
  

Sisteme de operareSisteme de operare

– – curs 12 –curs 12 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.05.29 ș.l. dr. ing. Kertész Csaba-Zoltán



  

4. Sisteme de fișiere4. Sisteme de fișiere

● stocarea informației pe suporturi externe rezolvă 3 
probleme importante:
– posibilitatea stocării unei mari cantități de informație
– informația trebuie să se păstreze chiar dacă procesele 

care o utilizează s-au terminat
– posibilitatea proceselor de a accesa concurent 

informația

● informația va fi stocată pe suporturile externe în 
unități numite fișiere

● managementul fișierelor este realizat de SO 
– sistemul de fișiere (implementează fișierele și realizează 

organizarea, utilizarea, protecția lor)



  

4.1. Fișiere4.1. Fișiere

● analiza fișierelor din punctul de vedere al 
utilizatorului
– numele fișierelor
– structura fișierelor
– tipuri de fișiere
– accesul și operații asupra fișierelor
– organizarea fișierelor



  

4.1.1. Numele fișierelor4.1.1. Numele fișierelor

● fișierele asigură o modalitate de stocare a 
informației pe disc

● utilizatorul nu va trebui să cunoască detaliile de 
implementarea pentru a lucra cu fișiere

● el va referi un fișier printr-un nume
● numele de fișier va trebui să se supună unor reguli 

specifice fiecărui SO
● de obicei numele fișierelor conțin o extensie 

(folosită pentru a indica tipul sau utilizarea 
fișierului)



  

4.1.2. Structura fișierelor4.1.2. Structura fișierelor

● fișierele se pot stoca în 3 posibilități
– secvență de octeți (UNIX, DOS)
– secvență de înregistrări (sisteme cu cartele, CP/M)
– arbore de înregistrări (mainframe-uri pentru baze de 

date comerciale)
● se scrie o înregistrare specificând o cheie



  

4.1.3. Tipuri de fișiere4.1.3. Tipuri de fișiere

● în UNIX există 7 tipuri de fișiere
– fișier normal

● conține informații ale utilizatorilor

– director
● fișier care conține numele altor fișiere și pointeri la 

informațiile din respectivele fișiere

– fișiere speciale de tip caracter
● sunt asociate unor dispozitiv I/O de tip caracter (terminale, 

imprimante)

– fișiere speciale de tip bloc
● sunt asociate unor dispozitive I/O de tip bloc (disc, tape,...)



  

Tipuri de fișiereTipuri de fișiere

– FIFO (pipe)
● fișier special utilizat la comunicația între procese

– socket
● folosit pentru comunicație între procese în rețea

– legături simbolice
● tip special de fișier care conține numele altui fișier căruia îi 

este asociat legătura

● fișierele normale pot fi
– ASCII (linii de text, pot fi afișate de un editor)
– binare (nu pot fi citite ca și text, conține coduri binare 

diferite)



  

Fișier binar executabilFișier binar executabil

magic number
text size
data size
bss size

symbol table size
entry point

flags

text

data

relocation bits

symbol table

header

fişier executabil

header

object module

header

object module

header

object module

arhivă / bibliotecă



  

4.1.4. Accesul la datele dintr-un fișier4.1.4. Accesul la datele dintr-un fișier

● în sistemele actuale toate fișierele sunt cu acces 
aleator
– octeții sau înregistrările pot fi citite în orice ordine

● există fișiere cu acces secvențial
– de exemplu: benzi magnetice

4.1.5. Atributele unui fișier4.1.5. Atributele unui fișier
● SO asociază fiecărui fișier câteva atribute

– UID, GID, rwx, data (creării, modificării, ultimului 
acces)



  

4.1.6. Operații cu fișiere4.1.6. Operații cu fișiere

● apeluri sistem pentru lucrul cu fișiere
– create

● se creează un fișier care nu conține date (creat)

– delete
● fișierul este șters (remove, unlink)

– open
● înaintea utilizării unui fișier acesta trebuie deschis
● scopul este de a încărca atributele și lista adreselor de pe disc 

în memorie pentru accesul rapid la următoarele apeluri

– close
● când nu se mai utilizează un fișier atunci va trebui închis 

pentru a elibera memoria



  

