Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

- curs 12 -

2012.05.29 s.l. dr. ing. Kertész Csaba-Zoltan



4. Sisteme de fisiere

stocarea informatiei pe suporturi externe rezolva 3
probleme importante:

— posibilitatea stocarii unei mari cantitati de informatie

— informatia trebuie sa se pastreze chiar daca procesele
care o utilizeaza s-au terminat

— posibilitatea proceselor de a accesa concurent
informatia

informatia va fi stocata pe suporturile externe in
unitati numite fisiere

managementul fisierelor este realizat de SO

— sistemul de fisiere (implementeaza fisierele si realizeaza
organizarea, utilizarea, protectia lor)



4.1. Fisiere

analiza fisierelor din punctul de vedere al
utilizatorului

— numele fisierelor

— structura fisierelor

— tipuri de fisiere

— accesul si operatii asupra fisierelor

— organizarea fisierelor



4.1.1. Numele fisierelor

* fisierele asigura o modalitate de stocare a
informatiei pe disc

e utilizatorul nu va trebui sa cunoasca detaliile de
implementarea pentru a lucra cu fisiere

el va referi un fisier printr-un nume

* numele de fisier va trebui sa se supuna unor reguli
specifice fiecarui SO

* de obicei numele fisierelor contin o extensie
(folosita pentru a indica tipul sau utilizarea
fisierului)



4.1.2. Structura fisierelor

* fisierele se pot stoca in 3 posibilitati
— secventa de octeti (UNIX, DOS)

— secventa de inregistrari (sisteme cu cartele, CP/M)

— arbore de inregistrari (mainframe-uri pentru baze de
date comerciale)

* se scrie o inregistrare specificand o cheie



4.1.3. Tipuri de fisiere

* in UNIX exista 7 tipuri de fisiere

— fisier normal
 contine informatii ale utilizatorilor
— director

e fisier care contine numele altor fisiere si pointeri la
informatiile din respectivele fisiere

— fisiere speciale de tip caracter

* sunt asociate unor dispozitiv I/O de tip caracter (terminale,
imprimante)

— fisiere speciale de tip bloc

* sunt asociate unor dispozitive I/O de tip bloc (disc, tape,...)



Tipuri de fisiere

— FIFO (pipe)

e fisier special utilizat la comunicatia intre procese
— socket

e folosit pentru comunicatie intre procese in retea
— legaturi simbolice

* tip special de fisier care contine numele altui fisier caruia fi
este asociat legatura

* fisierele normale pot fi

— ASCII (linii de text, pot fi afisate de un editor)

— binare (nu pot fi citite ca si text, contine coduri binare

diferite)



Fisier binar executabil

magic number
text size header
data size

bss size
header < symbol table size

object module

entry point

flags header

text
object module

data header

relocation bits

object module
symbol table

fisier executabil arhiva / biblioteca



4.1.4. Accesul la datele dintr-un fisier

* in sistemele actuale toate fisierele sunt cu acces
aleator

— octetii sau inregistrarile pot fi citite in orice ordine
e exista fisiere cu acces secvential

— de exemplu: benzi magnetice

4.1.5. Atributele unui fisier

* SO asociaza fiecarui fisier cateva atribute

- UID, GID, rwx, data (crearii, modificarii, ultimului
acces)



4.1.6. Operatii cu fisiere

» apeluri sistem pentru lucrul cu fisiere

— create
* se creeaza un fisier care nu contine date (creat)
— delete
o fisierul este sters (remove, unlink)
— open
* Tnaintea utilizarii unui fisier acesta trebuie deschis

* scopul este de a incarca atributele si lista adreselor de pe disc
in memorie pentru accesul rapid la urmatoarele apeluri

— close

e cand nu se mai utilizeaza un fisier atunci va trebui inchis
pentru a elibera memoria



Operatii cu fisiere

read

e citirea datelor dintr-un fisier de la pozitia curenta
write

e scrierea unor date intr-un fisier la pozitia curenta
append

» forma restrictionata de scriere: datele vor fi scrise numai la
sfarsit (O_APPEND)

seek

e pozitionarea deplasamentului intr-un fisier (Iseek)



Operatii cu fisiere

— get attributes

e preluarea atributelor unui fisier (stat, access)
— set attributes

* modificarea atributelor unui fisier (chown, chmod)
— Féename

e schimbarea numelui unui fisier



4.2. Directoare

sunt fisiere care contin numele altor fisiere si
pointeri la informatiile din respectivele fisiere

un sistem de fisiere de obicei are o structura
ierarhica

— arbore de directoare

cale absoluta: este formata din numele
directoarelor ce trebuie parcurse de la radacina
pana la fisierul ce trebuie accesat

cale relativa: este data pornind de la directorul de
lucru sau directorul curent



Apeluri de sistem pentru lucrul cu
directoare

— Create
e creeaza un director avand subdirectoarele . si .. (mkdir)
— delete

e sterge un director (rmdir)

* se poate sterge numai un director gol
— open

* pentru a putea citi un director (lista de fisiere continute) el va
trebui sa fie deschis (opendir)

— close

* inchide un director pentru a elibera memoria (closedir)



Apeluri de sistem pentru lucrul cu
directoare

- read

» permite citirea unui director (lista fisierelor) (readdir)
— rename

* redenumeste un director

- link

* creeaza o legatura simbolica sau hard la un director

— unlink

* sterge o legatura pentru un director



4.3. Implementarea sistemelor de
fisiere

* folosirea fisierelor din punctul de vedere a SO

4.3.1. Implementarea fisierelor

* cea mai importanta problema pe care trebuie
rezolvat de SO: cum tinem evidenta blocurilor care
sunt asociate unui fisier



