Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

— curs 9 -

2012.04.24 s.l. dr. ing. Kertész Csaba-Zoltan



3.4. Algoritmi de inlocuire a paginilor

 la aparitia unui page fault SO trebuie sa decida
care pagina va fi inlocuita in memorie de catre
noua pagina adusa de pe disc

e SO va trebui sa rescrie pagina din memorie pe disc,

daca aceasta a fost modificata

— daca nu a fost modificata nu mai este nevoie de
rescriere (de exemplu pentru zona text)



3.4.1. Algoritmul de inlocuire optim

cel mai bun algoritm de inlocuire a paginilor

— este foarte usor de descris, dar foarte greu de
implementat

presupunem ca la aparitia unui page fault, in
memorie se afla cateva pagini

una din aceste pagini va fi referita de urmatoarea
instructiune, celelalte pagini nu vor fi referite decat
dupa executia a unui numar mare de instructiuni

fiecare pagina poate fi etichetata cu numarul de
instructiuni pana cand va fi referita



Algoritmul optim

 algoritmul efectiv:
- pagina avand eticheta cea mai mare va fi inlocuit
 acest algoritm nu este realizabil

— la momentul aparitiei unui page fault, SO nu poate sa
cunoasca momentele la care vor fi referite celelalte

pagini
e ar fi posibil implementarea algoritmului:

— la prima rulare se inregistreaza toate referintele la
pagini

— la a doua rulare se folosesc informatiile colectate
anterior



3.4.2. Algoritmul de inlocuire a
paginilor Not Recently Used

* presupunem ca exista 2 biti asociati cu fiecare
pagina:
— R: este setat ori de cate ori pagina este referita

— M: este setat cand pagina este scrisa

 acesti biti fac parte din fiecare linie a tabelei de
pagini

 acesti biti vor trebui actualizati la fiecare referire la
memorie



Algoritmul NRU

* cand se activeaza un proces, bitii R si M sunt
resetati de catre SO

» periodic (la fiecare intrerupere de ceas) bitul R este
resetat pentru a distinge paginile care au fost
referite recent

 la aparitia unui page fault, SO inspecteaza acesti
biti pentru fiecare pagina si imparte paginile in 4
clase:
e 0: nereferite, nemodificate
e 1: nereferite, modificate

e 2: referite, nemodificate

e 3: referite, modificate



Algoritmul NRU

bitul M nu va fi resetat de SO la aparitia
intreruperii de ceas deoarece este necesar pentru a
decide daca se rescrie pagina pe disc sau nu

algoritmul NRU inlocuieste o pagina aleasa aleator
din clasa nevida avand cea mai mica eticheta

este simplu, eficient de implementat

asigura performante acceptabile



3.4.3. Algoritmul de inlocuire a
paginilor First-In First-Out

se inlocuieste pagina care a stat cel mai mult in
memorie

SO va mentine o structura de tip coada care
contine paginile rezidente

— la inceputul cozii se afla cea mai veche pagina din
memorie, la sfarsit cea mai noua

la aparitia unui page fault pagina cea mai veche va
fi eliminata din coada, iar pagina noua va fi plasata
la sfarsitul cozii

pagina inlocuita poate fi folosita cel mai intens

este foarte rar utilizat



3.4.4. Algoritmul de inlocuire a
paginilor Second Chance

este o Tmbunatatire a algoritmului FIFO, care evita
eliminarea din memorie a paginii utilizate cel mai
frecvent

se va inspecta bitul R
— daca R = 0, pagina va fi inlocuita imediat

— daca R = 1, bitul R se va reseta, iar pagina se va plasa la
sfarsitul cozii (va fi tratata ca o pagina noua)

astfel In coada paginile vor fi sortate in functie de
timpul de cand au fost plasate in memorie



3.4.5. Algoritmul de inlocuire a
paginilor Clock

* paginile sunt asezate intr-o lista circulara

 acest algoritm vine la solutionarea problemei
ineficientei FIFO si SC datorate mutarii frecvente a
paginilor de la inceputul cozii la sfarsit

 la aparitia page fault, se inspecteaza pagina
curenta la care arata indicatoarea, daca R=0 va fi
inlocuita cu o noua pagina pe acelasi loc si
indicatorul va fi avansat, daca R=1, se reseteaza R,
iar indicatorul avanseaza o pozitie



