Departamentul de Electronica si Calculatoare

Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor

Sisteme de operare distribuite
si in timp real

- curs -
master SECI anul |

s.l. dr. ing. Kertész Csaba-Zoltan



Despre curs

* Programa analitica, notite, bibliografie:
http://etc.unitbv.ro/~csaba.kertesz/sotr

e Contact:
csaba.kertesz@etc.unitbv.ro



1. Introducere

Cuprins

1. Ce este SO? Ce este RTOS?

Istoria sistemelor de operare

Concepte de baza ale SO
Structura RTOS

= REEE



1.1. Ce este un SQO?

e Software:

— programe de sistem (controleaza activitatea sistemului)

— programe utilizator (rezolva problemele utilizatorilor

e SO reprezinta o componenta de baza a clasei
programelor de sistem

* SO controleaza toate resursele calculatorului si
ofera acces la acestea programelor utilizator intr-
un mod convenient si sigur



Software

Browser

Jocuri
web

Programe de aplicatie

Procesor Editor
de text de imagini

Compilatoare Editoare
Programe de
sistem
Sistem de operare
Microprocesor
Hardware

Dispozitive de intrare/iesire




Software

* microprocesorul controleaza dispozitivele 10 prin
registre speciale

e SO ascunde acest nivel, oferind o interfata comuna
pentru programele aplicatie

e compilatoare, editoare, shell-uri sunt furnizate
impreuna de SO, dar nu fac parte din aceasta



Ce este RTOS

* Sistem de operare in timp real:

— realizeaza aceleasi functii ca un SO, dar permite
implementarea sistemelor in timp real

e Timp real:

— raspunsul sistemului pentru evenimentele aparute
ajunge n timp oportun pentru evenimentul respectiv



Rolul RTOS

* realizeaza o masina extinsa:

— ascunde arhitectura interna a procesorului
— permite portare usoara intre diferite arhitecturi

— mai usor de programat decat hardware-ul direct

e permite implementarea unor functii cu timp de
raspuns determinabil

— apelurile de sistem sunt predictabile

— ciclii de masina in apelurile sistem sunt numarabile



1.2. Istoria sistemelor de operare

* Evolutia SO poate fi impartita in 4 generatii in
stransa corelatie cu evolutia calculatoarelor

— tuburi electronice
— tranzistoare
— circuite integrate

— microprocesoare

* La generatia a 4-a a calculatoarelor apare nevoia de
diversificare a sistemelor de operare

— microprocesoare de uz general
— microcontrolere

— multiprocesoare



Generatia l.
(1945 - 1955)

calculatoare cu tuburi electronice, fara SO
programare in limbaj masina prin legaturi fizice
nu exista limbaje de programare

— de la 1950 s-a inceput folosirea cartelelor perforate

nu exista SO



Generatia ll.
(1955 - 1965)

calculatoare cu tranzistoare, SO: sisteme batch
joburi rulate de pe cartele perforate

programe se scriau in asamblare sau FORTRAN (si
,compilate” in cartele perforate)

in scopul cresterii eficientei masinii au aparut
sistemele batch, care eliminau operatiile manuale
intre joburi

— mai multe joburi se scria pe banda magnetica

— de pe banda masina prelua joburile pe rand si oferea
rezultate pe o banda de iesire



Generatia lll.
(1965 — 1980)

* calculatoare cu IC, SO: multiprogramare

* multiprogramarea era introdusa pe familia de
calculatoare OS/360

* utilizare eficienta a masinilor:

— in timpul executiei unui job, aceasta trece prin faze care
folosesc intensiv procesorul si faze care lucreaza cu
dispozitive 10 lente

— s-ar putea executa doua joburi simultan fara sa se
deranjeze daca aceste se afla in faze complementare



Generatia lll.

e solutie:

— partitionarea memoriei in cateva partitii avand fiecare
cate un job

— cand un job asteapta terminare unei operatii 10,
procesorul este oferit unui alt job din memorie

» crestere a utilizarii timpului de procesor

* mecanisme de protectie intre joburi



Generatia lll.
tehnici SO

* spooling (Simultaneous Peripheral Operation On-
Line)

— dupa terminarea fiecarui job, SO incarca un nou job de
pe disc in partitia goala

e time-sharing

— joburile concurente pe sistem pot detine controlul
procesorului maxim o perioada prestabilita, dupa care
controlul este oferit altui job



