

Sisteme de operare distribuite Sisteme de operare distribuite
și în timp realși în timp real

– – curs –curs –
master SECI anul Imaster SECI anul I

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

ș.l. dr. ing. Kertész Csaba-Zoltán

Despre cursDespre curs

● Programa analitică, notițe, bibliografie:
http://etc.unitbv.ro/~csaba.kertesz/sotr

● Contact:
csaba.kertesz@etc.unitbv.ro

1. Introducere1. Introducere

1. Ce este SO? Ce este RTOS?

2. Istoria sistemelor de operare

3. Concepte de bază ale SO

4. Structura RTOS

Cuprins

1.1. Ce este un SO?1.1. Ce este un SO?

● Software:
– programe de sistem (controlează activitatea sistemului)

– programe utilizator (rezolvă problemele utilizatorilor

● SO reprezintă o componentă de bază a clasei
programelor de sistem

● SO controlează toate resursele calculatorului și
oferă acces la acestea programelor utilizator într-
un mod convenient și sigur

SoftwareSoftware

Browser
web

Client
e-mail Jocuri

Compilatoare Editoare Shell

Sistem de operare

Microprocesor

Dispozitive de intrare/ieșire

Procesor
de text

Baze de
date

Editor
de imagini

Programe de aplicație

Programe de
sistem

Hardware

SoftwareSoftware

● microprocesorul controlează dispozitivele IO prin
registre speciale

● SO ascunde acest nivel, oferind o interfață comună
pentru programele aplicație

● compilatoare, editoare, shell-uri sunt furnizate
împreună de SO, dar nu fac parte din aceasta

Ce este RTOSCe este RTOS

● Sistem de operare în timp real:
– realizează aceleași funcții ca un SO, dar permite

implementarea sistemelor în timp real

● Timp real:
– răspunsul sistemului pentru evenimentele apărute

ajunge în timp oportun pentru evenimentul respectiv

Rolul RTOSRolul RTOS

● realizează o mașină extinsă:
– ascunde arhitectura internă a procesorului

– permite portare ușoară între diferite arhitecturi

– mai ușor de programat decât hardware-ul direct

● permite implementarea unor funcții cu timp de
răspuns determinabil
– apelurile de sistem sunt predictabile

– ciclii de mașină în apelurile sistem sunt numărabile

1.2. Istoria sistemelor de operare1.2. Istoria sistemelor de operare

● Evoluția SO poate fi împărțită în 4 generații în
strânsă corelație cu evoluția calculatoarelor
– tuburi electronice

– tranzistoare

– circuite integrate

– microprocesoare

● La generația a 4-a a calculatoarelor apare nevoia de
diversificare a sistemelor de operare
– microprocesoare de uz general

– microcontrolere

– multiprocesoare

Generația I.Generația I.
(1945 – 1955)(1945 – 1955)

● calculatoare cu tuburi electronice, fără SO
● programare în limbaj mașină prin legături fizice
● nu există limbaje de programare

– de la 1950 s-a început folosirea cartelelor perforate

● nu există SO

Generația II.Generația II.
(1955 – 1965)(1955 – 1965)

● calculatoare cu tranzistoare, SO: sisteme batch
● joburi rulate de pe cartele perforate
● programe se scriau în asamblare sau FORTRAN (și

„compilate” în cartele perforate)
● în scopul creșterii eficienței mașinii au apărut

sistemele batch, care eliminau operațiile manuale
între joburi
– mai multe joburi se scria pe bandă magnetică

– de pe bandă mașina prelua joburile pe rând și oferea
rezultate pe o bandă de ieșire

Generația III.Generația III.
(1965 – 1980)(1965 – 1980)

● calculatoare cu IC, SO: multiprogramare
● multiprogramarea era introdusă pe familia de

calculatoare OS/360
● utilizare eficientă a mașinilor:

– în timpul execuției unui job, aceasta trece prin faze care
folosesc intensiv procesorul și faze care lucrează cu
dispozitive IO lente

– s-ar putea executa două joburi simultan fără să se
deranjeze dacă aceste se află în faze complementare

Generația III.Generația III.