Alocarea continua

* cea mai simpla schema de alocare este sa stocam
fiecare fisier pe disc ca un bloc continuu de date

e avantaje

 usor de implementat, evidenta blocurilor asociate unui fisier
se poate tine foarte usor (memorarea adresa de inceput a
primului bloc)

» performante excelente deoarece intregul fisier poate fi citit
realizand o singura cautare

e dezavantaje

* nu se poate utiliza daca nu se specifica o limita a fisierului,
SO va trebui sa stie cat spatiu pe disc sa aloce

 fragmentarea discului



Alocarea utilizand liste inlantuite

 un fisier = lista inlantuita de blocuri

* primul word a fiecarui bloc este utilizat ca pointer
la urmatorul bloc, restul blocului va contine datele

> > > >
file block file block file block file block file block
0 1 2 3 4
e avantaje

* nu se pierde spatiu prin fragmentare deoarece orice bloc liber
se poate utiliza pentru un fisier

e dezavantaje

 accesul aleator la datele din fisier este mai lenta

* pointerul va consuma cativa octeti deci blocul nu va mai fi de
dimensiune putere a lui 2



Alocarea cu liste inlantuite utilizand un
index

e elimina dezavantajele metodei anterioare

* se formeaza o tabela sau index Tn memoria
principala

* aceasta tabela va contine pointerii la blocuri

e avantaje

* blocurile pot avea dimensiuni puteri a lui 2

 accesul aleator este mai rapid (se fac doar accesari de
memorie, nu si de disc)

e directorul va mentine doar numarul primului bloc
e dezavantaje

* tabela trebuie sa fie in memorie tot timpul



Alocare utilizand i-node-uri

* se asociaza fiecarui fisier o tabela numita
index-node sau i-node care contine atributele
fisierului si adresele de pe disc ale blocurilor care
apartin fisierului

e pentru fisiere mici adresele blocurilor sunt
continute in totalitate in i-node, daca fisierul este
mare se pot utiliza 1,2 sau 3 nivele de indirectare

e i-node-ul este Incarcat in memorie atunci cand este
deschis fisierul



I-node-uri

atribute




4.3.2. Implementarea directoarelor

e directoarele vor trebui sa asigure informatiile
necesare pentru regasirea blocurilor de pe disc

e aceste informatii depind de sistem astfel:

— pentru alocare continua: adresa fisierului

— pentru alocare cu liste: numarul primului bloc

— pentru alocare cu i-node: numarul i-node-ului

e functia unui director este de a realiza maparea
intre numele fisierelor si informatiile necesare
pentru a localiza datele apartinand fisierelor



Exemple de implementarea a

®
directoarelor
e MS-DOS
3 , 3 1 10 22 2 , 4
File name ‘ ext ‘attr‘ rezervat ‘ time ‘ date ‘first block‘ size

e UNIX
2 14
i-node nr. file name




Implementarea directoarelor UNIX

toate informatiile despre tipul, marimea, timpii,
proprietar si blocurile de pe disc sunt continute in
i-node

cand se deschide un fisier sistemul primeste
numele sau si va trebui sa localizeze blocurile care
11 apartin

o o v . b
sistemul localizeaza directorul ,,root”, care are o
pozitie fixata pe disc

se determina i-node-ul corespunzator directorului
si se cauta numarul i-node-ului fisierului respectiv

i-node-urile au o adresa fixa pe disc



4.3.3. Fisiere partajate

este nevoie de partajarea unor fisiere intre mai
multi useri

aceste fisiere partajate trebuie sa apara in mai
multe directoare

conexiunea dintre directorul B si fisierul partajat se
numeste link

la folosirea linkurilor sistemul de fisiere nu mai are
o structura de arbore, ci o structura DAG (Directed
Acyclic Graph)



Solutii pentru fisiere partajate

directorul B pointeaza catre i-node-ul fisierului
partajat (hard link)

sistemul creeaza un fisier de tip link care contine
calea si numele fisierului partajat (symbolic link)

legaturile hard prezinta anumite probleme:

— cand proprietarul fisierului sterge fisierul, celalalt
director va pointa catre un i-node invalid

se foloseste contorul de legaturi



4.3.4. Managementul spatiului de pe
disc
» exista 2 strategii pentru a stoca un fisier pe disc

1. se aloca o zona continua pe disc

2. fisierul este impartit intr-un numar de blocuri

e dezavantajul metodei 1. este ca atunci cand fisierul
creste peste marimea alocata, el va trebui mutat in
alta zona

* majoritatea sistemelor de fisiere utilizeaza a doua
strategie



Marimea blocului

o problema importanta in proiectarea sistemelor de
fisiere este alegerea dimensiunii blocului de pe disc

candidati pentru unitatea de alocare sunt: un
sector, o pista sau un cilindru

avand o unitate de alocare mare (ex. cilindru) vom
avea o fragmentare interna foarte mare

avand o unitate de alocare mica (ex. sector) un
fisier va avea foarte multe blocuri, citirea unui fisier
se va face foarte incet

n mod uzual blocurile sunt de 512B-4kB



Evidenta blocurilor libere

e se utilizeaza 2 metode

— utilizarea unei liste inlantuite de blocuri care contin
numere de blocuri libere

e daca avem blocuri de 1kB, ce pot contine 512 numere de
blocuri libere, un disc de 20MB gol are nevoire de 40 de
blocuri pentru stocarea numerelor

— utilizarea unui bitmap: fiecarui bloc de pe disc
corespunde un bit din bitmap

* discul de 20MB are nevoie de 20Kb ~ 3 blocuri pentru bitmap



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