Generatia | V.
(1980 - ...)

integrare de nivel inalt, PC-uri, SO complexe

software user-friendly
multe procese rulate in paralel

SO dominante:

— DOS/Windows
— UNIX/Linux
— MacOS X



Microprocesoare de uz general

* putere mare de calcul vs. un singur utilizator
— multe procese rulate in paralel

e securitate

e usurinta de implementare

in detrimentul performantel



Multiprocesoare

* cresterea performantei prin distribuirea sistemului
de operare pe mai multe procesoare

 functii de comunicatii inter-procesoare avansate

e modele:

— client-server

— client-server pe 3 sau mai multe nivele

— clustere



Microcontrolere

calculatoare incorporate

timpii de raspuns si performanta sistemului sunt
cele mai importante

predictibilitatea sistemului

scopul sistemului si dimensiunea sistemului tinta
pot fi foarte variate:

— SO generic modificat (hard si soft real-time)
— nuclee mici si foarte mici

— siguranta ridicata



Sisteme de operare in timp real

RTLinux
uCLinux
VxWorks
Nucleus
eCos
nC/OS-lI
OSEK
TinyOS
FreeRTOS

hard real time
MMU-less, soft
routere

Mentor Graphics
RedHat

safety critical + retele
automotive

monitor + nesC

small GNU kernel



1.3. Concepte de baza ale SO

* Interfata intre programele utilizator si SO este
definita printr-un set de apeluri sistem (system

calls)

e apelurile sistem opereaza asupra obiecte software:

— procese
— fisiere

* intre utilizator si SO pot fi intercalate si alte
programe sistem, care nu fac parte din SO



Procese

* un proces este un program in executie

e procesul cuprinde:

— programul executabil
— datele si stiva programului
- registrele de uz general

- registrele speciale: program counter, stack pointer

* toate informatiile despre un proces sunt stocate
intr-o tabela (process table) administrat de SO
(cate o intrare pentru fiecare proces)



Procese real-time

crearea si terminarea proceselor se realizeaza prin
apeluri sistem

— apelul sistem trebuie sa aiba o durata bine definita
schimbarea intre procese (planificarea):

— preemptiv

— non-preemptiv

tratarea intreruperilor trebuie sa aiba prioritate
ridicata

durata dezactivarii intreruperilor (sectiuni critice)
trebuie sa fie minima si bine determinabila



Procese
Comunicatii interproces

e comunicatia trebuie facuta sigur
— sectiuni critice
— semafoare
— message-passing
e semnale (intreruperi software) generate de sistemul

de operare sau de rutinele de tratare a
intreruperilor hardware



Apeluri sistem

* programele utilizator comunica cu SO pentru a
cere anumite servicii SO prin intermediul apelurilor
sistem

* un apel de sistem este o functie dintr-o biblioteca
(furnizata de SO)

 apelurile sistem pot fi impartite in:

— apeluri non-deterministe ce pot fi apelate din procesele
utilizator si pot fi intrerupte

— apeluri real-time
* sectiuni critice cu dezactivarea intreruperilor

e durate deterministe



Managementul memoriel

e SO poate contine un Memory Manager (integrat in
kernel sau in bibliotecile standard asociate)

 fiecare proces trebuie sa aiba propria zona de
memorie

— date
— stiva
— program

* nu toate arhitecturile ofera sistem de management
al memoriei



Sistemul de fisiere

e SO ascunde dispozitivele hardware de utilizator
prin sistemul de fisiere

e sunt puse la dispozitie apeluri sistem unitare
pentru accesul diferitelor dispozitive:

— de stocare
— periferice integrate

— de comunicatie



1.4. Structura SO (RTOS)

SO este alcatuit dintr-o colectie de proceduri,
compilate si legate impreuna (de obicei impreuna
cu aplicatiile utilizator)

nu exista o protectie a informatiei intre aceste
proceduri

pe unele arhitecturi nu exista nici protectie intre
procedurile SO si cele de aplicatie

programele utilizator se ruleaza in niste taskuri
care interferenta intre ele si cu hardware-ul prin
intermediul functiilor SO



Structura SO

* intreruperile hardware pot fi tratate de SO sau de
utilizator

— SO trateaza intreruperea printr-o rutina foarte scurta
care genereaza o intrerupere software care poate fi
tratata la nivelul taskurilor utilizator