● soluție:
– partiționarea memoriei în câteva partiții având fiecare

câte un job

– când un job așteaptă terminare unei operații IO,
procesorul este oferit unui alt job din memorie

● creștere a utilizării timpului de procesor
● mecanisme de protecție între joburi

Generația III.Generația III.
tehnici SOtehnici SO

● spooling (Simultaneous Peripheral Operation On-
Line)
– după terminarea fiecărui job, SO încarcă un nou job de

pe disc în partiția goală

● time-sharing
– joburile concurente pe sistem pot deține controlul

procesorului maxim o perioadă prestabilită, după care
controlul este oferit altui job

Generația IV.Generația IV.
(1980 – ...)(1980 – ...)

● integrare de nivel înalt, PC-uri, SO complexe
● software user-friendly
● multe procese rulate în paralel
● SO dominante:

– DOS/Windows
– UNIX/Linux
– MacOS X

Microprocesoare de uz generalMicroprocesoare de uz general

● putere mare de calcul vs. un singur utilizator
– multe procese rulate în paralel

● securitate
● ușurință de implementare

în detrimentul performanței

MultiprocesoareMultiprocesoare

● creșterea performantei prin distribuirea sistemului
de operare pe mai multe procesoare

● funcții de comunicații inter-procesoare avansate
● modele:

– client-server

– client-server pe 3 sau mai multe nivele

– clustere

MicrocontrolereMicrocontrolere

● calculatoare încorporate
● timpii de răspuns și performanța sistemului sunt

cele mai importante
● predictibilitatea sistemului
● scopul sistemului și dimensiunea sistemului țintă

pot fi foarte variate:
– SO generic modificat (hard și soft real-time)

– nuclee mici și foarte mici

– siguranță ridicată

Sisteme de operare în timp realSisteme de operare în timp real

● RTLinux
● uCLinux
● VxWorks
● Nucleus
● eCos
● µC/OS-II
● OSEK
● TinyOS
● FreeRTOS

hard real time

MMU-less, soft

routere

Mentor Graphics

RedHat

safety critical + reţele

automotive

monitor + nesC

small GNU kernel

1.3. Concepte de bază ale SO1.3. Concepte de bază ale SO

● Interfața între programele utilizator și SO este
definită printr-un set de apeluri sistem (system
calls)

● apelurile sistem operează asupra obiecte software:
– procese

– fișiere

● între utilizator și SO pot fi intercalate și alte
programe sistem, care nu fac parte din SO

ProceseProcese

● un proces este un program în execuție
● procesul cuprinde:

– programul executabil

– datele și stiva programului

– registrele de uz general

– registrele speciale: program counter, stack pointer

● toate informațiile despre un proces sunt stocate
într-o tabelă (process table) administrat de SO
(câte o intrare pentru fiecare proces)

Procese real-timeProcese real-time

● crearea și terminarea proceselor se realizează prin
apeluri sistem
– apelul sistem trebuie să aibă o durată bine definită

● schimbarea între procese (planificarea):
– preemptiv

– non-preemptiv

● tratarea întreruperilor trebuie să aibă prioritate
ridicată

● durata dezactivării întreruperilor (secțiuni critice)
trebuie să fie minimă și bine determinabilă

ProceseProcese
Comunicații interprocesComunicații interproces

● comunicația trebuie făcută sigur
– secțiuni critice

– semafoare

– message-passing

● semnale (întreruperi software) generate de sistemul
de operare sau de rutinele de tratare a
întreruperilor hardware

Apeluri sistemApeluri sistem

● programele utilizator comunică cu SO pentru a
cere anumite servicii SO prin intermediul apelurilor
sistem

● un apel de sistem este o funcție dintr-o bibliotecă
(furnizată de SO)

● apelurile sistem pot fi împărțite în:
– apeluri non-deterministe ce pot fi apelate din procesele

utilizator și pot fi întrerupte

– apeluri real-time
● secțiuni critice cu dezactivarea întreruperilor
● durate deterministe

