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3.2.3. Managementul memoriei 3.2.3. Managementul memoriei 
utilizând liste înlănțuiteutilizând liste înlănțuite

● memoria va fi reprezentată ca o listă de segmente 
H (hole) și P (process)

● de ex.:

P 0 5 H 5 3 P 8 6

P 14 4 H 18 2 P 20 6

P 26 3 H 29 3



  

Liste înlănțuiteListe înlănțuite

● în exemplul prezentat sortarea listei s-a făcut după 
adrese

● sortarea după adrese aduce avantajul că 
actualizarea listei în cazul terminării procesului sau 
eliminării din memorie poate fi implementat foarte 
ușor:
– dacă procesul are alte procese în vecinătate, eticheta P 

se va schimba în H
– dacă procesul are o gaură vecină atunci se va fuziona cu 

gaura respectivă prin eliminarea elementului din listă și 
modificarea începutului și lungimii din elementul vecin



  

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● folosit pentru un proces nou sau unul transferat de 
pe disc

● algoritmul first fit
– managerul va căuta în lista de segmente până când 

găsește un segment H ≥ decât dimensiunea memoriei ce 
trebuie alocată 

– acest segment va fi împărțit în două: o bucată pentru 
proces iar celălalt memoria neutilizată rămasă

– este un algoritm rapid



  

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● algoritmul next fit
– algoritm similar cu first fit, numai că va memora 

segmentul pe care a alocat și următoarea dată va 
continua de acolo

● algoritmul best fit
– caută în toată lista și va alege cel mai mic segment în 

care încape procesul
– este mai încet decât cele anterioare
– în mod surprinzător conduce la utilizarea mai proastă a 

memoriei decât primele două (tinde să umple memoria 
cu segmente foarte mici)



  

Algoritmi de alocare a memorieiAlgoritmi de alocare a memoriei

● algoritmul worst fit
– caută cel mai mare segment liber
– procesul va utiliza o parte din acest segment, iar restul 

va fi suficient de mare pentru a putea fi folosit de un alt 
proces

– nu este foarte eficient

● algoritmul quick fit
– se menține liste separate pentru câteva din 

dimensiunile de segmente utilizate des
– găsirea unui segment liber se face foarte rapid, dar 

concatenarea spațiilor eliberate este lentă



  

3.2.4. Managementul memoriei 3.2.4. Managementul memoriei 
utilizând buddy systemutilizând buddy system

● buddy system este un algoritm de management al 
memoriei care exploatează faptul că se utilizează 
numere reprezentate în cod binar pentru adrese

● astfel se va putea accelera concatenarea 
segmentelor neutilizate adiacente atunci când se 
termină un proces sau este transferat pe disc

● managerul de memorie menține o listă a blocurilor 
libere de mărime 1,2,4,8,16 până la dimensiunea 
maximă a memoriei



  

Buddy systemsBuddy systems

● inițial memoria este liberă și lista blocurilor de 
1MB conține un singur element, celelalte liste sunt 
goale

● când un proces trebuie alocat se va căuta în lista 
blocurilor (de putere a lui 2 imediat următoare a 
dimensiunii procesului) o zonă liberă

● dacă nu se găsește în lista respectivă, se va împarte 
un bloc de dimensiune dublă în două jumătăți 
adiacente (buddies)



  

Buddy systemsBuddy systems

● când un bloc este eliberat, managerul de memorie 
caută în lista buddy-urilor blocuri libere pentru a fi 
concatenate

● algoritmul este destul de ineficient în utilizarea 
memoriei
– un proces va ocupa o zonă de memorie rotunjită la cea 

mai apropiată putere a lui 2, astfel rămân zone goale: 
fragmentare internă



  

Buddy systemsBuddy systems
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3.2.5. Alocarea spațiului pentru swap3.2.5. Alocarea spațiului pentru swap

● algoritmii prezentați până acum au fost folosiți 
pentru a stoca procesele în memoria principală

● atunci când un proces este transferat din memorie 
pe disc va trebui să-i alocăm spațiu pe disc

● pentru a realiza managementul spațiului de pe disc 
se vor utiliza aceiași algoritmi ca pentru memoria 
principală, cu restricția că spațiul alocat pe disc 
trebuie să fie multiplu de sectoare de pe disc



  

3.2.6. Analiza sistemelor cu swapping3.2.6. Analiza sistemelor cu swapping

● sistemele cu liste și bitmap conduc la o formă de 
fragmentare externă ușor de realizat

● printr-o umplere aleatoare a memoriei cu procese 
și zone libere se pot estima probabilitățile ca unele 
zone să rămână nealocate

● de obicei numărul de zone libere este jumătate din 
numărul de procese (zonele libere adiacente se 
concatenează)

● se calculează mărimea medie a zonelor libere 
(influențat de numărul și tipul proceselor)



