Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan

FreeRTOS

nttp://freertos.org

kernel real-time executiv

special gandit pentru microcontrolere cu resurse
limitate:

- 6-12 kB ROM
- 4 kB RAM

suport pentru peste 30 de arhitecturi de
microcontrolere

- Atmel AVR, AVR32, SAM, Cypress PSoC, Infineon
TriCore, Fujitsu 16FX, 32FR, Microchip PIC32, PIC24,
dsPIC, NXP LPC, Renesas RX, RL78, ST STM32, Tl
MSP430, Xilinx Zync, MicroBlaze, PPC, ...

Real-time cu FreeRTOS

preemptive

vlanificari multiple:
— prioritati
— Round Robin

— cooperativ

posibilitate de a nu dezactiva anumite intreruperi
niciodata

sincronizare (mutex, semafor binar, semafor
numarator)

— disponibil si in intreruperi

Real-time cu FreeRTOS

* temporizare software foarte eficienta
— nu foloseste procesorul sau variabile din memorie

* flaguri de evenimente non-deterministe ce nu
afecteaza executia intreruperilor

— accesul la flag-uri este atomic

— intreruperile si taskurile de timp-real functioneaza cat
timp flagurile trezesc taskurile de servire

FreeRTOS in sisteme incorporate

poate rula fara tickuri (treziri periodice) in aplicatii
low-power

footprint mic (6-12 kB)

are nevoie de un singur timer, restul perifericelor
pot fi accesate direct de catre utilizator

obiecte pot fi alocate atat static cat si dinamic
pentru folosire determinista si eficienta a memoriei

Dezvoltare cu FreeRTOS

* demouri pentru toate platformele suportate

* legare cu doar 3 fisiere C pentru nucleu si un fisier
specific platformei

— pentru anumite functionalitati in plus pot fi adaugate si
alte fisiere sursa

* optiuni de depanare:
— detectia depasirii stivei
— trace interactiv

— urmarire explicita a taskurilor

Structura sistemului de operare

e sursele FreeRTOS pot fi descarcate sub forma unui
zip care contine 2 directoare:

— FreeRTOS: contine sistemul de operare propriu-zis

— FreeRTOS-Plus: contine o serie de biblioteci oferind
functionalitati avansate pentru anumite tipuri de
aplicatie:

* interpretor de linie de comanda
e sistem de fisiere (FAT)

e TCP/UDP

* trace

 BSP

 loT

Structura sistemului de operare

 directorul FreeRTOS contine:

— Source: sursele sistemului de operare

— Demao: proiecte demo pentru toate arhitecturile si
compilatoarele folosite

 aceasta contine si niste surse comune ce implementeaza
diferite drivere pentru periferice, comunicatii pe retea si
algoritmi des intalnite in taskuri de timp-real (abort, reset,
semnalizari, polling, evenimente, etc.)

Structura sistemului de operare

e Source

— include: toate headerele folosite (trebuie inclus in
directiva de compilare)

— portable: sursele dependente de arhitectura
e organizat pe compilator si apoi tipul microcontrolerului

— croutine.c: corutine (rutine cooperative)
— event_groups.c: flaguri de evenimente
— list.c: liste dinamice

— queue.c: cozi de mesaje

— tasks.c: planificare

— timers.c: timere software

Structura sistemului de operare

e tasks.c

— contine rutinele apartinand planificatorului:

 creare de taskuri

e terminare de taskuri

e schimbare intre taskuri

o algoritmul de planificare (prioritati, yield cooperativ)
* bucla principala

e taskul idle

Structura sistemului de operare

* queue.cC

— implementarea cozilor de mesaje
— mutex

— semafor binar

— semafor de numarare

— mutecsi si semafoarele sunt defapt niste macrouri
pentru cozi de mesaje specializate

Structura sistemului de operare

e |ist.c

— suport pentru o lista dinamica
* foloseste lista inlantuita

— aceste liste sunt folosite pentru stocarea obiectelor din
sistemul de operare:
e tabela de procese (taskuri)
o stivele

* mesajele, sincronizari, evenimente

Structura sistemului de operare

e croutine.c

— implementarea co-rutinelor (rutine cooperative)
— executie pana la yield
— solutii hibride de planificare

e event_groups.c

— flaguri de evenimente asociate taskurilor
— acces atomic la flaguri

— deservirea flagurilor non-determinist

Structura sistemului de operare

e timers.c

— timere si contoare
— temporizarea este cuantificata la tick-ul sistemului
— Intarzieri