Managementul memorieiManagementul memoriei

● SO poate conține un Memory Manager (integrat în
kernel sau în bibliotecile standard asociate)

● fiecare proces trebuie să aibă propria zonă de
memorie
– date

– stivă

– program

● nu toate arhitecturile oferă sistem de management
al memoriei

Sistemul de fișiereSistemul de fișiere

● SO ascunde dispozitivele hardware de utilizator
prin sistemul de fișiere

● sunt puse la dispoziție apeluri sistem unitare
pentru accesul diferitelor dispozitive:
– de stocare

– periferice integrate

– de comunicație

1.4. Structura SO (RTOS)1.4. Structura SO (RTOS)

● SO este alcătuit dintr-o colecție de proceduri,
compilate și legate împreună (de obicei împreună
cu aplicațiile utilizator)

● nu există o protecție a informației între aceste
proceduri

● pe unele arhitecturi nu există nici protecție între
procedurile SO și cele de aplicație

● programele utilizator se rulează în niște taskuri
care interferență între ele și cu hardware-ul prin
intermediul funcțiilor SO

Structura SOStructura SO

● întreruperile hardware pot fi tratate de SO sau de
utilizator
– SO tratează întreruperea printr-o rutină foarte scurtă

care generează o întrerupere software care poate fi
tratată la nivelul taskurilor utilizator

– utilizatorul tratează întreruperile asigurându-și de
durate de execuție reduse și comunicând cu alte procese
sau cu SO numai printr-un set redus de apeluri de
sistem speciale

● dispozitivele hardware pot fi accesate din programe
utilizator numai prin intermediul SO

Structuri SO specificeStructuri SO specifice

● sistemele mici (microcontrolere cu puține resurse)
pot avea numai un SO minimal, alcătuit din
planificatorul de procese

● aplicațiile trebuie scrise într-o manieră similară cu
sistemele fără SO

● avantajul utilizării SO este portabilitatea ridicată și
posibilitatea realizării unor funcții lente fără a fi
nevoie de mașini de stare complicate

Mașini virtualeMașini virtuale

● SO pune la dispoziție o mașină virtuală care separă
ermetic procesele utilizator de către mașină
respectiv unul de celălalt

● oferă securitate ridicată
● programarea aplicațiilor pot fi făcute în limbaje de

nivel înalt similar cu calculatoarele de uz general

2. Generalități RTOS2. Generalități RTOS

● Principii SO aplicate pe RTOS
– procese(taskuri) și threaduri

– condiții de concurentă și secțiuni critice

– semafoare

– planificare Round Robin respectiv priority scheduling

TaskuriTaskuri

● taskul constă din:
– copie a programului în memorie (instrucțiuni +

constante)
● memoria de program poate fi diferită de memoria de date,

caz în care se folosește numai o mapare a memoriei

– date + stivă
● în unele cazuri heapul lipsește: o singură zonă de memorie

este alocată stivei și datelor

– registre
● registre de uz general, registrul de stare, program counter,

stack pointer

ThreaduriThreaduri

● fir de execuție aparținând aceluiași task
● codul, datele sunt comune
● thread conține

– stiva

– registrele

– mapare a memoriei de program și de date

● delimitarea între threaduri și taskuri este mai
subțire în cazul RTOS

MultitaskingMultitasking

● fiecare proces deține propriul CPU virtual
● în realitate un singur CPU se comută de la un

proces la altul
● SO asigură mecanisme pentru crearea și

distrugerea proceselor
– Linux: fork

● presupune existența unui manager de memorie

● SO acordă CPU fiecărui proces pe baza unui
algoritm de planificare

2.1.2. Stările proceselor2.1.2. Stările proceselor

● activ
– proces în execuție având controlul procesorului

● ready
– are alocat toate resursele, în afara procesorului

● suspendat
– așteaptă un eveniment, care să aducă în starea de a

concura pentru procesor

● inexistent
– un program ce nu rulează

Diagrama stărilorDiagrama stărilor

Activ

Suspendat Ready

Inexistent

așteaptă
eveniment

 planificare
 alt proces

planificare
acest proces

creare
proces

terminare

apariție
eveniment

Trecerea între stăriTrecerea între stări

● model SO:

● nivelul inferior este planificatorul (scheduler)
● întreruperile, creările, activările și suspendările de

procese sunt înglobate în scheduler
● restul SO este alcătuit din procese

Planificator

Proces
0

Proces
1

Proces
n...

