

Sisteme de operareSisteme de operare

– – curs 9 –curs 9 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.04.24 ș.l. dr. ing. Kertész Csaba-Zoltán

3.4. Algoritmi de înlocuire a paginilor3.4. Algoritmi de înlocuire a paginilor

● la apariția unui page fault SO trebuie să decidă
care pagină va fi înlocuită în memorie de către
noua pagină adusă de pe disc

● SO va trebui să rescrie pagina din memorie pe disc,
dacă aceasta a fost modificată
– dacă nu a fost modificată nu mai este nevoie de

rescriere (de exemplu pentru zona text)

3.4.1. Algoritmul de înlocuire optim3.4.1. Algoritmul de înlocuire optim

● cel mai bun algoritm de înlocuire a paginilor
– este foarte ușor de descris, dar foarte greu de

implementat

● presupunem că la apariția unui page fault, în
memorie se află câteva pagini

● una din aceste pagini va fi referită de următoarea
instrucțiune, celelalte pagini nu vor fi referite decât
după execuția a unui număr mare de instrucțiuni

● fiecare pagină poate fi etichetată cu numărul de
instrucțiuni până când va fi referită

Algoritmul optimAlgoritmul optim

● algoritmul efectiv:
– pagina având eticheta cea mai mare va fi înlocuit

● acest algoritm nu este realizabil
– la momentul apariției unui page fault, SO nu poate să

cunoască momentele la care vor fi referite celelalte
pagini

● ar fi posibil implementarea algoritmului:
– la prima rulare se înregistrează toate referințele la

pagini
– la a două rulare se folosesc informațiile colectate

anterior

3.4.2. Algoritmul de înlocuire a 3.4.2. Algoritmul de înlocuire a
paginilor Not Recently Usedpaginilor Not Recently Used

● presupunem că există 2 biți asociați cu fiecare
pagină:
– R: este setat ori de câte ori pagina este referită
– M: este setat când pagina este scrisă

● acești biți fac parte din fiecare linie a tabelei de
pagini

● acești biți vor trebui actualizați la fiecare referire la
memorie

Algoritmul NRUAlgoritmul NRU

● când se activează un proces, biții R și M sunt
resetați de către SO

● periodic (la fiecare întrerupere de ceas) bitul R este
resetat pentru a distinge paginile care au fost
referite recent

● la apariția unui page fault, SO inspectează acești
biți pentru fiecare pagină și împarte paginile în 4
clase:

● 0: nereferite, nemodificate
● 1: nereferite, modificate
● 2: referite, nemodificate
● 3: referite, modificate

Algoritmul NRUAlgoritmul NRU

● bitul M nu va fi resetat de SO la apariția
întreruperii de ceas deoarece este necesar pentru a
decide dacă se rescrie pagina pe disc sau nu

● algoritmul NRU înlocuiește o pagină aleasă aleator
din clasa nevidă având cea mai mică etichetă

● este simplu, eficient de implementat
● asigură performanțe acceptabile

3.4.3. Algoritmul de înlocuire a 3.4.3. Algoritmul de înlocuire a
paginilor First-In First-Outpaginilor First-In First-Out

● se înlocuiește pagina care a stat cel mai mult în
memorie

● SO va menține o structură de tip coadă care
conține paginile rezidente
– la începutul cozii se află cea mai veche pagină din

memorie, la sfârșit cea mai nouă

● la apariția unui page fault pagina cea mai veche va
fi eliminată din coadă, iar pagina nouă va fi plasată
la sfârșitul cozii

● pagina înlocuită poate fi folosită cel mai intens
● este foarte rar utilizat

3.4.4. Algoritmul de înlocuire a 3.4.4. Algoritmul de înlocuire a
paginilor Second Chancepaginilor Second Chance

● este o îmbunătățire a algoritmului FIFO, care evită
eliminarea din memorie a paginii utilizate cel mai
frecvent

● se va inspecta bitul R
– dacă R = 0, pagina va fi înlocuită imediat
– dacă R = 1, bitul R se va reseta, iar pagina se va plasa la

sfârșitul cozii (va fi tratată ca o pagină nouă)

● astfel în coadă paginile vor fi sortate în funcție de
timpul de când au fost plasate în memorie

3.4.5. Algoritmul de înlocuire a 3.4.5. Algoritmul de înlocuire a
paginilor Clockpaginilor Clock

● paginile sunt așezate într-o listă circulară
● acest algoritm vine la soluționarea problemei

ineficienței FIFO și SC datorate mutării frecvente a
paginilor de la începutul cozii la sfârșit