— alarme

Coding style

notatia ungara (prefix cu tipul datelor)

numele funtiilor cu camelcase si incep cu numele
fisierului (dupa prefix)

codul FreeRTOS este complet conform MISRA (cu
doua deviatii bine documentate)

indentare oarecum similara cu GNU, dar foloseste
tab-uri si spatii goale in jurul tuturor operanzilor

Planificatorul

* se regaseste in fisierul task.c

» ofera mai multe tipuri de planificare
— preemptiva cu prioritati fixe
— round-robin

— cooperativa

Pornirea sistermnului

int main()

{
[* .. Initializari .. */

[* .. creare taskuri si alte obiecte .. */

vTaskStartScheduler();
/* .. nu se ajunge niciodata aici */

return 0; /* avoid compiler warning */

Pornirea sistermnului

e vlaskStartScheduler porneste sistemul de operare,
creeaza toate obiectele necesare, creeaza un task
idle, dupa care face yield pentru orice task

disponibil

e din moment ce in interiorul programului se
intampla un context switch functia main nu mai
este reluata (cu exceptia unor cazuri de eroare)

 toate buclele si functionalitatile sistemului trebuie
implementate cu task-uri

Crearea taskurilor

» xTaskCreate(pvTaskCode, pcName, usStackDepth,
pvParameters, uxPriority, pxCreatedTask)

— pvlTaskCode: functia asociata taskului
— pcName: numele taskului (poate fi folosit la depanare)

— usStackDepth: dimensiunea stivei (trebuie sa fie
suficient de mare pentru apeluri de functii)

— pvParameters: parametri optionali
— uxPriority: prioritatea taskului

— pxCreatedTask: pointer la taskul creat

Taskuri

e prioritati (intre 0 si configMAX_PRIORITY - 1)
 task-ul idle are prioritate 0:

— poate avea un hook asociat

— foloseste procesorul pentru a astepta la trezirea
celorlate taskuri prin apel continuu la yield

 task-urile de aceeasi prioritate pot fi rulati in
Round-Robin daca configUSE_TIME_SLICING este
setat, altfel ruleaza pana la blocare sau yield

Co-Rutine

rutine cooperative

asemanatoare taskurilor dar folosesc mai putine
resurse pentru ca ele ruleaza pana cand intalnesc

un yield

toate co-rutinele folosesc aceleasi stack

Cozi de mesaje

e sunt definite in queue.c
e permit comunicarea sincronizata intre taskuri

e daca managementul memoriei permite pot fi
folosite pentru a transmite o cantitate dinamica de
date

* Tn practica se folosesc niste obiecte specializate:
— mutex
— semafor binar

— semafor de numarare

Mutex

folosit pentru excludere mutuala

permite mostenirea prioritatilor

xSema

xSema

— permite luarea mutexului de mai multe ori Tn acelasi

task

D

D

noreCreateMutex()

noreCreateRecursiveMutex()

Semafor binar

asemanator mutex-ului
cu doua stari (luat si liber)
nu are mostenire de prioritati

folosit pentru sincronizare intre taskuri si nu
pentru excludere mutuala

xSemaphoreCreateBinary

Semafor de numarare

* semafor numarator intre 0 si o valoare maxima
definita

* permite sincronizare la operatii multiple paralele

* xSemaphoreCreateCounting

Operatii pe semafoare

xSemaphoreTake

— operatia down: decrementare atomica / blocare daca
semaforul e 0

xSemaphoreTakeFromISR

— varianta speciala de folosit in intreruperi, nu se
blocheaza

xSemaphoreGive

— operatia up: incrementare atomica / trezirea taskurilor
blocate

xSemaphoreGiveFromISR

— varianta speciala pentru up ce permite sincronizarea
intre taskuri si intreruperi

Timeout la semafoare

» operatiile de take la semafoare permit specificarea
unui timp pentru a ocupa semaforul

e daca semaforul nu e disponibil nici dupa trecerea
timpului definit, atunci operatia esueaza si se
intoarce (cu cod de esuare

— permite evitarea blocarii indefinite a unui task critic

» daca se doreste blocarea indefinita a semaforului
atunci se poate specifica un timeout ca
port MAX_DELAY (cu conditia ca optiunea
INCLUDE_vTaskSuspend sa fie setata)

