

Sisteme de operareSisteme de operare

– – curs 11 –curs 11 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.05.22 ș.l. dr. ing. Kertész Csaba-Zoltán

3.6.4. Considerații privind 3.6.4. Considerații privind
implementarea sistemelor de paginare implementarea sistemelor de paginare

a memorieia memoriei

● proiectantul unui sistem de paginare va trebui să
aleagă:
– algoritmul de înlocuire a paginilor
– strategia de alocare a paginilor (locală sau globală)
– utilizarea soluției de tip demand paging sau

prepaginare

● mai există câteva probleme practice legate de
implementare

Instruction BackupInstruction Backup

● când un program accesează o pagină care nu este
în memorie, instrucțiunea care a cauzat page fault
este oprită din execuție și se va executa un trap

● după ce SO a încărcat pagina necesară va trebui să
reexecute instrucțiunea care a cauzat page fault

● acest lucru este foarte greu de implementat

Instruction BackupInstruction Backup

● de exemplu o instrucțiune de transfer din memorie
din M680000
– move.l #6(A1), 2(A0)
– instructiunea are 6 byte

● depinzând de care din referințele la memorie (cea
pentru opcode, primul operand sau al doilea) a
cauzat page fault ultima valoare pentru PC poate fi
1000, 1002, 1004

● SO nu poate determina unde începe instrucțiunea

opcode
1002
1004

1000
operand 1
operand 2

move
6
2

Blocarea paginilor în memorieBlocarea paginilor în memorie

● vom lua în considerare interacțiunea între
operațiile I/O și sistemul de memorie virtuală

● de ex.:
– un proces care execută un apel sistem (read) pentru a

citi dintr-un fișier sau device într-un bufer din spațiul
său de adrese

– în timp ce procesul așteaptă terminarea operației I/O,
procesul este suspendat, și controlul este dat altui
proces

– noul proces va cauza un page fault
– algoritmul de paginare este global

Blocarea paginilor în memorieBlocarea paginilor în memorie

● există șansa că pagina conținând buferul I/O să fie
eliminată din memorie

● în același timp se execută un transfer DMA către
acest bufer, dar pagina fiind înlocuită, transferul
nu va avea loc către bufer

● soluții:
– blocarea paginilor angajate în operații I/O în memorie
– realizarea tuturor operațiilor I/O în buferele din kernel,

apoi transferarea datelor în paginile proceselor

Partajarea paginilorPartajarea paginilor

● în sistemele timesharing este avantajoasă utilizarea
unor pagini partajate

● de exemplu dacă mai mulți utilizatori execută un
program, e avantajos să avem o singură copie a
codului executat

● paginile de date nu pot fi partajate!
● chiar și în cazul paginilor care conțin cod apare o

problemă:
– la schimbarea proceselor toate paginile vor fi eliminate,

și celălalt proces va genera page faulturi
– paginile partajate nu trebuie eliminate

Paging DaemonsPaging Daemons

● majoritatea implementărilor sistemelor de paginare
utilizează un daemon numit paging daemon

● aceasta doarme în majoritatea timpului, dar devine
activ periodic pentru a inspecta starea memoriei

● dacă există puține page frame-uri libere, daemonul
va selecta câteva pentru a le elimina din memorie
(pe baza unui algoritm de înlocuire a paginilor)

● menținând câteva page frame libere =>
performanțe mai bune

Secvența de evenimente la apariția Secvența de evenimente la apariția
unui page faultunui page fault

1. se execută un trap, se salvează PC în stivă, la unele
CPU se salvează informațiile despre starea
instrucțiunii curente în registre speciale

2. se execută o rutină în asamblare pentru a salva
regiștrii de uz general și alte informații, rutina
execută un apel către kernel

3.SO determină faptul că a apărut un page fault și
încearcă să descopere ce pagină virtuală este
necesară (din registre speciale sau prin încărcarea
instrucțiunii și analizarea operanzilor)

Secvența de evenimente la apariția Secvența de evenimente la apariția
unui page faultunui page fault

4.SO cunoaște adresa virtuală necesară și o verifică
dacă e validă
– se verifică dacă protecția zonei de memorie respectivă

este consistentă cu accesul
● dacă nu: se trimite procesului un semnal sau procesul este

omorât
● dacă da: SO încearcă obținerea unui page frame liber

– dacă nu există nici un page frame liber, se execută o
rutină ce implementează un algoritm de înlocuire a
paginilor pentru a selecta pagina care va fi înlocuit

Secvența de evenimente la apariția Secvența de evenimente la apariția
unui page faultunui page fault

5. dacă pagina aleasă a fost modificată, ea va fi
planificat pentru a fi transferată pe disc și se
execută comutarea proceselor
– procesul care a cauzat page fault e suspendat până când

pagina e transferată în memorie
– cât timp are loc transferul, frame-ul ales este marcat ca

fiind ocupat, pentru a nu fi utilizat de alt proces

6. după eliberarea page-frame-ului, SO determină
adresa de pe disc unde se află pagina cerută și
planifică o operație cu discul pentru a aduce în
memorie

