

Sisteme de operareSisteme de operare

– – curs 13 –curs 13 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2010.06.05 ș.l. dr. ing. Kertész Csaba-Zoltán

4.3.5. Fiabilitatea sistemului de fișiere4.3.5. Fiabilitatea sistemului de fișiere

● distrugerea unui sistem de fișiere este mai
dezastruoasă decât distrugerea componentelor
unui calculator
– componentele sau chiar calculatorul pot fi înlocuite

rapid, informația pierdută poate fi refăcută în timp mult
mai lung și cu costuri mult mai mari sau poate fi chiar
imposibil de refăcută

Bad Block ManagementBad Block Management

● foarte multe discuri au bad blockuri chiar de la
fabricație

● în timpul utilizării numărul bad blockurilor va
crește exponențial

● soluții pentru managementul bad blockurilor
– hardware: sa alocă un sector de pe disc pentru a

memora lista bad blockurilor, controlerul de disc va
evita utilizarea bad blockurilor pe baza acestei liste

– sofware: sistemul de fișiere va elimina bad blockurile
din lista blocurilor libere, astfel nu vor mai putea fi
folosite

Backup-ulBackup-ul

● este important ca backup-ul pentru un sistem să fie
realizat frecvent

● backup-ul în general este realizat pe benzi
magnetice sau suport optic => operație lentă

● backup-ul poate fi realizat în 2 moduri
– integral

● tot conținutul sistemului de fișiere este salvat

– incremental
● diferența față de ultima salvare este salvată

● tar (Tape ARchiver)

Consistența unui sistem de fișiereConsistența unui sistem de fișiere

● în multe sisteme blocurile sunt citite, modificate și
după un interval de timp vor fi scrise pe disc

● dacă sistemul cade înainte ca toate blocurile
modificate să fie scrise pe disc, sistemul de fișiere
poate rămâne într-o stare inconsistentă

● pentru a rezolva problema inconsistenței
majoritatea sistemelor au un utilitar care verifică
dacă sistemul de fișiere este consistent

Consistența blocurilorConsistența blocurilor

● programul construiește un tabel cu 2 contoare
inițializate la 0 pentru fiecare bloc
– primul contor memorează de câte ori este prezent un

bloc într-un fișier
– al doilea contor memorează cât de des este prezent

blocul în lista blocurilor libere

● programul va citi toate i-nodurile, plecând de la un
i-nod construiește lista blocurilor utilizate în fișier
și se incrementează contoarele asociate acestor
blocuri

Consistența blocurilorConsistența blocurilor

● programul examinează lista blocurilor libere și va
incrementa cel de al doilea contor pentru fiecare
bloc din listă

● sistemul de fișiere este consistent dacă fiecare bloc
va avea un 1 numai într-unul din tabele

1101012110011110
0000100001200011

missing block

duplicate in free list duplicate data

both free & data block

Consistența blocurilorConsistența blocurilor

● missing block
– blocul nu se regăsește nici în lista blocurilor ocupate

nici în lista blocurilor libere
– blocul se adaugă la lista blocurilor libere

● duplicate in free list
– blocul apare de mai multe ori în lista blocurilor libere
– se reconstruiește lista blocurilor libere

Consistența blocurilorConsistența blocurilor

● both free & data block
– blocul este utilizat de un fișier, dar apare și în lista

blocurilor libere
– blocul se va elimina din lista blocurilor libere

● duplicate data
– același bloc este utilizat de 2 fișiere
– se copiază conținutul blocului într-un bloc nou și blocul

nou se va aloca unuia din fișiere în locul blocului
duplicat

Consistența directoarelorConsistența directoarelor

● se vor utiliza contoare similar cu metoda pentru
blocuri, dar pentru fișiere

● se pornește de la rădăcină și se parcurge arborele
de directoare

● pentru fiecare fișier din fiecare director se va
incrementa contorul pentru i-nodul respectiv

