

Sisteme de operareSisteme de operare

– – curs 8 –curs 8 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2010.04.17 ș.l. dr. ing. Kertész Csaba-Zoltán

3.2.3. Managementul memoriei 3.2.3. Managementul memoriei
utilizând liste înlănțuiteutilizând liste înlănțuite

● memoria va fi reprezentată ca o listă de segmente
H (hole) și P (process)

● de ex.:

P 0 5 H 5 3 P 8 6

P 14 4 H 18 2 P 20 6

P 26 3 H 29 3

Liste înlănțuiteListe înlănțuite

● în exemplul prezentat sortarea listei s-a făcut după
adrese

● sortarea după adrese aduce avantajul că
actualizarea listei în cazul terminării procesului sau
eliminării din memorie poate fi implementat foarte
ușor:
– dacă procesul are alte procese în vecinătate, eticheta P

se va schimba în H
– dacă procesul are o gaură vecină atunci se va fuziona cu

gaura respectivă prin eliminarea elementului din listă și
modificarea începutului și lungimii din elementul vecin

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● folosit pentru un proces nou sau unul transferat de
pe disc

● algoritmul first fit
– managerul va căuta în lista de segmente până când

găsește un segment H ≥ decât dimensiunea memoriei ce
trebuie alocată

– acest segment va fi împărțit în două: o bucată pentru
proces iar celălalt memoria neutilizată rămasă

– este un algoritm rapid

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● algoritmul next fit
– algoritm similar cu first fit, numai că va memora

segmentul pe care a alocat și următoarea dată va
continua de acolo

● algoritmul best fit
– caută în toată lista și va alege cel mai mic segment în

care încape procesul
– este mai încet decât cele anterioare
– în mod surprinzător conduce la utilizarea mai proastă a

memoriei decât primele două (tinde să umple memoria
cu segmente foarte mici)

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● algoritmul worst fit
– caută cel mai mare segment liber
– procesul va utiliza o parte din acest segment, iar restul

va fi suficient de mare pentru a putea fi folosit de un alt
proces

– nu este foarte eficient

● algoritmul quick fit
– se menține liste separate pentru câteva din

dimensiunile de segmente utilizate des
– găsirea unui segment liber se face foarte rapid, dar

concatenarea spațiilor eliberate este lentă

3.2.4. Managementul memoriei 3.2.4. Managementul memoriei
utilizând buddy systemutilizând buddy system

● buddy system este un algoritm de management al
memoriei care exploatează faptul că se utilizează
numere reprezentate în cod binar pentru adrese

● astfel se va putea accelera concatenarea
segmentelor neutilizate adiacente atunci când se
termină un proces sau este transferat pe disc

● managerul de memorie menține o listă a blocurilor
libere de mărime 1,2,4,8,16 până la dimensiunea
maximă a memoriei

Buddy systemsBuddy systems

● inițial memoria este liberă și lista blocurilor de
1MB conține un singur element, celelalte liste sunt
goale

● când un proces trebuie alocat se va căuta în lista
blocurilor (de putere a lui 2 imediat următoare a
dimensiunii procesului) o zonă liberă

● dacă nu se găsește în lista respectivă, se va împarte
un bloc de dimensiune dublă în două jumătăți
adiacente (buddies)

Buddy systemsBuddy systems

● când un bloc este eliberat, managerul de memorie
caută în lista buddy-urilor blocuri libere pentru a fi
concatenate

● algoritmul este destul de ineficient în utilizarea
memoriei
– un proces va ocupa o zonă de memorie rotunjită la cea

mai apropiată putere a lui 2, astfel rămân zone goale:
fragmentare internă

Buddy systemsBuddy systems

1024k

512k

512k

512k

512k

512k

512k

512k

1024k

256k

128k64k

64k

B 64k

128kA

128k

256kA

A C

C

C

C

C

128k

128k

128k

B

B

B

64k

D

D

128k

128k

128k

256k

Iniţial

Req 70k

Req 35k

Req 80k

Return A

Req 60

Return B

Return D

Return C

3.2.5. Alocarea spațiului pentru swap3.2.5. Alocarea spațiului pentru swap

● algoritmii prezentați până acum au fost folosiți
pentru a stoca procesele în memoria principală

● atunci când un proces este transferat din memorie
pe disc va trebui să-i alocăm spațiu pe disc

● pentru a realiza managementul spațiului de pe disc
se vor utiliza aceiași algoritmi ca pentru memoria
principală, cu restricția că spațiul alocat pe disc
trebuie să fie multiplu de sectoare de pe disc

3.2.6. Analiza sistemelor cu swapping3.2.6. Analiza sistemelor cu swapping

● sistemele cu liste și bitmap conduc la o formă de
fragmentare externă ușor de realizat