Operații cu fișiereOperații cu fișiere

– read
● citirea datelor dintr-un fișier de la poziția curentă

– write
● scrierea unor date într-un fișier la poziția curentă

– append
● formă restricționată de scriere: datele vor fi scrise numai la 

sfârșit (O_APPEND)

– seek
● poziționarea deplasamentului într-un fișier (lseek)



  

Operații cu fișiereOperații cu fișiere

– get atributes
● preluarea atributelor unui fișier (stat, access)

– set atributes
● modificarea atributelor unui fișier (chown, chmod)

– rename
● schimbarea numelui unui fișier



  

4.2. Directoare4.2. Directoare

● sunt fișiere care conțin numele altor fișiere și 
pointeri la informațiile din respectivele fișiere

● un sistem de fișiere de obicei are o structură 
ierarhică
– arbore de directoare

● cale absolută: este formată din numele 
directoarelor ce trebuie parcurse de la rădăcină 
până la fișierul ce trebuie accesat

● cale relativă: este dată pornind de la directorul de 
lucru sau directorul curent



  

Apeluri de sistem pentru lucrul cu Apeluri de sistem pentru lucrul cu 
directoaredirectoare

– create
● creează un director având subdirectoarele . și .. (mkdir)

– delete
● șterge un director (rmdir)
● se poate șterge numai un director gol

– open
● pentru a putea citi un director (lista de fișiere conținute) el va 

trebui să fie deschis (opendir)

– close
● închide un director pentru a elibera memoria (closedir)



  

Apeluri de sistem pentru lucrul cu Apeluri de sistem pentru lucrul cu 
directoaredirectoare

– read
● permite citirea unui director (lista fișierelor) (readdir)

– rename
● redenumește un director

– link
● creează o legătură simbolică sau hard la un director

– unlink
● șterge o legătură pentru un director



  

4.3. Implementarea sistemelor de 4.3. Implementarea sistemelor de 
fișierefișiere

● folosirea fișierelor din punctul de vedere a SO

4.3.1. Implementarea fișierelor4.3.1. Implementarea fișierelor

● cea mai importantă problemă pe care trebuie 
rezolvat de SO: cum ținem evidența blocurilor care 
sunt asociate unui fișier



  

Alocarea continuăAlocarea continuă

● cea mai simplă schemă de alocare este să stocăm 
fiecare fișier pe disc ca un bloc continuu de date

● avantaje
● ușor de implementat, evidența blocurilor asociate unui fișier 

se poate ține foarte ușor (memorarea adresa de început a 
primului bloc)

● performanțe excelente deoarece întregul fișier poate fi citit 
realizând o singură căutare

● dezavantaje
● nu se poate utiliza dacă nu se specifică o limită a fișierului, 

SO va trebui să știe cât spațiu pe disc să aloce
● fragmentarea discului



  

Alocarea utilizând liste înlănțuiteAlocarea utilizând liste înlănțuite

● un fișier = listă înlănțuită de blocuri
● primul word a fiecărui bloc este utilizat ca pointer 

la următorul bloc, restul blocului va conține datele

● avantaje
● nu se pierde spațiu prin fragmentare deoarece orice bloc liber 

se poate utiliza pentru un fișier

● dezavantaje
● accesul aleator la datele din fișier este mai lentă
● pointerul va consuma câțiva octeți deci blocul nu va mai fi de 

dimensiune putere a lui 2

file block
0

file block
1

file block
2

file block
3

file block
4



  

Alocarea cu liste înlănțuite utilizând un Alocarea cu liste înlănțuite utilizând un 
indexindex

● elimină dezavantajele metodei anterioare
● se formează o tabelă sau index în memoria 

principală
● această tabelă va conține pointerii la blocuri
● avantaje

● blocurile pot avea dimensiuni puteri a lui 2
● accesul aleator este mai rapid (se fac doar accesări de 

memorie, nu și de disc)
● directorul va menține doar numărul primului bloc

● dezavantaje
● tabela trebuie să fie în memorie tot timpul



  

● se asociază fiecărui fișier o tabelă numită 
index‑node sau i-node care conține atributele 
fișierului și adresele de pe disc ale blocurilor care 
aparțin fișierului