— utilizatorul trateaza intreruperile asigurandu-si de
durate de executie reduse si comunicand cu alte procese
sau cu SO numai printr-un set redus de apeluri de
sistem speciale

 dispozitivele hardware pot fi accesate din programe
utilizator numai prin intermediul SO



Structuri SO specifice

* sistemele mici (microcontrolere cu putine resurse)
pot avea numai un SO minimal, alcatuit din
planificatorul de procese

 aplicatiile trebuie scrise intr-o maniera similara cu
sistemele fara SO

e avantajul utilizarii SO este portabilitatea ridicata si
posibilitatea realizarii unor functii lente fara a fi
nevoie de masini de stare complicate



Masini virtuale

e SO pune la dispozitie o masina virtuala care separa
ermetic procesele utilizator de catre masina
respectiv unul de celalalt

e ofera securitate ridicata

* programarea aplicatiilor pot fi facute in limbaje de
nivel inalt similar cu calculatoarele de uz general



2. Generalitati RTOS

* Principii SO aplicate pe RTOS
— procese(taskuri) si threaduri
— conditii de concurenta si sectiuni critice
— semafoare

— planificare Round Robin respectiv priority scheduling



Taskuri

e taskul consta din:
— copie a programului in memorie (instructiuni +
constante)

 memoria de program poate fi diferita de memoria de date,
caz in care se foloseste numai o mapare a memoriei

— date + stiva

* in unele cazuri heapul lipseste: o singura zona de memorie
este alocata stivei si datelor

- registre

* registre de uz general, registrul de stare, program counter,
stack pointer



Threaduri

fir de executie apartinand aceluiasi task
codul, datele sunt comune

thread contine
— stiva
- registrele

— mapare a memoriei de program si de date

delimitarea intre threaduri si taskuri este mai
subtire in cazul RTOS



Multitasking

fiecare proces detine propriul CPU virtual

in realitate un singur CPU se comuta de la un
proces la altul

SO asigura mecanisme pentru crearea si
distrugerea proceselor

— Linux: fork
* presupune existenta unui manager de memorie

SO acorda CPU fiecarui proces pe baza unui
algoritm de planificare



2.1.2. Starile proceselor

activ

— proces Tn executie avand controlul procesorului
ready

— are alocat toate resursele, in afara procesorului
suspendat

— asteapta un eveniment, care sa aduca in starea de a
concura pentru procesor

Inexistent

— un program ce nu ruleaza



Diagrama starilor

planificare
alt proces

asteapta
eveniment

planificare
acest proces

terminare

Suspendat

aparitie
eveniment

creare
proces



Trecerea intre stari

model SO:

Proces Proces
0 .

Planificator

nivelul inferior este planificatorul (schedu

intreruperile, crearile, activarile si suspenc
procese sunt inglobate in scheduler

restul SO este alcatuit din procese

er)

arile de



Implementarea proceselor

* SO mentine o tabela (process table) cu intrare
pentru fiecare proces

— starea procesului
- PC, SP, registre

* pe baza informatiilor despre starea procesului, se
realizeaza planificarea acestora

e comunicarea se poate face prin zone de memorie la
care au acces amandoua procese



Conditii de concurenta

* conditii de concurenta la accesul unor resurse
— in cazul accesului simultan la date, aceste se pot corupe

» coruperea datelor in cazul conditiei de concurenta
trebuie evitat:

— excludere mutuala a accesului la datele partajate
* sectiuni critice

— partea dintr-un program unde se realizeaza accesul la o
resursa comuna



Conditii de cooperare corecta

nu pot exista 2 procese simultan in sectiunea
critica

nu se poate face nici o presupunere asupra vitezei
si numarului de CPU

nici un proces care ruleaza cod in afara sectiunii
critice nu poate bloca alte procese

nici un proces nu va astepta pentru totdeauna sa
Intre in sectiunea critica



Metode de excludere mutuali

* busy-waiting: procesul asteapta intr-o bucla pana
la eliberarea resurselor pentru a intra in sectiunea
critica

— nu rezolva complet sectiunea critica

» dezactivarea intreruperilor

— la intrarea in sectiune critica se dezactiveaza
intreruperile, iar la iesirea din sectiune se reactiveaza