Secvența de evenimente la apariția Secvența de evenimente la apariția
unui page faultunui page fault

7. întreruperea de disc va semnala că pagina a fost
transferată
– tabela de pagini este actualizată iar page-frame-ul în

care a fost plasat e marcat ca fiind în starea normală

8. PC este setat pentru a arăta pe instrucțiunea care
a cauzat page fault-ul

9. procesul care a cauzat page fault-ul este planificat
și se revine în rutina care a apelat kernelul

10. rutina reface regiștrii și celelalte informații pe
care le-a salvat anterior și continuă execuția

3.7. Segmentarea3.7. Segmentarea

● memoria virtuală realizată prin paginare este
unidimensională, deoarece adresele cresc de la 0
până la o adresă maximă
– există un singur spațiu de adrese

● pentru a evita unele probleme este bine să avem 2
sau mai multe spatii de adrese
– de ex. dacă un program lucrează cu multe tabele

dinamice, una din tabele poate să crească peste spațiul
alocat

● o soluție generală, elegantă este să creăm spatii de
adrese independente => segmente

SegmenteSegmente

● fiecare segment constă dintr-o secvență liniară de
adrese, de la 0 până la dimensiunea maximă a
segmentului

● lungimea segmentului poate fi între 0 și
dimensiunea maximă permisă

● segmentele vor avea dimensiuni diferite
● dimensiunea segmentelor se poate modifica în

timpul execuției
– de ex.: stiva: segmentul crește când se adaugă în stivă, și

scade când se extrage din stivă

SegmenteSegmente

● deoarece fiecare segment are un spațiu de adrese
independente, segmentele pot să crească
independent fără să se afecteze între ele

● pentru a specifica o adresă pentru o memorie
virtuală utilizând segmentarea vom utiliza 2
componente
– un număr de segment
– o adresă în cadrul segmentului

● de obicei un segment are un singur scop: segment
de date, segment de cod, segment de stivă

Avantajele segmentăriiAvantajele segmentării

● segmentarea facilitează partajarea procedurilor sau
datelor între mai multe procese

● ex.: shared object (.so)
– bibliotecile comune pot fi plasate într-un segment care

va fi partajat de mai multe procese

● segmentele pot avea diferite tipuri de protecții:
– segmentul de cod poate fi numai executat
– segmentul de date poate fi citit/scris, nu și executat

Paginare vs. SegmentarePaginare vs. Segmentare

utilizarea metodei este transparentă
utilizatorului?

danu

câte spații liniare de adrese există multe1

spațiul de adrese poate depăși
dimensiunea memoriei fizice?

dada

este adaptabil la modificarea
dimensiunii datelor conținute?

danu

se poate realiza distincția și protecția
între cod și date?

danu

se poate partaja cod? danu

paginare segm.

Implementarea segmentăriiImplementarea segmentării

● implementarea segmentării diferă de
implementarea paginării prin faptul că paginile au
dimensiuni fixe, iar segmentele nu

● datorită dimensiunilor diferite pot apare
fragmentarea
– necesită compactarea memoriei

● există implementări care utilizează și segmentare și
paginare: se combină avantajele celor două
– mărimea uniformă a paginilor, utilizare mai eficientă a

memoriei, ușurință în programare, protecție

Segmentare la i386Segmentare la i386

● 16k segmente de 4GB fiecare => 64TB dimensiunea
maximă a memoriei virtuale

● nu este important numărul de segmente ci
dimensiunea lor: puține programe folosesc un
număr mare de segmente, dar multe programe
folosesc segmente de ordinul MB

● pentru a implementa memoria virtuală se utilizează
2 tabele
– LDT (Local Descriptor Table)
– GDT (Global Descriptor Table)

Segmentarea la i386Segmentarea la i386

● fiecare program are propriul LDT, dar există un
singur GDT partajat de toate programele

● LDT descrie segmentele locale fiecărui program
(codul, date și stiva), iar GDT descrie segmentele
sistem (codul SO)

● pentru a accesa un segment procesorul încarcă un
selector în unul din cei 6 regiștri de segment (CS,
DS, SS, ES, FS, GS)

● selectorul: index GDT/LDT privilege level

13 1 2

Segmentarea la i386Segmentarea la i386

● indexul reprezintă un deplasament în GDT sau LDT
(fiecare tabelă poate descrie 8k segmente)

● descriptorul 0 nu va fi utilizat
● descriptorul de segment:

base 0:15 limit 0:15

lim.16:19 base 16:23base 24:31 G D G DPL Type

0: lim. is in byte
1: lim. is in page

0: 16 bit segm.
1: 32 bit segm.

0: segm. absent
1: segm. prezent

privilege level

segm. type protection

Segmentarea la i386Segmentarea la i386

● se folosește indexul pentru a găsi descriptorul de
segment

● se verifică dacă ofsetul nu depășește limita
segmentului

● se adună la bază ofsetul pentru a forma o adresă
liniară

● adresa liniară este tratată ca o adresă virtuală și
transmisă la MMU

● i386 permite 4 nivele de protecție, 0 cel mai
privilegiat, accesul la date de pe un nivel mai
prioritar nu este permis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

