Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

—-curs 11 -

2012.05.22 s.l. dr. ing. Kertész Csaba-Zoltan

3.6.4. Consideratii privind
implementarea sistemelor de paginare
a mernoriel

e proiectantul unui sistem de paginare va trebui sa
aleaga:
— algoritmul de inlocuire a paginilor
— strategia de alocare a paginilor (locala sau globala)

— utilizarea solutiei de tip demand paging sau
prepaginare

* mai exista cateva probleme practice legate de
implementare

Instruction Backup

e cand un program acceseaza o pagina care nu este
in memorie, instructiunea care a cauzat page fault
este oprita din executie si se va executa un trap

e dupa ce SO a incarcat pagina necesara va trebui sa
reexecute instructiunea care a cauzat page fault

» acest lucru este foarte greu de implementat

Instruction Backup

* de exemplu o instructiune de transfer din memorie

din M68000
— move.l #6(A1), 2(A0) 1000 [move
10042

— instructiunea are 6 byte

opcode
operand 1
operand 2

* depinzand de care din referintele la memorie (cea
pentru opcode, primul operand sau al doilea) a
cauzat page fault ultima valoare pentru PC poate fi

1000, 1002, 1004

e SO nu poate determina unde incepe instructiunea

Blocarea paginilor in memorie

e vom lua Tn considerare interactiunea intre
operatiile 1/0 si sistemul de memorie virtuala

e de ex.:

— un proces care executa un apel sistem (read) pentru a
citi dintr-un fisier sau device intr-un buffer din spatiul
sau de adrese

— in timp ce procesul asteapta terminarea operatiei 1/0,
procesul este suspendat, si controlul este dat altui
proces

— noul proces va cauza un page fault

— algoritmul de paginare este global

Blocarea paginilor in memorie

* exista sansa ca pagina continand bufferul I/O sa fie
eliminata din memorie

* Tn acelasi timp se executa un transfer DMA catre
acest buffer, dar pagina fiind inlocuita, transferul
nu va avea loc catre buffer

e solutii:

— blocarea paginilor angajate in operatii I/O in memorie

— realizarea tuturor operatiilor I/O in bufferele din kernel,
apoi transferarea datelor in paginile proceselor

Partajarea paginilor

in sistemele timesharing este avantajoasa utilizarea
unor pagini partajate

de exemplu daca mai multi utilizatori executa un
program, e avantajos sa avem o singura copie a
codului executat

paginile de date nu pot fi partajate!

chiar si Tn cazul paginilor care contin cod apare o
problema:

— la schimbarea proceselor toate paginile vor fi eliminate,
si celalalt proces va genera page faulturi

— paginile partajate nu trebuie eliminate

Paging Daemons

* majoritatea implementarilor sistemelor de paginare
utilizeaza un daemon numit paging daemon

e aceasta doarme in majoritatea timpului, dar devine
activ periodic pentru a inspecta starea memoriei

* daca exista putine page frame-uri libere, daemonul
va selecta cateva pentru a le elimina din memorie
(pe baza unui algoritm de inlocuire a paginilor)

* mentinand cateva page frame libere =>
performante mai bune

Secventa de evenimente la aparitia
unui page fault

1.se executa un trap, se salveaza PC in stiva, la unele
CPU se salveaza informatiile despre starea
instructiunii curente in registre speciale

2. se executa o rutina in asamblare pentru a salva
registrii de uz general si alte informatii, rutina
executa un apel catre kernel

3.5S0 determina faptul ca a aparut un page fault si
incearca sa descopere ce pagina virtuala este
necesara (din registre speciale sau prin incarcarea
instructiunii si analizarea operanzilor)

Secventa de evenimente la aparitia
unui page fault

4.S0O cunoaste adresa virtuala necesara si o verifica
daca e valida

— se verifica daca protectia zonei de memorie respectiva
este consistenta cu accesul

* daca nu: se trimite procesului un semnal sau procesul este
omorat

e daca da: SO incearca obtinerea unui page frame liber
— daca nu exista nici un page frame liber, se executa o

rutind ce implementeaza un algoritm de inlocuire a
paginilor pentru a selecta pagina care va fi inlocuit

Secventa de evenimente la aparitia
unui page fault

5. daca pagina aleasa a fost modificata, ea va fi
planificat pentru a fi transferata pe disc si se
executa comutarea proceselor

— procesul care a cauzat page fault e suspendat pana cand
pagina e transferata in memorie

— cat timp are loc transferul, frame-ul ales este marcat ca
fiind ocupat, pentru a nu fi utilizat de alt proces

6. dupa eliberarea page-frame-ului, SO determina
adresa de pe disc unde se afla pagina ceruta si
planifica o operatie cu discul pentru a aduce in
memorie

Secventa de evenimente la aparitia
unui page fault

7. intreruperea de disc va semnala ca pagina a fost

transferata

— tabela de pagini este actualizata iar page-frame-ul in
care a fost plasat e marcat ca fiind in starea normala