● printr-o umplere aleatoare a memoriei cu procese
și zone libere se pot estima probabilitățile ca unele
zone să rămână nealocate

● de obicei numărul de zone libere este jumătate din
numărul de procese (zonele libere adiacente se
concatenează)

● se calculează mărimea medie a zonelor libere
(influențat de numărul și tipul proceselor)

3.3. Memoria virtuală3.3. Memoria virtuală

● metodă dezvoltată în 1961 de Fotheringham
● memoria combinată a programului, datelor și stivei

poate depăși mărimea memoriei principale
● SO va trebui să mențină părțile care se utilizează la

un moment dat în memorie, iar restul să le păstreze
pe disc

● de ex. un proces de 1MB poate rula într-o memorie
de 256kB, alegând care bucată se execută și
transferând bucata respectivă în memorie

3.3.1. Paginarea3.3.1. Paginarea

● adresele utilizate într-un program sunt numite
adrese virtuale și vor forma spațiul adreselor
virtuale

● în cazul calculatoarelor fără memorie virtuală,
adresa virtuală este plasată direct pe magistrala de
adrese: adresa virtuală = adresa fizică

● dacă se utilizează memoria virtuală, adresa virtuală
nu va fi plasată pe magistrală ci va fi preluat de
MMU (Memory Management Unit)

MMUMMU

● MMU va translata adresa virtuală într-o adresă
fizică, ca va fi apoi plasată pe magistrala de adrese

CPU

MMU

Mem

PaginareaPaginarea

● spațiul virtual de adrese este împărțit în pagini
● paginile vor fi mapate în memorie pe anumite

frame page-uri (de același dimensiune ca pagina)
● instrucțiunile de adresare vor folosi adrese virtuale

din interiorul acestor pagini, iar MMU va calcula
exact ce frame page îi corespunde adresei
respective

● dat fiind faptul că spațiul de adrese virtuale este
mai mare decât spațiul de adrese fizice, nu toate
paginile pot fi mapate în memorie deodată

Page faultPage fault

● fiecare pagină precizează printr-un bit dacă este
prezent în memorie sau nu

● dacă programul încearcă să utilizeze o pagină
nemapată în memorie MMU va genera un trap
(întrerupere sofware) către sistemul de operare
numit page fault

● când prinde un page fault, SO va muta pagina cea
mai puțin utilizată din memorie pe disc, și va aduce
pagina referită de pe disc în memorie și va mapa
corespunzător pagina respectivă

Implementare MMUImplementare MMU

● MMU este implementat prin folosirea unei tabele
de look-up

● numărul paginii va fi utilizat ca index în această
tabelă

0x2035

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

1
1
1
1
1
1
0
0
0
1
0
1
0
0
0
0

0x2
0x1
0x6
0x0
0x4
0x3
0x0
0x0
0x0
0x5
0x0
0x7
0x0
0x0
0x0
0x0

0x6035

3.3.2. Tabele de pagini3.3.2. Tabele de pagini

● page table este utilizat pentru maparea paginilor
virtuale în page frame-uri

● poate fi văzut ca o funcție având un număr de
pagini virtuale ca argument iar rezultatul evaluării
funcției va fi numărul de page frame

● probleme:
– page table poate deveni destul de mare

● de ex.: 32biţi, pagini 4k => 1M pagini (pt. fiecare proces)

– maparea trebuie să fie rapidă
● maparea este făcut la fiecare referire la memorie

Implementări de tabele de paginiImplementări de tabele de pagini

● cel mai simplu este folosirea unui singur page table
alcătuit dintr-un masiv de registrii hardware foarte
rapizi
– la activarea procesului sistemul de operare încarcă

registrele cu page table corespunzător din memorie
– nu se face acces la memorie în plus pentru mapare
– este foarte scumpă
– crește timpul de comutare a proceselor

Implementări de tabele de paginiImplementări de tabele de pagini

● o altă implementare menține page table în
memorie și folosește un singur registru care
conține un pointer la începutul tabelei
– la comutarea proceselor va trebui încărcat doar un

registru => comutare rapidă
– translatarea se face utilizând referințe la memorie:

fiecare acces la memorie va include încă un acces în
plus => timpul de acces este mai mare

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● se folosesc pentru a rezolva problema construirii
unor tabele de pagini mari în memorie

PT1 PT2 ofset
10 10 12

32 biți

220 pagini de 4k

0

1024

1
2

... ...

0

1024

1
2

... ...

0

1024

1
2

... ..
.