Implementarea proceselorImplementarea proceselor

● SO menține o tabelă (process table) cu intrare
pentru fiecare proces
– starea procesului

– PC, SP, registre

● pe baza informațiilor despre starea procesului, se
realizează planificarea acestora

● comunicarea se poate face prin zone de memorie la
care au acces amândouă procese

Condiții de concurențăCondiții de concurență

● condiții de concurență la accesul unor resurse
– în cazul accesului simultan la date, aceste se pot corupe

● coruperea datelor în cazul condiției de concurență
trebuie evitat:
– excludere mutuală a accesului la datele partajate

● secțiuni critice
– partea dintr-un program unde se realizează accesul la o

resursă comună

Condiții de cooperare corectăCondiții de cooperare corectă

● nu pot exista 2 procese simultan în secțiunea
critică

● nu se poate face nici o presupunere asupra vitezei
și numărului de CPU

● nici un proces care rulează cod în afara secțiunii
critice nu poate bloca alte procese

● nici un proces nu va aștepta pentru totdeauna să
intre în secțiunea critică

Metode de excludere mutualăMetode de excludere mutuală

● busy-waiting: procesul așteaptă într-o buclă până
la eliberarea resurselor pentru a intra în secțiunea
critică
– nu rezolvă complet secțiunea critică

● dezactivarea întreruperilor
– la intrarea în secțiune critică se dezactivează

întreruperile, iar la ieșirea din secțiune se reactivează
– planificatorul nu mai poate intervine în interiorul

secțiunii critice

Metode de excludere mutualăMetode de excludere mutuală

● lock variables
● alternare strictă
● soluția lui Peterson
● instrucțiunea TSL
● sleep & wakeup
● wakeup întârziat

SemafoareSemafoare

● în 1965 Dijkstra a propus folosirea unei variabile
care permite semnalizare asincronă între procese:

semafor
● semafor = 0: nici un semnal nu a fost emis
● semafor = n > 0: n semnale au fost emise
● se definesc două proceduri: down și up

downdown

● verifică valoarea semaforului
● dacă semafor > 0, decrementează semaforul și

continuă execuția procesului
● dacă semafor == 0, execută sleep
● verificarea valorii, modificarea și executarea sleep

(dacă e cazul) formează o operație atomică (o
operație indivizibilă) => pe durata executării acestei
operații nici un alt proces nu are acces la semafor

● atomicitate este esențială pentru evitarea
condițiilor de concurență

upup

● incrementează valoarea semaforului
● dacă unul sau mai multe procese executau sleep

determinat de semafor (incapabil să execute
down), unul din ele va fi ales de sistem și va
executa down

● după up semaforul poate să rămână 0, dar vor fi
mai puține procese blocate de acel semafor

● up este de asemenea o operație atomică
● up nu poate bloca procesul respectiv

ProblemaProblema
producător / consumatorproducător / consumator

● două procese partajează un buffer de mărime fixă
– producător: plasează informații în buffer

– consumator: preia informații din buffer

● pentru rezolvare problemei e nevoie de 3 semafoare
– full: contorizarea pozițiilor ocupate

– empty: contorizarea pozițiilor libere

– mutex: excludere mutuală pentru accesul la buffer

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
{

int item;
while (TRUE) {

produce_item(&item);
down(&empty);
down(&mutex);
enter_item(item);
up(&mutex);
up(&full);

}
}

void consumer(void)
{

int item;
while (TRUE) {

down(&full);
down(&mutex);
remove_item(&item);
up(&mutex);
up(&empty);
consume_item(item);