— planificatorul nu mai poate intervine in interiorul
sectiunii critice



Metode de excludere mutuali

lock variables
alternare stricta
solutia lui Peterson
Instructiunea TSL
sleep & wakeup

wakeup Tntarziat



Semafoare

in 1965 Dijkstra a propus folosirea unei variabile
care permite semnalizare asincrona intre procese:

semafor
semafor = 0: nici un semnal nu a fost emis
semafor = n > 0: n semnale au fost emise

se definesc doua proceduri: down si up



down

verifica valoarea semaforului

daca semafor > 0, decrementeaza semaforul si
continua executia procesului

daca semafor == 0, executa sleep

verificarea valorii, modificarea si executarea sleep
(daca e cazul) formeaza o operatie atomica (o
operatie indivizibila) => pe durata executarii acestei
operatii nici un alt proces nu are acces la semafor

atomicitate este esentiala pentru evitarea
conditiilor de concurenta



up

incrementeaza valoarea semaforului

daca unul sau mai multe procese executau sleep
determinat de semafor (incapabil sa execute
down), unul din ele va fi ales de sistem si va
executa down

dupa up semaforul poate sa ramana 0, dar vor fi
mai putine procese blocate de acel semafor

up este de asemenea o operatie atomica

up nu poate bloca procesul respectiv



Problema
producator / consumator

* doua procese partajeaza un buffer de marime fixa

— producator: plaseaza informatii in buffer

— consumator: preia informatii din buffer

e pentru rezolvare problemei e nevoie de 3 semafoare
— full: contorizarea pozitiilor ocupate
— empty: contorizarea pozitiilor libere

— mutex: excludere mutuala pentru accesul la buffer



Implementare prod. / cons.
cu semafoare

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
{
int item;
while (TRUE) {
produce_item(&item);
down(&empty);
down(&mutex) ;
enter_item(item);
up(&mutex);
up(&full);

void consumer(void)
{
int item;
while (TRUE) {
down(&full);
down(&mutex);
remove_item(&item);
up(&mutex) ;
up(&empty);
consume_item(item);



Planificarea proceselor

* componenta SO care determina care dintre
procesele din sistem va deveni activ:

scheduler

e schedulerul implementeaza un algoritm de
planificare (scheduling algorithm) cu urmatoare
cerinte:

e fairness: fiecare proces sa-si preia timpul CPU in mod cinstit
* eficient: sa mentina utilizarea CPU cat mai aproape de 100%
e timp de raspuns minim

e turnaround: minimizare timpului de asteptare

e throughput: maximizarea numarului de joburi pe ora



Strategii de planificare

 |a fiecare intrerupere de ceas sau la aparitia unui
eveniment se ruleaza schedulerul

 strategiile

— preemptive care permit suspendarea temporara a
proceselor care ruleaza

— non-preemptive procesele ruleaza pana isi termina
executia sau se vor bloca in asteptarea unei operatii 1O

— cooperativ procesele isi asigura (prin programare
atenta) de a preda controlul din cand in cand



Round Robin Scheduling

este unul din cele mai vechi si simpli algoritmi de
planificare

fiecarei proces i se atribuie un interval de timp
numit cuanta, in care procesul se poate executa

daca procesul nu-si termina executia pana la
expirarea cuantei de timp alocate, el va fi intrerupt
iar CPU este alocat altui proces

daca procesul termina inainte de expirarea cuantei,
se va planifica alt proces fara a se astepta expirarea
cuantei



Priority scheduling

in cazul Round Robin, procesele aveau aceeasi
prioritate

uneori insa va trebui sa tinem cont de prioritatile in
rezolvarea unor probleme

fiecarei proces i se aloca o prioritate

a un moment dat va fi rulat procesul cel mai
prioritar

pentru a previne rularea indefinita a proceselor
orioritare schedulerul poate descreste prioritatea
orocesului activ la fiecare intrerupere




Managementul memoriel

* sistemul de operare poate pune la dispozitie si un
manager de memorie:

— alocarea si eliberarea dinamica a memoriei utilizate

e pentru taskuri: se aloca a zona de memorie pentru stiva
* heap: putin folosit din cauza necesitatilor mari de resurse
— segmentare si paginare
* functiile cele mai importante care permit cresterea sigurantei
de functionare

* presupune existenta unui suport hardware prezent numai in
cazul procesoarelor hardware



