

Sisteme de operareSisteme de operare

– – curs 10 –curs 10 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.05.15 ș.l. dr. ing. Kertész Csaba-Zoltán

3.5. Modelarea algoritmilor de înlocuire 3.5. Modelarea algoritmilor de înlocuire
a paginilora paginilor

● intuitiv se pare că dacă vom avea mai multe page
frame-uri în memorie, numărul page fault-uri va fi
mai mic

nu este întotdeauna așa
● în 1969 Belady a descoperit un contraexemplu
● astfel fecare algoritm de înlocuire a paginilor

trebuie atent modelat pentru a măsura
performanțele

● s-a dezvoltat o întreagă teorie a algoritmilor de
paginare

3.5.1. Anomalia lui Belady3.5.1. Anomalia lui Belady

● algoritmul FIFO cauzează mai multe page fault-uri
dacă se folosesc 4 frame în loc de 3 frame-uri

● exemplu: un program cu 5 pagini virtuale, paginile
vor fi referite în ordinea 0 1 2 3 0 1 4 0 1 2 3 4
– FIFO cu 3 pagini cauzează 9 page fault, FIFO cu 4 pagini

cauzează 10 page fault

3.5.2. Algoritmi de tip 3.5.2. Algoritmi de tip stivăstivă

● fecare proces generează o secvență de referințe la
memorie

● fecare referință la memorie corespunde unei pagini
virtuale
– putem caracteriza referințele la memorie ale unui proces

printr-o listă de numere de pagini, listă numită
reference string

● pentru simplitate considerăm cazul unui singur
proces care rulează pe mașină
– astfel pentru fecare mașină avem un singur reference

string

Algoritmi de tip stivăAlgoritmi de tip stivă

● un sistem de paginare poate fi caracterizat prin trei
parametri
– reference string pentru procesul care se execută

– algoritmul de înlocuire a paginilor

– numărul m al page frame-urilor disponibile

● să ne imaginăm un interpretor care lucrează astfel
– menține un masiv M în care memorează starea

memoriei (dimensiunea M este n = numărul de pagini
virtuale pe care le utilizează procesul)

Modelul algoritmilor de tip stivăModelul algoritmilor de tip stivă

● M este împărțit în două:
– o parte va conține numărul paginilor care sunt în

memorie (m)

– a doua parte de dimensiune n-m conține paginile
virtuale care nu sunt în memorie

● inițial M este vid
● de exemplu utilizăm algoritmul LRU pentru 8

pagini virtuale și 4 page frame

Modelarea algoritmilorModelarea algoritmilor

reference string 0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 2 3 4
0 2 1 3 5 4 6 3 7 4 7 3 3 5 5 3 1 1 1 7 2 3 4

0 2 1 3 5 4 6 3 7 4 7 7 3 3 5 3 3 3 1 7 2 3
0 2 1 3 5 4 6 3 3 4 4 7 7 7 5 5 5 3 1 7 2

0 2 1 3 5 4 6 6 6 6 4 4 4 7 7 7 5 3 1 7
0 2 1 1 5 5 5 5 5 6 6 6 4 4 4 4 5 4 1

0 2 2 1 1 1 1 1 1 1 1 6 6 6 6 4 4 5
0 0 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
page fault p p p p p p p p p p p p
distance string ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 ∞ 4 2 3 1 5 1 2 6 1 1 4 7 4 6

modelul lucrează la fel de bine și cu alți algoritmi

Analiza modeluluiAnaliza modelului

● există o clasă de algoritmi care prezintă interes
● acești algoritmi au proprietatea:

M(m,r) ⊆ M(m+1,r)
– m – numărul de page frame-uri

– r – index în reference string

● mulțimea paginilor afate în partea superioară a lui
M pentru o memorie cu m page frame după r
referințe la memorie este inclusă în mulțimea afată
în partea superioară a lui M pentru o memorie cu
m+1 page frame-uri

Analiza modeluluiAnaliza modelului

● clasa de interes:
– dacă mărim dimensiunea memoriei cu încă un page

frame și reexecutăm procesul, la fecare moment al
execuției toate paginile care au fost prezente la prima
rulare vor fi prezente și la a doua rulare plus încă o
pagină adițională

– algoritmul LRU are această proprietate, FIFO nu

● algoritmii care au această proprietate se numesc
algoritmi de tip stivă

● acești algoritmi nu suferă de anomalia Belady

3.5.3. Distance string3.5.3. Distance string

● pentru algoritmi de tip stivă este convenabil să
reprezentăm reference string într-un mod mai
abstract

● o referință la o pagină va fi specifcată prin distanța
de la vârful stivei până la locul unde se afă
respectiva pagină în stivă

● paginile care nu au fost încă referite și deci nu se
afă în stivă distance string = ∞

● distance string depinde nu numai de reference
string dar și de algoritmul de înlocuire a paginilor
utilizate

3.5.4. Predicția ratei page fault-urilor3.5.4. Predicția ratei page fault-urilor

● putem utiliza distance string pentru a estima
numărul de page fault-uri care vor apare pentru
memorii având diferite dimensiuni