}
}

Implementare prod. / cons.Implementare prod. / cons.
cu semafoarecu semafoare

Planificarea proceselorPlanificarea proceselor

● componenta SO care determină care dintre
procesele din sistem va deveni activ:

scheduler
● schedulerul implementează un algoritm de

planificare (scheduling algorithm) cu următoare
cerințe:

● fairness: fiecare proces să-și preia timpul CPU în mod cinstit
● eficient: să mențină utilizarea CPU cât mai aproape de 100%
● timp de răspuns minim
● turnaround: minimizare timpului de aşteptare
● throughput: maximizarea numărului de joburi pe oră

Strategii de planificareStrategii de planificare

● la fiecare întrerupere de ceas sau la apariţia unui
eveniment se rulează schedulerul

● strategiile
– preemptive care permit suspendarea temporară a

proceselor care rulează

– non-preemptive procesele rulează până îşi termină
execuția sau se vor bloca în aşteptarea unei operații IO

– cooperativ procesele își asigură (prin programare
atentă) de a preda controlul din când în când

Round Robin SchedulingRound Robin Scheduling

● este unul din cele mai vechi și simpli algoritmi de
planificare

● fiecărei proces i se atribuie un interval de timp
numit cuantă, în care procesul se poate executa

● dacă procesul nu-și termină execuția până la
expirarea cuantei de timp alocate, el va fi întrerupt
iar CPU este alocat altui proces

● dacă procesul termină înainte de expirarea cuantei,
se va planifica alt proces fără a se aștepta expirarea
cuantei

Priority schedulingPriority scheduling

● în cazul Round Robin, procesele aveau aceeași
prioritate

● uneori însă va trebui să ținem cont de prioritățile în
rezolvarea unor probleme

● fiecărei proces i se alocă o prioritate
● la un moment dat va fi rulat procesul cel mai

prioritar
● pentru a previne rularea indefinită a proceselor

prioritare schedulerul poate descrește prioritatea
procesului activ la fiecare întrerupere

Managementul memorieiManagementul memoriei

● sistemul de operare poate pune la dispoziție și un
manager de memorie:
– alocarea și eliberarea dinamică a memoriei utilizate

● pentru taskuri: se alocă a zonă de memorie pentru stivă
● heap: puțin folosit din cauza necesităților mari de resurse

– segmentare și paginare
● funcțiile cele mai importante care permit creșterea siguranței

de funcționare
● presupune existența unui suport hardware prezent numai în

cazul procesoarelor hardware

Relocatarea și protecțiaRelocatarea și protecția

● multiprogramarea conduce la apariția a 2 probleme
ce trebuie rezolvate
– relocatarea

– protecția

● joburi diferite vor rula la adrese diferite
● link-editorul va trebui să cunoască la ce adresă de

memorie va începe programul
– dacă prima instrucțiune în program este un salt la

adresa 0x100:
● în partiția 1 va trebui să sară la 100k + 0x100
● în partiția 2 va trebui să sară la 200k + 0x100

Relocatarea și protecțiaRelocatarea și protecția

● pentru relocatare trebuie modificate instrucțiunile
programului la încărcarea acestuia

● programele încărcate în partiția 1 vor avea 100k adăugat la
fiecare adresă

● programele încărcate în partiția 2 vor avea 200k adăugat la
fiecare adresă

● relocatarea în timpul încărcării nu rezolvă
problema protecției
– programele pot întotdeauna construi orice adresă din

memorie deci pot citi sau scrie orice cuvânt din
memorie

Relocatarea și protecțiaRelocatarea și protecția

● nu este de dorit ca un proces să poată accesa
memoria unui alt proces

● soluția: folosirea a două registre
– bază

– limită

● la planificarea unui proces se încarcă registrul bază
cu adresa de început a partiției, iar registrul limită
cu sfârșitul partiției

Relocatarea și protecțiaRelocatarea și protecția

● fiecare adresă folosită de către program va fi
relativă la adresa de început a partiției (registrul
bază)

