Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

- curs 8 -

2010.04.17 s.l. dr. ing. Kertész Csaba-Zoltan

3.2.3. Managementul memoriei
utilizand liste inlantuite

* memoria va fi reprezentata ca o lista de segmente
H (hole) si P (process)

e de ex.:
Plols[>n]s[s] > r[s]c]
—>P‘14‘4‘——>H‘18‘2‘——> P‘20‘6‘

>l P[] 3| {H|2]|s| >

Liste inlantuite

* in exemplul prezentat sortarea listei s-a facut dupa
adrese

* sortarea dupa adrese aduce avantajul ca
actualizarea listei in cazul terminarii procesului sau
eliminarii din memorie poate fi implementat foarte

usor:
— daca procesul are alte procese in vecinatate, eticheta P

se va schimba in H

— daca procesul are o gaura vecina atunci se va fuziona cu
gaura respectiva prin eliminarea elementului din lista si
modificarea inceputului si lungimii din elementul vecin

Algoritmi de alocare a memoriei

 folosit pentru un proces nou sau unul transferat de
pe disc

e algoritmul first fit

— managerul va cauta in lista de segmente pana cand
gaseste un segment H = decat dimensiunea memoriei ce
trebuie alocata

— acest segment va fi impartit in doua: o bucata pentru
proces iar celalalt memoria neutilizata ramasa

— este un algoritm rapid

Algoritmi de alocare a memoriei

e algoritmul next fit

— algoritm similar cu first fit, numai ca va memora

segmentul pe care a alocat si urmatoarea data va
continua de acolo

e algoritmul best fit

— cauta in toata lista si va alege cel mai mic segment in
care incape procesul

— este mai Tncet decat cele anterioare

— in mod surprinzator conduce la utilizarea mai proasta a
memoriei decat primele doua (tinde sa umple memoria
cu segmente foarte mici)

Algoritmi de alocare a memoriei

e algoritmul worst fit

— cauta cel mai mare segment liber

— procesul va utiliza o parte din acest segment, iar restul
va fi suficient de mare pentru a putea fi folosit de un alt
proces

— nu este foarte eficient
e algoritmul quick fit

— se mentine liste separate pentru cateva din
dimensiunile de segmente utilizate des

— gasirea unui segment liber se face foarte rapid, dar
concatenarea spatiilor eliberate este lenta

3.2.4. Managementul memoriei
utilizand buddy system

* buddy system este un algoritm de management al
memoriei care exploateaza faptul ca se utilizeaza
numere reprezentate in cod binar pentru adrese

e astfel se va putea accelera concatenarea
segmentelor neutilizate adiacente atunci cand se
termina un proces sau este transferat pe disc

 managerul de memorie mentine o lista a blocurilor
libere de marime 1,2,4,8,16 pana la dimensiunea
maxima a memoriel

Buddy systems

e initial memoria este libera si lista blocurilor de
IMB contine un singur element, celelalte liste sunt
goale

e cand un proces trebuie alocat se va cauta in lista
blocurilor (de putere a lui 2 imediat urmatoare a
dimensiunii procesului) o zona libera

e daca nu se gaseste in lista respectiva, se va imparte
un bloc de dimensiune dubla in doua jumatati
adiacente (buddies)

Buddy systems

* cand un bloc este eliberat, managerul de memorie
cauta in lista buddy-urilor blocuri libere pentru a fi
concatenate

e algoritmul este destul de ineficient Tn utilizarea
memoriel

— un proces va ocupa o zona de memorie rotunjita la cea
mai apropiata putere a lui 2, astfel raman zone goale:
fragmentare interna

Buddy systems

Initial 1024k

Req 70k A 128k 256k 512k
Req 35k A B |64k 256k 512k
Req 80k A B |64k C 128k 512k
Return A 128k B |64k C 128k 512k

Req 60 128k B|D C 128k 512k
Return B 128k |64k| D C 128k 512k
Return D 256k C 128k 512k
Return C 1024k

3.2.5. Alocarea spatiului pentru swap

e algoritmii prezentati pana acum au fost folositi
pentru a stoca procesele in memoria principala

e atunci cand un proces este transferat din memorie
ve disc va trebui sa-i alocam spatiu pe disc

e pentru a realiza managementul spatiului de pe disc
se vor utiliza aceiasi algoritmi ca pentru memoria
principald, cu restrictia ca spatiul alocat pe disc
trebuie sa fie multiplu de sectoare de pe disc

