Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

- curs 10 -

2012.05.15 s.l. dr. ing. Kertész Csaba-Zoltan



3.5. Modelarea algoritmilor de inlocuire
a paginilor
* intuitiv se pare ca daca vom avea mai multe page
frame-uri in memorie, numarul page fault-uri va fi
mai mic
nu este intotdeauna asa

* in 1969 Belady a descoperit un contraexemplu

e astfel fiecare algoritm de inlocuire a paginilor
trebuie atent modelat pentru a masura
performantele

* s-a dezvoltat o intreaga teorie a algoritmilor de
paginare



3.5.1. Anomalia lui Belady

e algoritmul FIFO cauzeaza mai multe page fault-uri
daca se folosesc 4 frame in loc de 3 frame-uri

e exemplu: un program cu 5 pagini virtuale, paginile
vor fi referite in ordinea012301401234

— FIFO cu 3 pagini cauzeaza 9 page fault, FIFO cu 4 pagini
cauzeaza 10 page fault



3.5.2. Algoritmi de tip stiva

 fiecare proces genereaza o secventa de referinte la
memorie

e fiecare referintda la memorie corespunde unei pagini
virtuale

— putem caracteriza referintele la memorie ale unui proces
printr-o lista de numere de pagini, lista numita
reference string

e pentru simplitate consideram cazul unui singur
proces care ruleaza pe masina

— astfel pentru fiecare masina avem un singur reference
string



Algoritmi de tip stiva

* un sistem de paginare poate fi caracterizat prin trei
parametrl1

— reference string pentru procesul care se executa
— algoritmul de inlocuire a paginilor

— numarul m al page frame-urilor disponibile
* sd ne imaginam un interpretor care lucreaza astfel

— menfine un masiv M 1n care memoreaza starea
memoriei (dimensiunea M este n = numarul de pagini
virtuale pe care le utilizeaza procesul)



Modelul algoritmilor de tip stiva

* M este impartit in doua:

— o parte va contine numarul paginilor care sunt in
memorie (m)

— a doua parte de dimensiune n-m contine paginile
virtuale care nu sunt in memorie

* initial M este vid

* de exemplu utilizam algoritmul LRU pentru 8
pagini virtuale si 4 page frame



Modelarea algoritmilor

I/ O N ~[H WO O O[la ©
MNOMO AN AN T O O <
N[N~ MW < O© oo~
N dH O D[t O NN O <t
A M O N~ O N O —
—A|d MO 0O N O N O —
—A|ld ML NS O N O
N IO~ <[O 4N O N
I MO <FIO 4 AN O —i
O O~ (O d N O] W
MmN~ < Ol AN O —
MmO~ < Ol A N O ™
NN < o0 ol AN O N
</ S ™~ Ol AN O <t
NN~ M O 900 d N O 8
MNM O < IO(H N O <
Ol IO MmN O Q g
[T IO M AN O Q g
O[O M 4 N[O o g
MM 9 N O o g
— | N O Q g
N[N O o g
oo o g
@)

c @)
= c
i} Y
= =
@ =
O =)
c 8 o
@ c
— ea
@ o
T © .©
v o o

goritmi

modelul lucreaza la fel de bine si cu alti al



Analiza modelului

 exista o clasa de algoritmi care prezinta interes
 acesti algoritmi au proprietatea:
M(m,r) € M(m+1,r)
— m — numarul de page frame-uri

- r — index in reference string

* multimea paginilor aflate in partea superioara a lui
M pentru o memorie cu m page frame dupa r
referinte la memorie este inclusa in multimea aflata
in partea superioara a lui M pentru o memorie cu
m+1 page frame-uri



Analiza modelului

e clasa de interes:

— daca marim dimensiunea memoriei cu inca un page
frame si reexecutam procesul, la fiecare moment al
executiei toate paginile care au fost prezente la prima
rulare vor fi prezente si la a doua rulare plus inca o
pagina aditionala

— algoritmul LRU are aceasta proprietate, FIFO nu
e algoritmii care au aceastd proprietate se numesc
algoritmi de tip stiva

 acesti algoritmi nu sufera de anomalia Belady



3.5.3. Distance string

e pentru algoritmi de tip stiva este convenabil sa
reprezentam reference string intr-un mod mai
abstract

* o referinta la o pagina va fi specificata prin distanta
de la vartul stivei pana la locul unde se afla
respectiva pagina in stiva

* paginile care nu au fost inca referite si deci nu se

afla in stiva distance string = o

* distance string depinde nu numai de reference
string dar si de algoritmul de inlocuire a paginilor
utilizate



3.5.4. Predictia ratei page fault-urilor

3

» putem utiliza distance string pentru a estima
numarul de page fault-uri care vor apare pentru
memorii avand diferite dimensiuni

 algoritmul de estimare:

— se scaneaza distance string pagina cu pagina
- se memoreaza numarul de aparitii pentru fiecare pagina
— fie C. numarul de aparitii pentru pagina i

1 ]