● algoritmul de estimare:
– se scanează distance string pagină cu pagină

– se memorează numărul de apariții pentru fecare pagină

– fe Ci numărul de apariții pentru pagina i

– calculăm vectorul F cu formula:
Fm= ∑

k=m1

n

CkC inf

Predicția ratei page fault-urilorPredicția ratei page fault-urilor

● pentru exemplul considerat anterior
C1 = 4 F1 = C2 + C3 + C4 + ... + C∞ = 20

C2 = 2 F2 = C3 + C4 + C5 + ... + C∞ = 18

C3 = 1 F3 = C4 + C5 + C6 + ... + C∞ = 17

C4 = 4 F4 = C5 + C6 + C7 + ... + C∞ = 13

C5 = 2 F5 = C6 + C7 + ... + C∞ = 11

C6 = 2 F6 = C7 + ... + C∞ = 9

C7 = 1 F7 = C8 + ... + C∞ = 8

C∞ = 8 F8 = 8

● Fm reprezintă numărul de page fault-uri care vor
apare pentru m page frame-uri

3.6. Considerații privind proiectarea 3.6. Considerații privind proiectarea
sistemelor de paginaresistemelor de paginare

3.6.1. Modelul Working Set3.6.1. Modelul Working Set
● când un proces se lansează în execuție nici o pagină

de a sa nu se afă în memorie
● CPU va încerca să încarce prima instrucțiune =>

page fault => se aduce pagina în memorie
● urmează alte page fault-uri până când majoritate

paginilor necesare se afă în memorie
● după care vor apare foarte puține page fault-uri

Modelul Working SetModelul Working Set

● această strategie se numește demand paging
deoarece paginile sunt încărcate numai când sunt
necesare și nu în avans

● majoritatea proceselor accesează numai o mică
fracțiune din numărul paginilor sale (localitatea
referințelor)

● mulțimea paginilor pe care un proces le utilizează
la un moment dat se numește working set

Modelul Working SetModelul Working Set

● dacă Working Set este în memorie, procesul va
determina apariția unui număr redus de page fault-
uri până va trece într-o altă fază al execuției (alt
Working Set)

● dacă Working Set nu poate fi ținut complet în
memorie => page fault-uri dese

● un program care determină apariția unui page fault
după câteva instrucțiuni în mod repetat se spune că
este thrashing

Modelul Working SetModelul Working Set

● în sistemele time sharing se încearcă memorarea
informației despre working set, iar la comutarea
proceselor înainte de lansa în execuție un proces, se
va încărca în memorie working space respectiv
– astfel se reduc page fault-urile

● aceste sisteme se mai numesc și sisteme cu
prepaginare

● working set poate fi extras de exemplu din contorul
metodei aging: dacă în primi n biți există un 1,
pagina aparține working setului

3.6.2. Politici de alocare locale și 3.6.2. Politici de alocare locale și
globaleglobale

● alocarea memorie proceselor într-un sistem multi-
tasking:
– dacă se rulează mai multe procese și unul generează

page fault ce pagini se consideră pentru înlocuire
(numai paginile procesului care a generat page fault sau
toate)

– dacă algoritmul consideră numai paginile procesului:
algoritm local

– dacă algoritmul consideră și paginile celorlalte procese:
algoritm global

Algoritmi localiAlgoritmi locali

● fecărui proces va trebui alocat o cantitate de
memorie fxată

● aceasta poate rezulta într-o efciență mai mică față
de algoritmii globali (unde memoria poate fi alocată
dinamic)
– de exemplu dacă working set-ul unui proces se mărește,

se vor genera multe page fault-uri, iar în memorie sunt
page frame-uri libere

● o îmbunătățire este folosirea unui algoritm de
alocare a page frame-urilor pentru procese

Algoritmi localiAlgoritmi locali

● nu este efcient să alocăm același număr de page
frame-uri unor procese de diferite dimensiuni

● vom folosi un algoritm care alocă memoria
proporțional cu dimensiunea procesului

● nici această variantă nu rezolvă efcient problema
● o metodă mai efcientă este utilizarea algoritmului

de alocare Page Fault Frequency

Algoritmii PFFAlgoritmii PFF

● în cazul algoritmilor de tip stivă fault rate descrește
cu creșterea numărului de page frame-uri alocate

● algoritmii PFF vor aloca frame-uri astfel încât să
mențină fault rate între limitele A și B

A – fault rate inacceptabil
de mare

B – fault rate destul de mic

nr. de page frame

page faults

3.6.3. Dimensiunea paginilor3.6.3. Dimensiunea paginilor

● chiar dacă hardware-ul implementează pagini de
anumită dimensiune, SO poate lucra cu altă
dimensiune de pagini

● alegând un program aleator, zonele de text, date și
stivă nu vor umple complet un număr întreg de
pagini – în medie o jumătate din ultima pagină nu
va fi utilizată

● având n segmente în memorie și mărimea paginii p
byte => np/2 byte vor fi pierduți prin fragmentare

Dimensiunea paginilorDimensiunea paginilor

● spațiu pierdut mic => dimensiuni mici
● pentru anumite sisteme tabela de pagini trebuie

încărcată în regiștrii, la fecare comutare de procese
● pentru o comutarea rapidă tabela de pagini trebuie

să fe cât mai mică
● tabelă de pagini mică => dimensiuni mari

Analiza matematicăAnaliza matematică

● s – mărimea medie a proceselor
● p – mărimea paginii
● e – dimensiunea unei linii din tabela de pagini
● numărul de pagini / proces = s/p
● dimensiunea tabelei / proces = se/p
● mărimea memoriei neutilizate / proces = p/2
● overheadul datorat tabelei de pagini și fragmentării

interne = se/p + p/2

Analiza matematicăAnaliza matematică

● primul termen este mare când pagina este mică
● al doilea termen este mare când mărimea paginii

este mare
● derivând: –se/p2 + ½ = 0
● mărimea optimă a paginii este:
● exemplu: s = 128k, e=8byte => p=1448 ≈ 1kB
● în sistemele curente paginile sunt 512B – 8kB

p=√2 se

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