3.2.6. Analiza sistemelor cu swapping

sistemele cu liste si bitmap conduc la o forma de
fragmentare externa usor de realizat

printr-o umplere aleatoare a memoriei cu procese
si zone libere se pot estima probabilitatile ca unele
zone sa ramana nealocate

de obicei numarul de zone libere este jumatate din
numarul de procese (zonele libere adiacente se
concateneaza)

se calculeaza marimea medie a zonelor libere
(influentat de numarul si tipul proceselor)

3.3. Memoria virtuala

metoda dezvoltata in 1961 de Fotheringham

memoria combinata a programului, datelor si stivei
poate depasi marimea memoriei principale

SO va trebui sa mentina partile care se utilizeaza la
un moment dat in memorie, iar restul sa le pastreze
pe disc

de ex. un proces de TMB poate rula intr-o memorie
de 256kB, alegand care bucata se executa si
transferand bucata respectiva in memorie

3.3.1. Paginarea

e adresele utilizate intr-un program sunt numite
adrese virtuale si vor forma spatiul adreselor
virtuale

e in cazul calculatoarelor fara memorie virtuala,
adresa virtuala este plasata direct pe magistrala de
adrese: adresa virtuala = adresa fizica

e daca se utilizeaza memoria virtuala, adresa virtuala
nu va fi plasata pe magistrala ci va fi preluat de
MMU (Memory Management Unit)

MMU

e MMU va translata adresa virtuala intr-o adresa
fizica, ca va fi apoi plasata pe magistrala de adrese

CPU
Mem

MMU

Paginarea

e spatiul virtual de adrese este impartit in pagini

* paginile vor fi mapate in memorie pe anumite
frame page-uri (de acelasi dimensiune ca pagina)

* instructiunile de adresare vor folosi adrese virtuale
din interiorul acestor pagini, iar MMU va calcula
exact ce frame page ii corespunde adresei
respective

e dat fiind faptul ca spatiul de adrese virtuale este
mai mare decat spatiul de adrese fizice, nu toate
paginile pot fi mapate in memorie deodata

Page fault

* fiecare pagina precizeaza printr-un bit daca este
prezent Tn memorie sau nu

e daca programul incearca sa utilizeze o pagina
nemapata in memorie MMU va genera un trap
(intrerupere software) catre sistemul de operare
numit page fault

e cand prinde un page fault, SO va muta pagina cea
mai putin utilizata din memorie pe disc, si va aduce
pagina referita de pe disc in memorie si va mapa
corespunzator pagina respectiva

Implementare MMU

* MMU este implementat prin folosirea unei tabele
de look-up

 numarul paginii va fi utilizat ca index in aceasta

tabe I é 0x0 1 0x2
Ox1 1 Ox1

> 0x2 1 0x6

0x3 1 0x0

0x4 1 0x4

0x5 1 0x3

0x2035 0x6 0 0x0 0x6035

0x7 0 0x0

0x8 0 0x0

0x9 1 0x5

0xA 0 0x0

0xB 1 0x7

0xC 0 0x0

0xD 0 0x0

OxE 0 0x0

OxF 0 0x0

3.3.2. Tabele de pagini

* page table este utilizat pentru maparea paginilor
virtuale Tn page frame-uri

e poate fi vazut ca o functie avand un numar de
pagini virtuale ca argument iar rezultatul evaluarii
functiei va fi numarul de page frame

e probleme:

— page table poate deveni destul de mare
* de ex.: 32biti, pagini 4k => 1M pagini (pt. fiecare proces)
— maparea trebuie sa fie rapida

* maparea este facut la fiecare referire la memorie

Implementari de tabele de pagini

e cel mai simplu este folosirea unui singur page table
alcatuit dintr-un masiv de registrii hardware foarte

rapizi

— la activarea procesului sistemul de operare incarca
registrele cu page table corespunzator din memorie

— nu se face acces la memorie in plus pentru mapare
— este foarte scumpa

— creste timpul de comutare a proceselor

Implementari de tabele de pagini

* 0 alta implementare mentine page table in
memorie si foloseste un singur registru care
contine un pointer la inceputul tabelei

— la comutarea proceselor va trebui incarcat doar un
registru => comutare rapida

— translatarea se face utilizand referinte la memorie:
fiecare acces la memorie va include inca un acces in
plus => timpul de acces este mai mare

Tabele de pagini multi-nivel

 se folosesc pentru a rezolva problema construirii
unor tabele de pagini mari in memorie

0

1

2
10 10 12 1 1024

LPT1 | PT2 | offset 2
Y. .