  

3.3. Memoria virtuală3.3. Memoria virtuală

● metodă dezvoltată în 1961 de Fotheringham
● memoria combinată a programului, datelor și stivei 

poate depăși mărimea memoriei principale
● SO va trebui să mențină părțile care se utilizează la 

un moment dat în memorie, iar restul să le păstreze 
pe disc

● de ex. un proces de 1MB poate rula într-o memorie 
de 256kB, alegând care bucată se execută și 
transferând bucata respectivă în memorie



  

3.3.1. Paginarea3.3.1. Paginarea

● adresele utilizate într-un program sunt numite 
adrese virtuale și vor forma spațiul adreselor 
virtuale

● în cazul calculatoarelor fără memorie virtuală, 
adresa virtuală este plasată direct pe magistrala de 
adrese: adresa virtuală = adresa fizică

● dacă se utilizează memoria virtuală, adresa virtuală 
nu va fi plasată pe magistrală ci va fi preluat de 
MMU (Memory Management Unit)



  

MMUMMU

● MMU va translata adresa virtuală într-o adresă 
fizică, ca va fi apoi plasată pe magistrala de adrese

CPU

MMU

Mem



  

PaginareaPaginarea

● spațiul virtual de adrese este împărțit în pagini
● paginile vor fi mapate în memorie pe anumite 

frame page-uri (de același dimensiune ca pagina)
● instrucțiunile de adresare vor folosi adrese virtuale 

din interiorul acestor pagini, iar MMU va calcula 
exact ce frame page îi corespunde adresei 
respective

● dat fiind faptul că spațiul de adrese virtuale este 
mai mare decât spațiul de adrese fizice, nu toate 
paginile pot fi mapate în memorie deodată



  

Page faultPage fault

● fiecare pagină precizează printr-un bit dacă este 
prezent în memorie sau nu

● dacă programul încearcă să utilizeze o pagină 
nemapată în memorie MMU va genera un trap 
(întrerupere sofware) către sistemul de operare 
numit page fault

● când prinde un page fault, SO va muta pagina cea 
mai puțin utilizată din memorie pe disc, și va aduce 
pagina referită de pe disc în memorie  și va mapa 
corespunzător pagina respectivă



  

Implementare MMUImplementare MMU

● MMU este implementat prin folosirea unei tabele 
de look-up

● numărul paginii va fi utilizat ca index în această 
tabelă

0x2035

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

1
1
1
1
1
1
0
0
0
1
0
1
0
0
0
0

0x2
0x1
0x6
0x0
0x4
0x3
0x0
0x0
0x0
0x5
0x0
0x7
0x0
0x0
0x0
0x0

0x6035



  

3.3.2. Tabele de pagini3.3.2. Tabele de pagini

● page table este utilizat pentru maparea paginilor 
virtuale în page frame-uri

● poate fi văzut ca o funcție având un număr de 
pagini virtuale ca argument iar rezultatul evaluării 
funcției va fi numărul de page frame

● probleme:
– page table poate deveni destul de mare

● de ex.: 32biţi, pagini 4k => 1M pagini (pt. fiecare proces) 

– maparea trebuie să fie rapidă
● maparea este făcut la fiecare referire la memorie



  

Implementări de tabele de paginiImplementări de tabele de pagini

● cel mai simplu este folosirea unui singur page table 
alcătuit dintr-un masiv de registrii hardware foarte 
rapizi
– la activarea procesului sistemul de operare încarcă 

registrele cu page table corespunzător din memorie
– nu se face acces la memorie în plus pentru mapare
– este foarte scumpă
– crește timpul de comutare a proceselor



  

Implementări de tabele de paginiImplementări de tabele de pagini

● o altă implementare menține page table în 
memorie și folosește un singur registru care 
conține un pointer la începutul tabelei
– la comutarea proceselor va trebui încărcat doar un 

registru => comutare rapidă
– translatarea se face utilizând referințe la memorie: 

fiecare acces la memorie va include încă un acces în 
plus => timpul de acces este mai mare



  

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● se folosesc pentru a rezolva problema construirii 
unor tabele de pagini mari în memorie

PT1 PT2 ofset
10 10 12

32 biți

220 pagini de 4k

0

1024

1
2

... ...

0

1024

1
2

... ...

0

1024

1
2

... ..
.