3.4.6. Algoritmul de inlocuire a
paginilor Least Recently Used

* paginile care au fost frecvent utilizate de ultimele
instructiuni vor fi utilizate probabil si in continuare

* se va inlocui paginile care nu au fost utilizate de
foarte mult timp

e se apropie cel mai mult de algoritmul ideal, dar
implementarea este foarte grea

e pentru implementare este necesar sa mentinem o
ista cu toate paginile din memorie, la inceput
pagina cea mai recent utilizata, la coada pagina
mai putin utilizata




Algoritmul LRU

* probleme de implementare:

— lista va trebui actualizata la fiecare referinta la memorie

— gasirea unei pagini in lista, eliminarea, mutarea in lista
sunt operatii consumatoare de timp

— manipularea unei liste la fiecare executie de
instructiune este costisitoare chiar daca se realizeaza in
hardware



Algoritmul LRU
implementare #1

va trebui implementat un contor C hardware
C va fi incrementat dupa fiecare instructiune

fiecare linie din tabela de pagini va avea un camp
pentru memorarea valorii lui C setate la ultima
referire a paginii

la aparitia unui page fault, SO examineaza toate
liniile din tabela de pagini pentru a gasi una avand
cea mai mica valoare pentru C — aceasta va fi
inlocuita



Algoritmul LRU
implementare #2

e avand n page frame, vom mentine o matrice nxn
iti initializate [a 0

* la referirea unei pagini k, hardware-ul va seta toti
itii de pe linia k la 1 apoi toti bitii de pe coloana k
a0

* la un moment dat pagina corespunzatoare liniei
avand cea mai mica valoare binara este cea mai
putin utilizata

e exemplu: 4 pagini referite in ordinea:

0123210323



3.4.7. Simularea software a
algoritmului LRU

solutiile pentru LRU prezentate anterior presupun
existenta unui suport hardware

o solutie software este implementarea algoritmului
Not Frequently Used

vom avea o variabila contor asociata cu fiecare
nagina initial pe 0

a fiecare intrerupere de ceas SO scaneaza toate
paginile din memorie

pentru fiecare pagina se adauga bitul R la contorul
asoclat



Algoritmul NFU

contorul va detine astfel informatii despre cat de
utilizata a fost pagina asociata

la aparitia unui page fault se va inlocui pagina a
carei variabila contor este cea mai mica

algoritmul nu va decrementa contorul niciodata

— e posibil ca paginile care au fost utilizate frecvent sa
ramana in memorie chiar daca nu mai este nevoie de
ele, iar cele mai recente sa astepte intrarea in memorie



Algoritmul NFU
problema paginilor vechi

putem corecta aceasta problema printr-o mica
modificare:

— contoarele vor fi deplasate la dreapta cu 1 bit inainte de
adunarea bitului R

— R va fi adunat la bitul cel mai din stanga:
aging algorithm

paginile frecvent utilizate vor avea biti de 1in
contor

paginile vechi vor elimina treptat bitii de 1

cand apare un page fault se va elimina din
memorie pagina cu cel mai mic contor



Algoritmul NFU

clock O clock 1 clock 2 clock 3 clock 4
R 101011 110010 110101 100010 011000
pg 0 10000000 11000000 11100000 11110000 01111000

pgl 00000000 10000000 11000000 01100000 10110000
pg 2 10000000 01000000 00100000 00010000 10001000
pg3 00000000 00000000 10000000 01000000 00100000
pg 4 10000000 11000000 01100000 01110000 01011000
pg 5 10000000 01000000 10100000 01010000 00101000

e diferenta fata de LRU

— pg. 3 si 5 nu au fost referite in ultimele doua tacte: LRU
alege oricare dintre ele, NFU alege numai 3

— marimea contorului este finita (pentru un clock de
20ms, 8 biti sunt de obicei suficienti)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