8. PC este setat pentru a arata pe instructiunea care

a cauzat page fault-ul

9. procesul care a cauzat page fault-ul este planificat

si se revine 1n rutina care a ape

10. rutina reface registrii si celela

at kernelul

te informatii pe

care le-a salvat anterior si continua executia

3.7. Segmentarea

 memoria virtuala realizata prin paginare este
unidimensionala, deoarece adresele cresc de la 0
pana la o adresa maxima

— exista un singur spatiu de adrese

* pentru a evita unele probleme este bine sa avem 2
sau mai multe spatii de adrese

— de ex. daca un program lucreaza cu multe tabele
dinamice, una din tabele poate sa creasca peste spatiul
alocat

* o solutie generala, eleganta este sa cream spatii de
adrese independente => segmente

Segmente

fiecare segment consta dintr-o secventa liniara de
adrese, de la 0 pana la dimensiunea maxima a
segmentului

lungimea segmentului poate fi intre 0 si
dimensiunea maxima permisa

segmentele vor avea dimensiuni diferite

dimensiunea segmentelor se poate modifica in
timpul executiei

— de ex.: stiva: segmentul creste cand se adauga in stiva, si
scade cand se extrage din stiva

Segmente

» deoarece fiecare segment are un spatiu de adrese
independente, segmentele pot sa creasca
independent fara sa se afecteze intre ele

* pentru a specifica o adresa pentru o memorie
virtuala utilizand segmentarea vom utiliza 2
componente

— un numar de segment

— 0 adresa in cadrul segmentului

e de obicei un segment are un singur scop: segment
de date, segment de cod, segment de stiva

Avantajele segmentarii

* segmentarea faciliteaza partajarea procedurilor sau
datelor intre mai multe procese

* ex.: shared object (.so0)

— bibliotecile comune pot fi plasate intr-un segment care
va fi partajat de mai multe procese

e segmentele pot avea diferite tipuri de protectii:

- segmentul de cod poate fi numai executat

- segmentul de date poate fi citit/scris, nu si executat

Paginare vs. Segmentare

paginare segm.

utilizarea metodei este transparenta nu da
utilizatorului?

cate spatii liniare de adrese exista 1 multe
spatiul de adrese poate depasi da da

dimensiunea memoriei fizice?

este adaptabil la modificarea nu da
dimensiunii datelor continute?

se poate realiza distinctia si protectia nu da
intre cod si date?

se poate partaja cod? nu da

Implementarea segmentarii

* implementarea segmentarii difera de
implementarea paginarii prin faptul ca paginile au
dimensiuni fixe, iar segmentele nu

» datorita dimensiunilor diferite pot apare
fragmentarea

— necesita compactarea memoriei

* exista implementari care utilizeaza si segmentare si
paginare: se combina avantajele celor doua

— marimea uniforma a paginilor, utilizare mai eficienta a
memoriel, usurinta in programare, protectie

Segmentare la i386

* 16k segmente de 4GB fiecare => 64TB dimensiunea
maxima a memoriei virtuale

* nu este important numarul de segmente ci
dimensiunea lor: putine programe folosesc un
numar mare de segmente, dar multe programe
folosesc segmente de ordinul MB

e pentru a implementa memoria virtuala se utilizeaza
2 tabele

— LDT (Local Descriptor Table)
— GDT (Global Descriptor Table)

Segmentarea la i386

 fiecare program are propriul LDT, dar exista un
singur GDT partajat de toate programele

e LDT descrie segmentele locale fiecarui program

(codul, date si stiva), iar GDT descrie segmentele
sistem (codul SO)

* pentru a accesa un segment procesorul incarca un

selector in unul din cei 6 registri de segment (CS,
DS, SS, ES, FS, GS)

13 1 2

e selectorul:

index ‘ GDT/LDT ‘ privilege level

Segmentarea la i386

* indexul reprezinta un deplasament in GDT sau LDT
(fiecare tabela poate descrie 8k segmente)

C

C

escriptorul 0 nu va fi utilizat
escriptorul de segment:
base 0:15 limit 0:15
base 24:31 ‘G‘D‘ ‘ ‘lim.16:19 G‘ DPL ‘ Type ‘ base 16:23

0: [im. is in byte

1: lim. is in page

0: 16 bit segm.

1: 32 bit segm.

BB

segm. type protection

privilege level

l: segm. prezent

0: segm. absent

Segmentarea la i386

se foloseste indexul pentru a gasi descriptorul de
segment

se verifica daca offsetul nu depaseste limita
segmentului

se aduna la baza offsetul pentru a forma o adresa
liniara

adresa liniara este tratata ca o adresa virtuala si
transmisa la MMU

1386 permite 4 nivele de protectie, 0 cel mai
privilegiat, accesul la date de pe un nivel mai
prioritar nu este permis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