● adresele vor fi verificate să nu depășească limita
partiției

● numai SO poate modifica registrele bază și limită
● avantajul acestei abordări că putem muta

programul oriunde în memorie

SwappingSwapping

● în cazul sistemelor time-sharing există mai multe
procese care trebuie să se execute

● deseori memoria nu este suficientă pentru a
memora toate aceste procese

● unele procese vor trebui mutate pe disc, iar în
momentul rulării acestora trebui aduse înapoi în
memorie:

● transferarea proceselor între memoria și disc se
numește swapping

Memoria virtualăMemoria virtuală

● metodă dezvoltată în 1961 de Fotheringham
● memoria combinată a programului, datelor și stivei

poate depăși mărimea memoriei principale
● SO va trebui să mențină părțile care se utilizează la

un moment dat în memorie, iar restul să le păstreze
pe disc

● de ex. un proces de 1MB poate rula într-o memorie
de 256kB, alegând care bucată se execută și
transferând bucata respectivă în memorie

PaginareaPaginarea

● adresele utilizate într-un program sunt numite
adrese virtuale și vor forma spațiul adreselor
virtuale

● în cazul calculatoarelor fără memorie virtuală,
adresa virtuală este plasată direct pe magistrala de
adrese: adresa virtuală = adresa fizică

● dacă se utilizează memoria virtuală, adresa virtuală
nu va fi plasată pe magistrală ci va fi preluat de
MMU (Memory Management Unit)

MMUMMU

● MMU va translata adresa virtuală într-o adresă
fizică, ca va fi apoi plasată pe magistrala de adrese

CPU

MMU

Mem

PaginareaPaginarea

● spațiul virtual de adrese este împărțit în pagini
● paginile vor fi mapate în memorie pe anumite

frame page-uri (de același dimensiune ca pagina)
● instrucțiunile de adresare vor folosi adrese virtuale

din interiorul acestor pagini, iar MMU va calcula
exact ce frame page îi corespunde adresei
respective

● dat fiind faptul că spațiul de adrese virtuale este
mai mare decât spațiul de adrese fizice, nu toate
paginile pot fi mapate în memorie deodată

Page faultPage fault

● fiecare pagină precizează printr-un bit dacă este
prezent în memorie sau nu

● dacă programul încearcă să utilizeze o pagină
nemapată în memorie MMU va genera un trap
(întrerupere software) către sistemul de operare
numit page fault

● când prinde un page fault, SO va muta pagina cea
mai puțin utilizată din memorie pe disc, și va aduce
pagina referită de pe disc în memorie și va mapa
corespunzător pagina respectivă

Dimensiunea paginilorDimensiunea paginilor

● spațiu pierdut mic ⇒ dimensiuni mici
● pentru anumite sisteme tabela de pagini trebuie

încărcată în regiștrii, la fiecare comutare de procese
● pentru o comutarea rapidă tabela de pagini trebuie

să fie cât mai mică
● tabelă de pagini mică ⇒ dimensiuni mari

Paginare pe RTOSPaginare pe RTOS

● Swappingul de pagini nu este determinist
● Taskurile de timp real nu au voie să fie eliminate

din memorie:
– extensie POSIX: blocarea paginilor în memorie

SegmentareaSegmentarea

● memoria virtuală realizată prin paginare este
unidimensională, deoarece adresele cresc de la 0
până la o adresă maximă
– există un singur spațiu de adrese

● pentru a evita unele probleme este bine să avem 2
sau mai multe spatii de adrese
– de ex. dacă un program lucrează cu multe tabele

dinamice, una din tabele poate să crească peste spațiul
alocat

● o soluție generală, elegantă este să creăm spatii de
adrese independente ⇒ segmente

SegmenteSegmente

● fiecare segment constă dintr-o secvență liniară de
adrese, de la 0 până la dimensiunea maximă a
segmentului