● se compară contorul cu numărul de linkuri stocat
în i-nod

● cele două numere trebuie să fie egale pentru un
sistem de fișiere consistent

4.3.6. Performanțele sistemelor de 4.3.6. Performanțele sistemelor de
fișierefișiere

● multe sisteme de fișiere au fost proiectate pentru a
reduce numărul de accese la disk

● tehnici utilizate:
– block cache
– bufer cache

● cache: colecție de blocuri care aparțin discului dar
sunt menționate în memorie pentru a crește
performanța sistemului de fișiere (acces mai rapid
la date)

Algoritm pentru managementul unui Algoritm pentru managementul unui
block cacheblock cache

● se verifică toate apelurile de citire a datelor de pe
disc pentru a vedea dacă blocul necesar este în
cache

● dacă aceasta se află în cache nu mai este necesar
accesul la disc

● dacă nu, blocul va trebui adus de pe disc în cache
● dacă cache e plin trebuie eliminat un bloc: se

folosește un algoritm de paginare (FIFO, Second
Chance, LRU)

Algoritm pentru managementul unui Algoritm pentru managementul unui
block cacheblock cache

● de obicei se folosește un algoritm LRU modificat în
care blocurile care sunt esențiale pentru
consistența sistemului de fișiere (toate celelalte
blocuri în afara celor de date) și care au fost
modificate vor trebui scrise pe disc imediat,
indiferent de poziția lor în lista LRU

● se poate întâmpla ca pe o perioadă lungă de timp
nu mai sunt necesare blocuri de pe disc iar sistemul
cade => blocurile din cache se pierd
– în UNIX există un daemon care apelează SYNC în mod

regulat (la fiecare 30 secunde)

Tehnici pentru reducerea mișcării Tehnici pentru reducerea mișcării
capului harddisculuicapului harddiscului

● blocurile ce se vor accesa în secvență vor trebui să
fie apropiate ca localizare fizică pe disc (preferabil
în același cilindru)

● se poate realiza o grupare a blocurilor din lista
blocurilor libere => grupuri de blocuri consecutive

● o deficiență a sistemului cu i-noduri este că accesul
la un fișier necesită două accese pe disc (unul
pentru a citi i-nodul și unul pentru blocul respectiv)

Disk Arm Scheduling AlgorithmsDisk Arm Scheduling Algorithms

● timpul necesar pentru a citi sau scrie un bloc de pe
disc este determinat de 3 factori
– seek time (timpul necesar pentru a plasa brațul pe

cilindrul corespunzător)
– rotational delay (timpul necesar pentru a roti sectorul

corespunzător sub cap)
– transfer time (timpul necesar pentru transferul blocului)

● din acești factori seek time este cel mai dominant
=> reducerea acestui timp va conduce la
îmbunătățirea performanțelor

First Come, First Served (FCFS)First Come, First Served (FCFS)

● cea mai simplă strategie
● nu prea poate face nimic pentru a optimiza seek

time
● discul menține o tabelă indexată la numărul

cilindrilor cu toate cererile apărute pentru fiecare
cilindru

● cererile sunt plasate într-o listă înlănțuita
● capătul listei va fi indexat în tabelă
● ex.: cereri pentru cilindrii: 11,1,36,16,34,9,12

seek time total – 111 cilindri

Shortest Seek First (SSF)Shortest Seek First (SSF)

● o îmbunătățire a algoritmului FCFS
● se va alege din lista cererilor cilindrul cel mai

apropiat de cilindrul curent
● ex. (precedent)

seek time total – 61 cilindri
● SSF are o problemă majoră: dacă mai apar cereri

între timp care sunt mai aproape de cilindrul
curent, o cerere mai vechi apărută va fi întârziată

SSFSSF

● pentru un disc având multe cereri, brațul tinde să
rămână în mijlocul discului

● cererile pentru cilindri aflați la extremități vor avea
un timp de răspuns foarte prost

Algoritmul lifuluiAlgoritmul lifului

● problema planificării brațului este asemănătoare
planificării cererilor pentru un lif