— calculam vectorul F cu formula: n
l:m:: :E: Chf+(ZMf

k=m+1



Predictia ratei page fault-urilor

D)

e pentru exemplul considerat anterior

C =4 F=C+C +C+.+C_=20
C, =2 F,=C,+C,+C +..+C_=18
C,=1 F,.=C,+C_+C +..+C_=17
C,=4 F,=C.+C +C +.+C_=13
C.=2 F.=C +C +..+C_ =11

C =2 F=C+..+C_=9

C =1 F.=C,+.+C_=38

C.=8 F. =8

« F_reprezinta numarul de page fault-uri care vor

apare pentru m page frame-uri



3.6. Consideratii privind proiectarea

sistemelor de paginare
3.6.1. Modelul Working Set

e cand un proces se lanseaza in executie nici o pagina
de a sa nu se afla in memorie

 CPU va Incerca sa incarce prima instructiune =>
page fault => se aduce pagina in memorie

e urmeaza alte page fault-uri pana cand majoritate
paginilor necesare se afla in memorie

* dupa care vor apare foarte putine page fault-uri



Modelul Working Set

aceasta strategie se numeste demand paging
deoarece paginile sunt incarcate numai cand sunt
necesare si nu in avans

majoritatea proceselor acceseaza numai o mica
fractiune din numarul paginilor sale (localitatea
referintelor)

multimea paginilor pe care un proces le utilizeaza
la un moment dat se numeste working set



Modelul Working Set

* daca Working Set este in memorie, procesul va
determina aparitia unui numar redus de page fault-
uri pana va trece intr-o alta faza al executiei (alt

Working Set)

e daca Working Set nu poate fi tinut complet in
memorie => page fault-uri dese

e un program care determina aparitia unui page fault
dupa cateva instructiuni in mod repetat se spune ca
este thrashing



Modelul Working Set

* in sistemele time sharing se incearca memorarea
informatiei despre working set, iar la comutarea
proceselor inainte de lansa in executie un proces, se
va Iincarca in memorie working space respectiv

— astfel se reduc page fault-urile
e aceste sisteme se mai numesc si sisteme cu
prepaginare

» working set poate fi extras de exemplu din contorul
metodei aging: daca in primi n biti exista un 1,
pagina apartine working setului



3.6.2. Politici de alocare locale si
globale

» alocarea memorie proceselor intr-un sistem multi-
tasking:

— daca se ruleaza mai multe procese si unul genereaza
page fault ce pagini se considera pentru inlocuire
(numai paginile procesului care a generat page fault sau
toate)

— daca algoritmul considera numai paginile procesului:
algoritm local

— daca algoritmul considera si paginile celorlalte procese:
algoritm global



Algoritmi locali

 fiecarui proces va trebui alocat o cantitate de
memorie fixata

* aceasta poate rezulta intr-o eficienta mai mica fata
de algoritmii globali (unde memoria poate fi alocata
dinamic)

— de exemplu daca working set-ul unui proces se mareste,

se vor genera multe page fault-uri, iar in memorie sunt
page frame-uri libere

* 0 imbunatatire este folosirea unui algoritm de
alocare a page frame-urilor pentru procese



Algoritmi locali

nu este eficient sa alocam acelasi numar de page
frame-uri unor procese de diferite dimensiuni

vom folosi un algoritm care aloca memoria
proportional cu dimensiunea procesului

nici aceasta varianta nu rezolva eficient problema

o metoda mai eficienta este utilizarea algoritmului
de alocare Page Fault Frequency



Algoritmii PFF

 in cazul algoritmilor de tip stiva fault rate descreste
cu cresterea numarului de page frame-uri alocate

e algoritmii PFF vor aloca frame-uri astfel incat sa
mentina fault rate intre limitele A si B

A
page faults

A — fault rate inacceptabil
de mare

B — fault rate destul de mic

nr. de page frame



3.6.3. Dimensiunea paginilor

 chiar daca hardware-ul implementeaza pagini de
anumita dimensiune, SO poate lucra cu alta
dimensiune de pagini

* alegand un program aleator, zonele de text, date si
stiva nu vor umple complet un numar intreg de
pagini — in medie o jumatate din ultima pagina nu
va fi utilizata

e avand n segmente in memorie si marimea paginii p
byte => np/2 byte vor ti pierduti prin fragmentare



Dimensiunea paginilor

 spatiu pierdut mic => dimensiuni mici

e pentru anumite sisteme tabela de pagini trebuie
incarcata in registrii, la fiecare comutare de procese

* pentru o comutarea rapida tabela de pagini trebuie
sa fie cat mai mica

 tabela de pagini mica => dimensiuni mari



Analiza matematica

s — marimea medie a proceselor

p — marimea paginii

e — dimensiunea unei linii din tabela de pagini
numarul de pagini / proces = s/p

dimensiunea tabelei / proces = se/p

marimea memoriei neutilizate / proces = p/2

overheadul datorat tabelei de pagini si fragmentarii
interne = se/p + p/2



Analiza matematica

primul termen este mare cand pagina este mica

al doilea termen este mare cand marimea paginii
este mare

derivand: —se/p’ + % = 0
marimea optima a paginii este: p=v2se
exemplu: s = 128k, e=8byte => p=1448 = 1kB

in sistemele curente paginile sunt 512B — 8kB



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