● lungimea segmentului poate fi între 0 și
dimensiunea maximă permisă

● segmentele vor avea dimensiuni diferite
● dimensiunea segmentelor se poate modifica în

timpul execuției
– de ex.: stiva: segmentul crește când se adaugă în stivă, și

scade când se extrage din stivă

SegmenteSegmente

● deoarece fiecare segment are un spațiu de adrese
independente, segmentele pot să crească
independent fără să se afecteze între ele

● pentru a specifica o adresă pentru o memorie
virtuală utilizând segmentarea vom utiliza 2
componente
– un număr de segment

– o adresă în cadrul segmentului

● de obicei un segment are un singur scop: segment
de date, segment de cod, segment de stivă

Segmentare cu MMUSegmentare cu MMU

● Segmentele pot fi asociate paginilor tratate de
MMU

● În tabela MMU se inserează și adresele de bază și
limită asociată segmentelor

● La acces în afara segmentului se generează page
fault ca și la accesul unei pagini inexistente
– Sistemul de operare detectează că pagina cerută este la

o adresă ilegală și termină execuția programului
(segmentation fault)

Relocatare și protecție cu MMURelocatare și protecție cu MMU

● Pe sistemele cu MMU, relocatarea și protecția între
procese se realizează foarte ușor:
– la crearea fiecărui proces SO asociază fiecărui segment

(cod, date, etc.) paginile virtuale necesare pentru
dimensiunea dorită

– paginile virtuale asociate vor păstra identificatorul
segmentului

– la alocare în memoria fizică se va determina
apartenența la segment și încadrarea în limita
segmentului și se va aloca adrese separate

Sisteme fără MMUSisteme fără MMU

● Nu se poate realiza paginare și segmentare
● SO alocă fiecărui proces o zonă de memorie care va

fi folosit pentru toate segmentele
– taskuri cu PIC (Position Independent Code)

– modificare tuturor adreselor la încărcare

– System MAP și rootfs definit de dinainte

● Nu există protecție între taskuri respectiv la datele
din SO

Arhitecturi de sisteme de operareArhitecturi de sisteme de operare

● arhitecturi posibile pentru sisteme de operare în
timp real:
– real-time executive

– kernel monolitic

– microkernel

● această clasificare corelează bine cu soluții de
protecții oferite în hardware

Real-time executiveReal-time executive

● sisteme RTOS tradiționale
● sisteme fără MMU
● resurse (CPU, memorie) limitate
● kernelul rulează în același spațiu de adrese ca și

aplicațiile
● tot sistemul (kernel + aplicații) este compilat într-o

singură imagine
● este greu de adăugat aplicații în mod dinamic
● nu se pretează pentru software complex

Real-time executiveReal-time executive

App 1 App 2 App n

FS Network Drivere

Sheduler, memory manager, IPC

...

Kernel monoliticKernel monolitic

● distincție între user-space și kernel-space
– aplicațiile rulează în user-space

– nucleul și driverele rulează în kernel-space

– între ele există un strat de apeluri sistem

● suportă sistem complexe cu multe aplicații
● oferă protecție între aplicații

– dacă o aplicație se blochează sau funcționează incorect
atunci nu afectează pe celelalte

● poate rula și pe arhitecturi fără MMU, dar cu
protecție limitată

Kernel monoliticKernel monolitic

App 1 App 2 App n

FS Network Drivere

HAL

...

IPC MM Sched.

System calls

user-space

kernel-space

MicrokernelMicrokernel

● teoretic cea mai performantă arhitectură de SO
● practic implementările existente prezintă prea

multe limitări din cauza complexității
● toate funcțiile SO rulează în user-space în afara

unui strat foarte subțire de message passing
● sistemul are un overhead mare datorită mulțimii de

mesaje ce trebuie să treacă din user-space în
kernel-space și invers

● poate fi folosit numai pe sisteme cu MMU, altfel
pierde avantajul protecției maxime

MicrokernelMicrokernel

App 1 App 2 App n

FS Network Drivere

Message passing

...

IPC MM Sched.

mesaje sistem
kernel-space

user-space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

