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4. Sisteme de fisiere

stocarea informatiei pe suporturi externe rezolva 3
probleme importante:

— posibilitatea stocarii unei mari cantitati de informatie

— informatia trebuie sa se pastreze chiar daca procesele
care o utilizeaza s-au terminat

— posibilitatea proceselor de a accesa concurent
informatia

informatia va fi stocata pe suporturile externe in
unitati numite fisiere

managementul fisierelor este realizat de SO

— sistemul de fisiere (implementeaza fisierele si realizeaza
organizarea, utilizarea, protectia lor)



4.1. Fisiere

analiza fisierelor din punctul de vedere al
utilizatorului

— numele fisierelor

— structura fisierelor

— tipuri de fisiere

— accesul si operatii asupra fisierelor

— organizarea fisierelor



4.1.1. Numele fisierelor

* fisierele asigura o modalitate de stocare a
informatiei pe disc

e utilizatorul nu va trebui sa cunoasca detaliile de
implementarea pentru a lucra cu fisiere

el va referi un fisier printr-un nume

* numele de fisier va trebui sa se supuna unor reguli
specifice fiecarui SO

* de obicei numele fisierelor contin o extensie
(folosita pentru a indica tipul sau utilizarea
fisierului)



4.1.2. Structura fisierelor

* fisierele se pot stoca in 3 posibilitati
— secventa de octeti (UNIX, DOS)

— secventa de inregistrari (sisteme cu cartele, CP/M)

— arbore de inregistrari (mainframe-uri pentru baze de
date comerciale)

* se scrie o inregistrare specificand o cheie



4.1.3. Tipuri de fisiere

* in UNIX exista 7 tipuri de fisiere

— fisier normal
 contine informatii ale utilizatorilor
— director

e fisier care contine numele altor fisiere si pointeri la
informatiile din respectivele fisiere

— fisiere speciale de tip caracter

* sunt asociate unor dispozitiv I/O de tip caracter (terminale,
imprimante)

— fisiere speciale de tip bloc

* sunt asociate unor dispozitive I/O de tip bloc (disc, tape,...)



Tipuri de fisiere

— FIFO (pipe)

e fisier special utilizat la comunicatia intre procese
— socket

e folosit pentru comunicatie intre procese in retea
— legaturi simbolice

* tip special de fisier care contine numele altui fisier caruia fi
este asociat legatura

* fisierele normale pot fi

— ASCII (linii de text, pot fi afisate de un editor)

— binare (nu pot fi citite ca si text, contine coduri binare

diferite)



Fisier binar executabil

magic number
text size header
data size

bss size
header < symbol table size

object module

entry point

flags header

text
object module

data header

relocation bits

object module
symbol table

fisier executabil arhiva / biblioteca



4.1.4. Accesul la datele dintr-un fisier

* in sistemele actuale toate fisierele sunt cu acces
aleator

— octetii sau inregistrarile pot fi citite in orice ordine
e exista fisiere cu acces secvential

— de exemplu: benzi magnetice

4.1.5. Atributele unui fisier

* SO asociaza fiecarui fisier cateva atribute

- UID, GID, rwx, data (crearii, modificarii, ultimului
acces)



4.1.6. Operatii cu fisiere

» apeluri sistem pentru lucrul cu fisiere

— create
* se creeaza un fisier care nu contine date (creat)
— delete
o fisierul este sters (remove, unlink)
— open
* Tnaintea utilizarii unui fisier acesta trebuie deschis

* scopul este de a incarca atributele si lista adreselor de pe disc
in memorie pentru accesul rapid la urmatoarele apeluri

— close

e cand nu se mai utilizeaza un fisier atunci va trebui inchis
pentru a elibera memoria



Operatii cu fisiere

read

e citirea datelor dintr-un fisier de la pozitia curenta
write

e scrierea unor date intr-un fisier la pozitia curenta
append

» forma restrictionata de scriere: datele vor fi scrise numai la
sfarsit (O_APPEND)

seek

e pozitionarea deplasamentului intr-un fisier (Iseek)



Operatii cu fisiere

— get attributes

e preluarea atributelor unui fisier (stat, access)
— set attributes

* modificarea atributelor unui fisier (chown, chmod)
— Féename

e schimbarea numelui unui fisier



4.2. Directoare

sunt fisiere care contin numele altor fisiere si
pointeri la informatiile din respectivele fisiere

un sistem de fisiere de obicei are o structura
ierarhica

— arbore de directoare

cale absoluta: este formata din numele
directoarelor ce trebuie parcurse de la radacina
pana la fisierul ce trebuie accesat

cale relativa: este data pornind de la directorul de
lucru sau directorul curent



Apeluri de sistem pentru lucrul cu
directoare

— Create
e creeaza un director avand subdirectoarele . si .. (mkdir)
— delete

e sterge un director (rmdir)

* se poate sterge numai un director gol
— open

* pentru a putea citi un director (lista de fisiere continute) el va
trebui sa fie deschis (opendir)

— close

* inchide un director pentru a elibera memoria (closedir)



Apeluri de sistem pentru lucrul cu
directoare

- read

» permite citirea unui director (lista fisierelor) (readdir)
— rename

* redenumeste un director

- link

* creeaza o legatura simbolica sau hard la un director

— unlink

* sterge o legatura pentru un director



4.3. Implementarea sistemelor de
fisiere

* folosirea fisierelor din punctul de vedere a SO

4.3.1. Implementarea fisierelor

* cea mai importanta problema pe care trebuie
rezolvat de SO: cum tinem evidenta blocurilor care
sunt asociate unui fisier