● lifurile folosesc un algoritm care este un
compromis între eficiență și fairness

● se mișcă brațul într-o direcție până când nu mai
există cereri în acea direcție

● avem nevoie de un direction bit (up sau down)
● după fiecare cerere discul verifică acest bit și mută

brațul în direcția corespunzătoare la următoare
cerere

Algoritmul lifuluiAlgoritmul lifului

● dacă nu mai există cereri în direcția aceea, bitul de
direcție va fi inversat

● ex. (precedent)

seek time total – 60 cilindri (bit iniţial up)

seek time total – 45 cilindri (bit iniţial down)
● în mod uzual algoritmul este mai slab decât SSF,

dar există și multe excepții
● pentru foarte multe cereri limita superioară a

numărului de cilindri pe care trebuie să parcurgă
pentru secvența respectivă este jumătate din
numărul total al cilindrilor

4.4. Securitatea sistemelor de fișiere4.4. Securitatea sistemelor de fișiere

● securitate: problema generală a protecției
informației împotriva accesului neautorizat

● mecanisme de protecție: mecanismele utilizate de
un sistem de protecție la accesul neautorizat

● aspecte ale securității:
– pierderea datelor
– intruși

Pierderea datelorPierderea datelor

● cauze comune ale pierderii datelor
– catastrofe
– erori hardware sau sofware: benzi și discuri ce nu mai

pot fi citite, erori în program
– erori umane: montarea incorectă a discurilor sau

benzilor, rularea greșita a unor programe

● se contracarează prin menținerea unor backupuri

Problema intrușilorProblema intrușilor

● tipuri de intruși:
– pasivi: doar citesc date la care nu au acces în mod

normal
– activi: efectuează modificări neautorizate asupra

anumitor date

● categorii de intruși:
– nespecialiști: citesc fișierele neprotejate ale altor

utilizatori
– specialiști: consideră spargerea unui sistem ca o

provocare profesională
– oameni care încearcă să facă bani
– spioni

Probleme celebre în securitatea Probleme celebre în securitatea
sistemelorsistemelor

● link la /etc/passwd
– intrusul va forța un core dump la un program setuid și

citește din fișierul core începutul fișierului /etc/passwd

● mkdir
– programul mkdir creează un director ca root după care

realizează chown la user
– dacă sistemul este lent se poate șterge i-nodul pentru

noul director și făcut un link către /etc/passwd

The Internet WormThe Internet Worm

● lansat în 2 noiembrie 1988 de Robert Tappan
Morris, student la Cornell University

● se folosea de 2 buguri descoperite de Morris în
sistemul BSD

● aceste buguri făceau posibil accesul neautorizat în
sistem

● când Worm intra în sistem, se autocopia, după care
folosind routing table, căuta alte mașini pe care
putea infecta

VirușiViruși

● un virus este un fragment de program care este
atașat unui program normal cu scopul de a infecta
și alte programe

● programul infectat trebuie rulat de un utilizator
autentificat pentru ca virusul să poate intra în
sistem

● după execuție virusul caută alte programe aflate în
sistem și le va infecta

● un virus poate infecta și sistemul de fișiere sau
chiar sistemul de operare, dacă a fost rulat cu
drepturi suficiente

Atacuri genericeAtacuri generice

● datele aflate pe disc care au aparținut unor fișiere
șterse, pot fi citite

● răspunsul sistemelor la apeluri de sistem ilegale
este imprevizibil

● apăsarea tastelor speciale în timpul procedurii de
login poate rezulta în login realizat în cazul unor
sisteme

● încercarea de a modifica structurile sistemului de
operare aflate în spațiul utilizator, de exemplu
structurile de date pasate la kernel

Atacuri genericeAtacuri generice

● realizarea unui program care să imite procesul
login

● identificarea în manualul sistemului operațiile
interzise (Do not do X) și efectuarea în mod repetat
a operațiilor respective

● convingerea administratorului de a permite unui
utilizator de trecerea peste anumite verificări

● social engineering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