● la apariția page fault, se inspectează pagina
curentă la care arată indicatoarea, dacă R=0 va fi
înlocuită cu o nouă pagină pe același loc și
indicatorul va fi avansat, dacă R=1, se resetează R,
iar indicatorul avansează o poziție

3.4.6. Algoritmul de înlocuire a 3.4.6. Algoritmul de înlocuire a
paginilor Least Recently Usedpaginilor Least Recently Used

● paginile care au fost frecvent utilizate de ultimele
instrucțiuni vor fi utilizate probabil și în continuare

● se va înlocui paginile care nu au fost utilizate de
foarte mult timp

● se apropie cel mai mult de algoritmul ideal, dar
implementarea este foarte grea

● pentru implementare este necesar să menținem o
listă cu toate paginile din memorie, la început
pagina cea mai recent utilizată, la coadă pagina
mai puțin utilizată

Algoritmul LRUAlgoritmul LRU

● probleme de implementare:
– lista va trebui actualizată la fiecare referință la memorie
– găsirea unei pagini în listă, eliminarea, mutarea în listă

sunt operații consumatoare de timp
– manipularea unei liste la fiecare execuție de

instrucțiune este costisitoare chiar dacă se realizează în
hardware

Algoritmul LRUAlgoritmul LRU
implementare #1implementare #1

● va trebui implementat un contor C hardware
● C va fi incrementat după fiecare instrucțiune
● fiecare linie din tabela de pagini va avea un câmp

pentru memorarea valorii lui C setate la ultima
referire a paginii

● la apariția unui page fault, SO examinează toate
liniile din tabela de pagini pentru a găsi una având
cea mai mică valoare pentru C – aceasta va fi
înlocuită

Algoritmul LRUAlgoritmul LRU
implementare #2implementare #2

● având n page frame, vom menține o matrice n×n
biți inițializate la 0

● la referirea unei pagini k, hardware-ul va seta toți
biții de pe linia k la 1 apoi toți biții de pe coloana k
la 0

● la un moment dat pagina corespunzătoare liniei
având cea mai mică valoare binară este cea mai
puțin utilizată

● exemplu: 4 pagini referite în ordinea:

0 1 2 3 2 1 0 3 2 3

3.4.7. Simularea sofware a 3.4.7. Simularea sofware a
algoritmului LRUalgoritmului LRU

● soluțiile pentru LRU prezentate anterior presupun
existența unui suport hardware

● o soluție sofware este implementarea algoritmului
Not Frequently Used

● vom avea o variabilă contor asociată cu fiecare
pagină inițial pe 0

● la fiecare întrerupere de ceas SO scanează toate
paginile din memorie

● pentru fiecare pagină se adaugă bitul R la contorul
asociat

Algoritmul NFUAlgoritmul NFU

● contorul va deține astfel informații despre cât de
utilizată a fost pagina asociată

● la apariția unui page fault se va înlocui pagina a
cărei variabilă contor este cea mai mică

● algoritmul nu va decrementa contorul niciodată
– e posibil ca paginile care au fost utilizate frecvent să

rămână în memorie chiar dacă nu mai este nevoie de
ele, iar cele mai recente să aștepte intrarea în memorie

Algoritmul NFUAlgoritmul NFU
problema paginilor vechiproblema paginilor vechi

● putem corecta această problemă printr-o mică
modificare:
– contoarele vor fi deplasate la dreapta cu 1 bit înainte de

adunarea bitului R
– R va fi adunat la bitul cel mai din stânga:

aging algorithm
● paginile frecvent utilizate vor avea biți de 1 în

contor
● paginile vechi vor elimina treptat biții de 1
● când apare un page fault se va elimina din

memorie pagina cu cel mai mic contor

Algoritmul NFUAlgoritmul NFU

● diferență față de LRU
– pg. 3 și 5 nu au fost referite în ultimele două tacte: LRU

alege oricare dintre ele, NFU alege numai 3
– mărimea contorului este finită (pentru un clock de

20ms, 8 biți sunt de obicei suficienți)

101011

10000000
00000000
10000000
00000000
10000000
10000000

110010

11000000
10000000
01000000
00000000
11000000
01000000

110101

11100000
11000000
00100000
10000000
01100000
10100000

100010

11110000
01100000
00010000
01000000
01110000
01010000

011000

01111000
10110000
10001000
00100000
01011000
00101000

clock 0 clock 1 clock 2 clock 3 clock 4

R

pg 0
pg 1
pg 2
pg 3
pg 4
pg 5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