  

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● nu va trebui memorat toate tabelele în memorie la 
un moment dat
– de exemplu dacă un proces necesită 12MB (4MB text, 

4MB date, 4MB stack), va rămâne foarte mult spațiu 
neutilizat între date și stack

● când o adresă virtuală este trimisă la MMU, 
aceasta va extrage PT1 și va utiliza ca index în page 
table de top
– fiecare linie în tabela top va reprezenta 4MB

● după aceasta MMU va utiliza PT2 pentru index în 
tabela selectată de PT1



  

Tabele de pagini multi-nivelTabele de pagini multi-nivel

● dacă pagina determinată nu este în memorie bitul 
P (present) este 0 cauzând page fault

● aceasta este adevăr și pentru tabela top-level
● adresele neutilizate nu vor fi încărcate niciodată în 

memorie
● de ex.: programul de 12MB va avea nevoie de 4 

tabele de pagini (1 top, 1 text, 1 date și 1 stack) de 
câte 1024 linii în loc de 1 milion de linii (pentru 
spațiul de adrese pe 32 de biți)

● extinderea tabelelor pe mai mult de 3 nivele devine 
costisitoare



  

3.3.3. Exemple de hardware pentru 3.3.3. Exemple de hardware pentru 
paginarepaginare

● paginare cu 3 nivele: SPARC

Context index 1 index 2 index 3 ofset

8 6 6 12

Context table First
level

Second
level

Third
level 4k page



  

Paginarea în SPARCPaginarea în SPARC

● când se încarcă un proces în memorie, SO îi 
atribuie un număr de context pe care îl va păstra 
până la terminare

● MMU poate memora 4096 contexte
● când se dorește accesarea unui cuvânt din memorie 

se trimite la MMU contextul și adresa virtuală
● pentru a accelera procesul de translatare se 

folosește o memorie asociativă



  

3.3.4. Memoria asociativă3.3.4. Memoria asociativă

● majoritatea implementărilor memorează page table 
în memorie, ceea ce afectează performanțele 
sistemului
– pentru accesul în memorie e nevoie de cel puțin încă un 

acces în plus pentru a accesa tabela de pagini

● soluția pornește de la observația: un număr mare 
de accese se referă la un număr mic de adrese
– numai o mică parte din liniile tabelului de pagini vor fi 

utilizate



  

Memoria asociativăMemoria asociativă

● soluția este de a utiliza un dispozitiv hardware 
minimal pentru a mapa adresele virtuale în adrese 
fizice fără a folosi page table din memorie
– se va folosi o memorie asociativă (numit și Translation 

Lookaside Bufer)

Valid Virtual page Modified Protection Page frame
1 140 1 rw 31
1 20 0 r x 38
1 130 1 rw 29
1 129 1 rw 62
1 19 0 r x 50
1 21 0 r x 45
1 860 1 rw 14
1 861 1 rw 75



  

Memoria asociativăMemoria asociativă

● când se furnizează o adresă virtuală către MMU, se 
va verifica dacă numărul paginii virtuale se află în 
memoria asociativă, comparând în paralel toate 
intrările

● dacă se găsește o potrivire și tipul accesului este 
valid, page frame-ul va fi luat din memoria 
asociativă fără a mai utiliza page table din memorie

● dacă nu corespunde accesul se va genera 
protection fault



  

Memoria asociativăMemoria asociativă

● dacă numărul de pagini nu se află în memoria 
asociativă, MMU va prelua linia corespunzătoare 
din page table și va plasa în memoria asociativă în 
locul alteia

● fracțiunea din referințele la memorie care sunt 
satisfăcute utilizând memoria asociativă se 
numește hit ratio
– cu cât mai mare hit ratio cu atât mai performant 

sistemul



  

Memoria asociativă în sisteme Memoria asociativă în sisteme 
multitaskingmultitasking

● fiecare proces are propria tabelă de pagini și 
propria mapare de adrese virtuale

● când se rulează un proces nou, aceasta nu poate 
utiliza conținutul memoriei asociative

● soluții:
– se asigură o instrucțiune pentru a invalida memoria 

asociativă (se resetează biții valid)
– extindem memoria asociativă cu un câmp PID și 

adăugăm un registru care conține identificatorul 
procesului curent



  

Exemplu hardware: MIPS R2000Exemplu hardware: MIPS R2000

● au eliminat tablele de pagini
● CPU conține o memorie asociativă cu 64 linii

● CPU generează adresa virtuală, hard-ul compară 
numărul paginii virtuale cu câmpurile 
corespunzătoare din memoria asociativă

● dacă se găsește, are loc translatarea hardware

Virtual Page pid Page frame N D V G

20 6 6 20 1 1 1 1 8

N: 0 use cache, 1 no cache
D: 0 entry is clean, 1 dirty
V: 0 invalid, 1 valid
G: 0 check pid, 1 do not check



  

MIPS R2000MIPS R2000

● dacă adresa virtuală nu se găsește în memoria 
asociativă, nu se va mai căuta în tabele de pagini, ci 
se va cauza un trap

● SO determină care pagină virtuală este necesară și 
va înlocui o linie din memoria asociativă cu 
informațiile determinate

● dacă pagina nu se află în memorie se va executa 
page fault normal

● se generează page fault și pentru nepotrivirile din 
memoria asociativă
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