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● nu va trebui memorat toate tabelele în memorie la
un moment dat
– de exemplu dacă un proces necesită 12MB (4MB text,

4MB date, 4MB stack), va rămâne foarte mult spațiu
neutilizat între date și stack

● când o adresă virtuală este trimisă la MMU,
aceasta va extrage PT1 și va utiliza ca index în page
table de top
– fiecare linie în tabela top va reprezenta 4MB

● după aceasta MMU va utiliza PT2 pentru index în
tabela selectată de PT1

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● dacă pagina determinată nu este în memorie bitul
P (present) este 0 cauzând page fault

● aceasta este adevăr și pentru tabela top-level
● adresele neutilizate nu vor fi încărcate niciodată în

memorie
● de ex.: programul de 12MB va avea nevoie de 4

tabele de pagini (1 top, 1 text, 1 date și 1 stack) de
câte 1024 linii în loc de 1 milion de linii (pentru
spațiul de adrese pe 32 de biți)

● extinderea tabelelor pe mai mult de 3 nivele devine
costisitoare

3.3.3. Exemple de hardware pentru 3.3.3. Exemple de hardware pentru
paginarepaginare

● paginare cu 3 nivele: SPARC

Context index 1 index 2 index 3 ofset

8 6 6 12

Context table First
level

Second
level

Third
level 4k page

Paginarea în SPARCPaginarea în SPARC

● când se încarcă un proces în memorie, SO îi
atribuie un număr de context pe care îl va păstra
până la terminare

● MMU poate memora 4096 contexte
● când se dorește accesarea unui cuvânt din memorie

se trimite la MMU contextul și adresa virtuală
● pentru a accelera procesul de translatare se

folosește o memorie asociativă

3.3.4. Memoria asociativă3.3.4. Memoria asociativă

● majoritatea implementărilor memorează page table
în memorie, ceea ce afectează performanțele
sistemului
– pentru accesul în memorie e nevoie de cel puțin încă un

acces în plus pentru a accesa tabela de pagini

● soluția pornește de la observația: un număr mare
de accese se referă la un număr mic de adrese
– numai o mică parte din liniile tabelului de pagini vor fi

utilizate

Memoria asociativăMemoria asociativă

● soluția este de a utiliza un dispozitiv hardware
minimal pentru a mapa adresele virtuale în adrese
fizice fără a folosi page table din memorie
– se va folosi o memorie asociativă (numit și Translation

Lookaside Bufer)

Valid Virtual page Modified Protection Page frame
1 140 1 rw 31
1 20 0 r x 38
1 130 1 rw 29
1 129 1 rw 62
1 19 0 r x 50
1 21 0 r x 45
1 860 1 rw 14
1 861 1 rw 75

Memoria asociativăMemoria asociativă

● când se furnizează o adresă virtuală către MMU, se
va verifica dacă numărul paginii virtuale se află în
memoria asociativă, comparând în paralel toate
intrările

● dacă se găsește o potrivire și tipul accesului este
valid, page frame-ul va fi luat din memoria
asociativă fără a mai utiliza page table din memorie

● dacă nu corespunde accesul se va genera
protection fault

Memoria asociativăMemoria asociativă

● dacă numărul de pagini nu se află în memoria
asociativă, MMU va prelua linia corespunzătoare
din page table și va plasa în memoria asociativă în
locul alteia

● fracțiunea din referințele la memorie care sunt
satisfăcute utilizând memoria asociativă se
numește hit ratio
– cu cât mai mare hit ratio cu atât mai performant

sistemul

Memoria asociativă în sisteme Memoria asociativă în sisteme
multitaskingmultitasking

● fiecare proces are propria tabelă de pagini și
propria mapare de adrese virtuale

● când se rulează un proces nou, aceasta nu poate
utiliza conținutul memoriei asociative

● soluții:
– se asigură o instrucțiune pentru a invalida memoria

asociativă (se resetează biții valid)
– extindem memoria asociativă cu un câmp PID și

adăugăm un registru care conține identificatorul
procesului curent

Exemplu hardware: MIPS R2000Exemplu hardware: MIPS R2000

● au eliminat tablele de pagini
● CPU conține o memorie asociativă cu 64 linii

● CPU generează adresa virtuală, hard-ul compară
numărul paginii virtuale cu câmpurile
corespunzătoare din memoria asociativă

● dacă se găsește, are loc translatarea hardware

Virtual Page pid Page frame N D V G

20 6 6 20 1 1 1 1 8

N: 0 use cache, 1 no cache
D: 0 entry is clean, 1 dirty
V: 0 invalid, 1 valid
G: 0 check pid, 1 do not check

MIPS R2000MIPS R2000

● dacă adresa virtuală nu se găsește în memoria
asociativă, nu se va mai căuta în tabele de pagini, ci
se va cauza un trap

● SO determină care pagină virtuală este necesară și
va înlocui o linie din memoria asociativă cu
informațiile determinate

● dacă pagina nu se află în memorie se va executa
page fault normal

● se generează page fault și pentru nepotrivirile din
memoria asociativă

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 33