● pentru fișiere mici adresele blocurilor sunt 
conținute în totalitate în i-node, dacă fișierul este 
mare se pot utiliza 1,2 sau 3 nivele de indirectare

● i-node-ul este încărcat în memorie atunci când este 
deschis fișierul

Alocare utilizând i-node-uriAlocare utilizând i-node-uri



  

I-node-uriI-node-uri

atribute



  

4.3.2. Implementarea directoarelor4.3.2. Implementarea directoarelor

● directoarele vor trebui să asigure informațiile 
necesare pentru regăsirea blocurilor de pe disc

● aceste informații depind de sistem astfel:
– pentru alocare continuă: adresa fișierului
– pentru alocare cu liste: numărul primului bloc
– pentru alocare cu i-node: numărul i-node-ului

● funcția unui director este de a realiza maparea 
între numele fișierelor și informațiile necesare 
pentru a localiza datele aparținând fișierelor



  

Exemple de implementarea a Exemple de implementarea a 
directoarelordirectoarelor

● MS-DOS

● UNIX

8 3 1 10 2 2 2 4

File name ext atr rezervat time date first block size

2 14

i-node nr. file name



  

Implementarea directoarelor UNIXImplementarea directoarelor UNIX

● toate informațiile despre tipul, mărimea, timpii, 
proprietar și blocurile de pe disc sunt conținute în 
i-node

● când se deschide un fișier sistemul primește 
numele său și va trebui să localizeze blocurile care 
îi aparțin

● sistemul localizează directorul „root”, care are o 
poziție fixată pe disc

● se determină i-node-ul corespunzător directorului 
și se caută numărul i-node-ului fișierului respectiv

● i-node-urile au o adresă fixă pe disc



  

4.3.3. Fișiere partajate4.3.3. Fișiere partajate

● este nevoie de partajarea unor fișiere între mai 
multi useri

● aceste fișiere partajate trebuie să apară în mai 
multe directoare

● conexiunea dintre directorul B și fișierul partajat se 
numește link

● la folosirea linkurilor sistemul de fișiere nu mai are 
o structură de arbore, ci o structură DAG (Directed 
Acyclic Graph)



  

Soluții pentru fișiere partajateSoluții pentru fișiere partajate

● directorul B pointează către i-node-ul fișierului 
partajat (hard link)

● sistemul creează un fișier de tip link care conține 
calea și numele fișierului partajat (symbolic link)

● legăturile hard prezintă anumite probleme:
– când proprietarul fișierului șterge fișierul, celălalt 

director va pointa către un i-node invalid

● se folosește contorul de legături



  

4.3.4. Managementul spațiului de pe 4.3.4. Managementul spațiului de pe 
discdisc

● există 2 strategii pentru a stoca un fișier  pe disc

1. se alocă o zonă continuă pe disc

2. fișierul este împărțit într-un număr de blocuri

● dezavantajul metodei 1. este că atunci când fișierul 
crește peste mărimea alocată, el va trebui mutat în 
altă zonă

● majoritatea sistemelor de fișiere utilizează a doua 
strategie



  

Mărimea bloculuiMărimea blocului

● o problemă importantă în proiectarea sistemelor de 
fișiere este alegerea dimensiunii blocului de pe disc

● candidați pentru unitatea de alocare sunt: un 
sector, o pistă sau un cilindru

● având o unitate de alocare mare (ex. cilindru) vom 
avea o fragmentare internă foarte mare

● având o unitate de alocare mică (ex. sector) un 
fișier va avea foarte multe blocuri, citirea unui fișier 
se va face foarte încet

● în mod uzual blocurile sunt de 512B–4kB 



  

Evidența blocurilor libereEvidența blocurilor libere

● se utilizează 2 metode
– utilizarea unei liste înlănțuite de blocuri care conțin 

numere de blocuri libere
● dacă avem blocuri de 1kB, ce pot conține 512 numere de 

blocuri libere, un disc de 20MB gol are nevoire de 40 de 
blocuri pentru stocarea numerelor

– utilizarea unui bitmap: fiecărui bloc de pe disc 
corespunde un bit din bitmap

● discul de 20MB are nevoie de 20Kb ~ 3 blocuri pentru bitmap


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