Alocarea continua

* cea mai simpla schema de alocare este sa stocam
fiecare fisier pe disc ca un bloc continuu de date

e avantaje

 usor de implementat, evidenta blocurilor asociate unui fisier
se poate tine foarte usor (memorarea adresa de inceput a
primului bloc)

» performante excelente deoarece intregul fisier poate fi citit
realizand o singura cautare

e dezavantaje

* nu se poate utiliza daca nu se specifica o limita a fisierului,
SO va trebui sa stie cat spatiu pe disc sa aloce

 fragmentarea discului



Alocarea utilizand liste inlantuite

 un fisier = lista inlantuita de blocuri

* primul word a fiecarui bloc este utilizat ca pointer
la urmatorul bloc, restul blocului va contine datele

> > > >
file block file block file block file block file block
0 1 2 3 4
e avantaje

* nu se pierde spatiu prin fragmentare deoarece orice bloc liber
se poate utiliza pentru un fisier

e dezavantaje

 accesul aleator la datele din fisier este mai lenta

* pointerul va consuma cativa octeti deci blocul nu va mai fi de
dimensiune putere a lui 2



Alocarea cu liste inlantuite utilizand un
index

e elimina dezavantajele metodei anterioare

* se formeaza o tabela sau index Tn memoria
principala

* aceasta tabela va contine pointerii la blocuri

e avantaje

* blocurile pot avea dimensiuni puteri a lui 2

 accesul aleator este mai rapid (se fac doar accesari de
memorie, nu si de disc)

e directorul va mentine doar numarul primului bloc
e dezavantaje

* tabela trebuie sa fie in memorie tot timpul



Alocare utilizand i-node-uri

* se asociaza fiecarui fisier o tabela numita
index-node sau i-node care contine atributele
fisierului si adresele de pe disc ale blocurilor care
apartin fisierului

e pentru fisiere mici adresele blocurilor sunt
continute in totalitate in i-node, daca fisierul este
mare se pot utiliza 1,2 sau 3 nivele de indirectare

e i-node-ul este Incarcat in memorie atunci cand este
deschis fisierul



I-node-uri

atribute




4.3.2. Implementarea directoarelor

e directoarele vor trebui sa asigure informatiile
necesare pentru regasirea blocurilor de pe disc

e aceste informatii depind de sistem astfel:

— pentru alocare continua: adresa fisierului

— pentru alocare cu liste: numarul primului bloc

— pentru alocare cu i-node: numarul i-node-ului

e functia unui director este de a realiza maparea
intre numele fisierelor si informatiile necesare
pentru a localiza datele apartinand fisierelor



Exemple de implementarea a

®
directoarelor
e MS-DOS
3 , 3 1 10 22 2 , 4
File name ‘ ext ‘attr‘ rezervat ‘ time ‘ date ‘first block‘ size

e UNIX
2 14
i-node nr. file name




Implementarea directoarelor UNIX

toate informatiile despre tipul, marimea, timpii,
proprietar si blocurile de pe disc sunt continute in
i-node

cand se deschide un fisier sistemul primeste
numele sau si va trebui sa localizeze blocurile care
11 apartin

o o v . b
sistemul localizeaza directorul ,,root”, care are o
pozitie fixata pe disc

se determina i-node-ul corespunzator directorului
si se cauta numarul i-node-ului fisierului respectiv

i-node-urile au o adresa fixa pe disc



4.3.3. Fisiere partajate

este nevoie de partajarea unor fisiere intre mai
multi useri

aceste fisiere partajate trebuie sa apara in mai
multe directoare

conexiunea dintre directorul B si fisierul partajat se
numeste link

la folosirea linkurilor sistemul de fisiere nu mai are
o structura de arbore, ci o structura DAG (Directed
Acyclic Graph)



Solutii pentru fisiere partajate

directorul B pointeaza catre i-node-ul fisierului
partajat (hard link)

sistemul creeaza un fisier de tip link care contine
calea si numele fisierului partajat (symbolic link)

legaturile hard prezinta anumite probleme:

— cand proprietarul fisierului sterge fisierul, celalalt
director va pointa catre un i-node invalid

se foloseste contorul de legaturi



4.3.4. Managementul spatiului de pe
disc
» exista 2 strategii pentru a stoca un fisier pe disc

1. se aloca o zona continua pe disc

2. fisierul este impartit intr-un numar de blocuri

e dezavantajul metodei 1. este ca atunci cand fisierul
creste peste marimea alocata, el va trebui mutat in
alta zona

* majoritatea sistemelor de fisiere utilizeaza a doua
strategie



Marimea blocului

o problema importanta in proiectarea sistemelor de
fisiere este alegerea dimensiunii blocului de pe disc

candidati pentru unitatea de alocare sunt: un
sector, o pista sau un cilindru

avand o unitate de alocare mare (ex. cilindru) vom
avea o fragmentare interna foarte mare

avand o unitate de alocare mica (ex. sector) un
fisier va avea foarte multe blocuri, citirea unui fisier
se va face foarte incet

n mod uzual blocurile sunt de 512B-4kB



Evidenta blocurilor libere

e se utilizeaza 2 metode

— utilizarea unei liste inlantuite de blocuri care contin
numere de blocuri libere

e daca avem blocuri de 1kB, ce pot contine 512 numere de
blocuri libere, un disc de 20MB gol are nevoire de 40 de
blocuri pentru stocarea numerelor

— utilizarea unui bitmap: fiecarui bloc de pe disc
corespunde un bit din bitmap

* discul de 20MB are nevoie de 20Kb ~ 3 blocuri pentru bitmap
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