Mesaje generice

* cateodata poate fi mai comod transmiterea

mesajelor decat sincronizarea directa a resurselor
partajate

* Tn acest caz nu trebuie partajate deloc resurse

* xQueueCreate(uxQueuelength, uxltemSize)
— lungimea cozii

— dimensiunea elementelor

Transmiterea mesajului

xQueueSendToBack(xQueue, pvitemToQueue,
xTicksToWait);

xQueueSendToFront(xQueue, pvitemToQueue,
xTicksToWait);

— xQueue: coada / stiva
— pvltemToQueue: elementul ce trebui trimis

— xTicksToWait: timpul de asteptare pana la eliberarea
cozii (indefinit cu port MAX_DELAY)

taskul se blocheaza daca nu e loc in coada

Receptia mesajului

* xQueueReceive(xQueue, pvBuffer, xTicksToWait);
— xQueue: coada

— pvBuffer: zona in care sa fie copiat elementul
receptionat

— xTicksToWait: perioada de asteptare pana la primirea
unui element

 taskul se blocheaza daca coada este goala

Mesaje din intreruperi

e trebuie folosite variante dedicate:

— xQueueSendToBackFromISR(xQueue, pvitemToQueue,
*pxHigherPriorityTaskWoken);

— xQueueSendToFrontFromISR(xQueue, pvitemToQueue,
*pxHigherPriorityTaskWoken);

e parametrul pxHigherPriorityTaskWoken este setat
daca un context switch e necesar, in acest caz
dezvoltatorul trebuie sa se asigure ca apeleaza
context switch-ul din rutina de Intrerupere

Apelarea planificatorului

taskYIELD()

pe anumite arhitecturi poate fi implementat
separat un taskYIELD_FROM_ISR() pentru apelul

din intreruperi

poate fi apelat de rutinele cooperative pentru a
ceda procesorul sau din intreruperi daca actiunile
din rutina de servire au trezit un task mai prioritar

in modul preemptiv este apelat automat in tick-ul
sistemului sau la rutinele apelate din user space
care trezesc task-uri

Blocarea / trezirea taskurilor

* blocarea implicita

— functiile de sincronizare si de intarziere pot bloca taskul
in mod implicit

— poate fi trezit automat de aparitia evenimentului

* blocarea explicita
— vTaskSuspend()

— tasku
vlask
vlask

este blocat indefinit pana la trezirea explicita cu
Resume() apelat dintr-un alt task sau

ResumeFromISR() apelat dintr-o rutina de servire

a intreruperilor

Intarzieri

 taskurile pot fi blocate pentru o perioada definita

» vlaskDelay(xTicksToDelay)

— taskul este blocat pentru xTickToDelay cuante de timp

— trezirea este garantata dupa trecerea a tick-urilor
precizate relativ la tick-ul curent, dar datorita faptului
ca alte taskuri pot fi si ele rulate, aceasta functie nu
poate fi folosita pentru taskuri repetitive de frecventa
fixa

Intarzieri

* vlaskDelayUntil(pxPreviousWakeTime,
xTimelhcrement)

— intarziere pana la un moment de timp absolut

— permite realizare unor taskuri repetitive de frecventa
fixa

— pxPreviousWakeTime va contine momentul de timp

cand a fost trezit taskul, chiar daca din cauza altor
taskuri executia se intampla mai tarziu

Oprirea planificatorul

in modul preemptiv planificatorul poate fi oprit
temporar pentru a evita inlocuirea unor sectiuni
critice dintr-un task

vTaskSuspendAll()

vlaskResumeAll()

toate context switchurile sunt oprite pe perioada
suspendarii

apeluri de functii blocante care cauzeaza context
switch in mod normal (vTaskDelayUntil,
xQueueSend, etc...) nu trebuie apelate pe parcursul
suspendarii

Configurarea sistemului

* pe langa legarea fisierelor cod sursa a sistemului de
operare, utilizatorul este obligat sa creeze si un
fisier numit FreeRTOSConfig.h

* Tn acest fisier trebuie setate toate flagurile care
controleaza sistemul de operare:

— flaguri de configurare
 de ex. configUSE_PREEMPTION

— flaguri de includere a componentelor
e de ex. INCLUDE_vTaskSuspend

— toate configuratiile posibile sunt descrise la
http://www.freertos.org/a00 110.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