Relocatarea si protectia

* multiprogramarea conduce la aparitia a 2 probleme
ce trebuie rezolvate

— relocatarea
— protectia
e joburi diferite vor rula la adrese diferite

e |link-editorul va trebui sa cunoasca la ce adresa de
memorie va incepe programul

— daca prima instructiune Tn program este un salt la
adresa 0x100:

* in partitia 1 va trebui sa sara la 100k + 0x100

* in partitia 2 va trebui sa sara la 200k + 0x100



Relocatarea si protectia

* pentru relocatare trebuie modificate instructiunile
programului la incarcarea acestuia

e programele incarcate in partitia 1 vor avea 100k adaugat la
fiecare adresa

* programele incarcate in partitia 2 vor avea 200k adaugat la
fiecare adresa

 relocatarea in timpul incarcarii nu rezolva
problema protectiei

— programele pot intotdeauna construi orice adresa din
memorie deci pot citi sau scrie orice cuvant din
memorie



Relocatarea si protectia

* nu este de dorit ca un proces sa poata accesa
memoria unui alt proces

* solutia: folosirea a doua registre

— baza

— limita

* la planificarea unui proces se incarca registrul baza
cu adresa de inceput a partitiei, iar registrul limita
cu sfarsitul partitiei



Relocatarea si protectia

 fiecare adresa folosita de catre program va fi
relativa la adresa de inceput a partitiei (registrul
baza)

 adresele vor fi verificate sa nu depaseasca limita
partitiel

* numai SO poate modifica registrele baza si limita

* avantajul acestei abordari ca putem muta
programul oriunde Tn memorie



Swapping

in cazul sistemelor time-sharing exista mai multe
procese care trebuie sa se execute

deseori memoria nu este suficienta pentru a
memora toate aceste procese

unele procese vor trebui mutate pe disc, iar in
momentul rularii acestora trebui aduse Tnapoi in
memorie:

transferarea proceselor intre memoria si disc se
numeste swapping



Memoria virtuala

metoda dezvoltata in 1961 de Fotheringham

memoria combinata a programului, datelor si stivei
poate depasi marimea memoriei principale

SO va trebui sa mentina partile care se utilizeaza la
un moment dat in memorie, iar restul sa le pastreze
pe disc

de ex. un proces de TMB poate rula intr-o memorie
de 256kB, alegand care bucata se executa si
transferand bucata respectiva in memorie



Paginarea

» adresele utilizate intr-un program sunt numite
adrese virtuale si vor forma spatiul adreselor
virtuale

e in cazul calculatoarelor fara memorie virtuala,
adresa virtuala este plasata direct pe magistrala de
adrese: adresa virtuala = adresa fizica

e daca se utilizeaza memoria virtuala, adresa virtuala
nu va fi plasata pe magistrala ci va fi preluat de
MMU (Memory Management Unit)



MMU

e MMU va translata adresa virtuala intr-o adresa
fizica, ca va fi apoi plasata pe magistrala de adrese

CPU
Mem

MMU




Paginarea

 spatiul virtual de adrese este impartit in pagini

* paginile vor fi mapate in memorie pe anumite
frame page-uri (de acelasi dimensiune ca pagina)

* instructiunile de adresare vor folosi adrese virtuale
din interiorul acestor pagini, iar MMU va calcula
exact ce frame page ii corespunde adresei
respective

 dat fiind faptul ca spatiul de adrese virtuale este
mai mare decat spatiul de adrese fizice, nu toate
paginile pot fi mapate in memorie deodata



Page fault

* fiecare pagina precizeaza printr-un bit daca este
prezent Tn memorie sau nu

e daca programul incearca sa utilizeze o pagina
nemapata in memorie MMU va genera un trap
(Intrerupere software) catre sistemul de operare
numit page fault

e cand prinde un page fault, SO va muta pagina cea
mai putin utilizata din memorie pe disc, si va aduce
pagina referita de pe disc in memorie si va mapa
corespunzator pagina respectiva



Dimensiunea paginilor

 spatiu pierdut mic = dimensiuni mici

* pentru anumite sisteme tabela de pagini trebuie
incarcata in registrii, la fiecare comutare de procese

e pentru o comutarea rapida tabela de pagini trebuie
sa fie cat mai mica

e tabela de pagini mica = dimensiuni mari



Paginare pe RTOS

* Swappingul de pagini nu este determinist

e Taskurile de timp real nu au voie sa fie eliminate
din memorie:

