSendToFrontFromISR(xQueue, pvItemToQueue,
*pxHigherPriorityTaskWoken);

● parametrul pxHigherPriorityTaskWoken este setat
dacă un context switch e necesar, în acest caz
dezvoltatorul trebuie să se asigure că apelează
context switch-ul din rutina de întrerupere

Apelarea planificatoruluiApelarea planificatorului

● taskYIELD()
● pe anumite arhitecturi poate fi implementat

separat un taskYIELD_FROM_ISR() pentru apelul
din întreruperi

● poate fi apelat de rutinele cooperative pentru a
ceda procesorul sau din întreruperi dacă acțiunile
din rutina de servire au trezit un task mai prioritar

● în modul preemptiv este apelat automat în tick-ul
sistemului sau la rutinele apelate din user space
care trezesc task-uri

Blocarea / trezirea taskurilorBlocarea / trezirea taskurilor

● blocarea implicită
– funcțiile de sincronizare și de întârziere pot bloca taskul

în mod implicit

– poate fi trezit automat de apariția evenimentului

● blocarea explicită
– vTaskSuspend()

– taskul este blocat indefinit până la trezirea explicită cu
vTaskResume() apelat dintr-un alt task sau
vTaskResumeFromISR() apelat dintr-o rutină de servire
a întreruperilor

ÎntârzieriÎntârzieri

● taskurile pot fi blocate pentru o perioadă definită
● vTaskDelay(xTicksToDelay)

– taskul este blocat pentru xTickToDelay cuante de timp

– trezirea este garantată după trecerea a tick-urilor
precizate relativ la tick-ul curent, dar datorită faptului
că alte taskuri pot fi și ele rulate, această funcție nu
poate fi folosită pentru taskuri repetitive de frecvență
fixă

ÎntârzieriÎntârzieri

● vTaskDelayUntil(pxPreviousWakeTime,
xTimeIncrement)
– întârziere până la un moment de timp absolut

– permite realizare unor taskuri repetitive de frecvență
fixă

– pxPreviousWakeTime va conține momentul de timp
când a fost trezit taskul, chiar dacă din cauza altor
taskuri execuția se întâmplă mai târziu

Oprirea planificatorulOprirea planificatorul

● în modul preemptiv planificatorul poate fi oprit
temporar pentru a evita înlocuirea unor secțiuni
critice dintr-un task

● vTaskSuspendAll()
● vTaskResumeAll()
● toate context switchurile sunt oprite pe perioada

suspendării
● apeluri de funcții blocante care cauzează context

switch în mod normal (vTaskDelayUntil,
xQueueSend, etc.) nu trebuie apelate pe parcursul
suspendării

Configurarea sistemuluiConfigurarea sistemului

● pe lângă legarea fișierelor cod sursă a sistemului de
operare, utilizatorul este obligat să creeze și un
fișier numit FreeRTOSConfig.h

● în acest fișier trebuie setate toate flagurile care
controlează sistemul de operare:
– flaguri de configurare

● de ex. configUSE_PREEMPTION

– flaguri de includere a componentelor
● de ex. INCLUDE_vTaskSuspend

– toate configurațiile posibile sunt descrise la
http://www.freertos.org/a001110.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