— extensie POSIX: blocarea paginilor in memorie



Segmentarea

 memoria virtuala realizata prin paginare este
unidimensionala, deoarece adresele cresc de la 0
pana la o adresa maxima

— exista un singur spatiu de adrese

* pentru a evita unele probleme este bine sa avem 2
sau mai multe spatii de adrese

— de ex. daca un program lucreaza cu multe tabele
dinamice, una din tabele poate sa creasca peste spatiul
alocat

* o solutie generala, eleganta este sa cream spatii de
adrese independente = segmente



Segmente

fiecare segment consta dintr-o secventa liniara de
adrese, de la 0 pana la dimensiunea maxima a
segmentului

lungimea segmentului poate fi intre 0 si
dimensiunea maxima permisa

segmentele vor avea dimensiuni diferite

dimensiunea segmentelor se poate modifica in
timpul executiei

— de ex.: stiva: segmentul creste cand se adauga in stiva, si
scade cand se extrage din stiva



Segmente

* deoarece fiecare segment are un spatiu de adrese
independente, segmentele pot sa creasca
independent fara sa se afecteze intre ele

* pentru a specifica o adresa pentru o memorie
virtuala utilizand segmentarea vom utiliza 2
componente

— un numar de segment
— 0 adresa in cadrul segmentului

* de obicei un segment are un singur scop: segment
de date, segment de cod, segment de stiva



Segmentare cu MMU

* Segmentele pot fi asociate paginilor tratate de
MMU

* [n tabela MMU se insereaza si adresele de baza si
imita asociata segmentelor

* La acces in afara segmentului se genereaza page
fault ca si la accesul unei pagini inexistente

— Sistemul de operare detecteaza ca pagina ceruta este la
o adresa ilegala si termina executia programului
(segmentation fault)



Relocatare si protectie cu MMU

* Pe sistemele cu MMU, relocatarea si protectia intre
procese se realizeaza foarte usor:

— la crearea fiecarui proces SO asociaza fiecarui segment
(cod, date, etc.) paginile virtuale necesare pentru
dimensiunea dorita

— paginile virtuale asociate vor pastra identificatorul
segmentului

— la alocare in memoria fizica se va determina
apartenenta la segment si incadrarea in limita
segmentului si se va aloca adrese separate



Sisteme fara MMU

* Nu se poate realiza paginare si segmentare

e SO aloca fiecarui proces o zona de memorie care va
fi folosit pentru toate segmentele

— taskuri cu PIC (Position Independent Code)
— modificare tuturor adreselor la incarcare

— System MAP si rootfs definit de dinainte

* Nu exista protectie intre taskuri respectiv la datele
din SO



Arhitecturi de sisteme de operare

 arhitecturi posibile pentru sisteme de operare in
timp real:
- real-time executive
— kernel monolitic

— microkernel

 aceasta clasificare coreleaza bine cu solutii de
protectii oferite in hardware



Real-time executive

sisteme RTOS traditionale
sisteme fara MMU
resurse (CPU, memorie) limitate

kernelul ruleaza in acelasi spatiu de adrese ca si
aplicatiile

tot sistemul (kernel + aplicatii) este compilat Tntr-o
singura imagine

este greu de adaugat aplicatii in mod dinamic

nu se preteaza pentru software complex



Real-time executive

:““ ... Appn :

Sheduler, memory manager, IPC




Kernel monolitic

distinctie intre user-space si kernel-space

— aplicatiile ruleaza Tn user-space
— nucleul si driverele ruleaza in kernel-space

— intre ele exista un strat de apeluri sistem

suporta sistem complexe cu multe aplicatii

ofera protectie intre aplicatii

— daca o aplicatie se blocheaza sau functioneaza incorect
atunci nu afecteaza pe celelalte

poate rula si pe arhitecturi fara MMU, dar cu
protectie limitata



Kernel monolitic

kernel-space

: :
HAL




Microkernel

teoretic cea mai performanta arhitectura de SO

practic implementarile existente prezinta prea
multe limitari din cauza complexitatii

toate functiile SO ruleaza in user-space in afara
unui strat foarte subtire de message passing

sistemul are un overhead mare datorita multimii de
mesaje ce trebuie sa treaca din user-space in
kernel-space si invers

poate fi folosit numai pe sisteme cu MMU, altfel
pierde avantajul protectiei maxime



Microkernel

kernel-space

Message passing Z



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