32 biti 0

1024 1

2% pagini de 4k -
1024

Tabele de pagini multi-nivel

e nu va trebui memorat toate tabelele in memorie la
un moment dat

— de exemplu daca un proces necesita 12MB (4MB text,
AMB date, 4MB stack), va ramane foarte mult spatiu
neutilizat intre date si stack

e cand o adresa virtuala este trimisa la MMU,
aceasta va extrage PT1 si va utiliza ca index Tn page
table de top

— fiecare linie in tabela top va reprezenta 4MB

e dupa aceasta MMU va utiliza PT2 pentru index in
tabela selectata de PT1

Tabele de pagini multi-nivel

daca pagina determinata nu este in memorie bitul
P (present) este 0 cauzand page fault

aceasta este adevar si pentru tabela top-leve

v A

adresele neutilizate nu vor fi incarcate niciodata in
memorie

de ex.: programul de 12MB va avea nevoie de 4
tabele de pagini (1 top, 1 text, 1 date si 1 stack) de
cate 1024 linii in loc de 1 milion de linii (pentru
spatiul de adrese pe 32 de biti)

extinderea tabelelor pe mai mult de 3 nivele devine
costisitoare

3.3.3. Exemple de hardware pentru
paginare
e paginare cu 3 nivele: SPARC

Context

Context table

3 6 6 , 12
index 1 index 2 index 3 ‘ offset
First Second Third
level level level
> >

4k page

Paginarea in SPARC

cand se incarca un proces in memorie, SO i
atribuie un numar de context pe care il va pastra
pana la terminare

MMU poate memora 4096 contexte

cand se doreste accesarea unui cuvant din memorie
se trimite la MMU contextul si adresa virtuala

pentru a accelera procesul de translatare se
foloseste o memorie asociativa

3.3.4. Memoria asociativa

* majoritatea implementarilor memoreaza page table
in memorie, ceea ce afecteaza performantele
sistemului

— pentru accesul in memorie e nevoie de cel putin Tnca un
acces in plus pentru a accesa tabela de pagini

e solutia porneste de la observatia: un numar mare
de accese se refera la un numar mic de adrese

— numai o mica parte din liniile tabelului de pagini vor fi
utilizate

Memoria asociativa

 solutia este de a utiliza un dispozitiv hardware
minimal pentru a mapa adresele virtuale Tn adrese
fizice fara a folosi page table din memorie

— se va folosi o memorie asociativa (numit si Translation
Lookaside Buffer)

Valid | Virtual page Modified Protection Page frame
1 140 1 rw 31
1 20 0 r X 38
1 130 1 rw 29
1 129 1 rw 62
1 19 0 r X 50
1 21 0 r X 45
1 360 1 rw 14
1 361 1 rw 75

Memoria asociativa

e cand se furnizeaza o adresa virtuala catre MMU, se
va verifica daca numarul paginii virtuale se afla in
memoria asociativa, comparand in paralel toate
intrarile

* daca se gaseste o potrivire si tipul accesului este

valid, page frame-ul va fi luat din memoria
asociativa fara a mai utiliza page table din memorie

e daca nu corespunde accesul se va genera
protection fault

Memoria asociativa

e daca numarul de pagini nu se afla in memoria
asociativa, MMU va prelua linia corespunzatoare
din page table si va plasa in memoria asociativa in
locul alteia

 fractiunea din referintele la memorie care sunt
satisfacute utilizand memoria asociativa se
numeste hit ratio

— cu cat mai mare hit ratio cu atat mai performant
sistemul

Memoria asociativa in sisteme
multitasking

 fiecare proces are propria tabela de pagini si
propria mapare de adrese virtuale

e cand se ruleaza un proces nou, aceasta nu poate
utiliza continutul memoriei asociative

e solutii:
— se asigura o instructiune pentru a invalida memoria
asociativa (se reseteaza bitii valid)

— extindem memoria asociativa cu un camp PID si
adaugam un registru care contine identificatorul
procesului curent

Exemplu hardware: MIPS R2000

au eliminat tablele de pagini

CPU contine o memorie asociativa cu 64 linii

20 b6 6 20 1111

Virtual Page ‘ pid V l Page frame ‘N‘D‘V‘GV

N: O use cache, 1 no cache

D: 0 entry is clean, 1 dirty

V: 0 invalid, 1 valid

G: 0 check pid, 1 do not check

CPU genereaza adresa virtuala, hard-ul compara
numarul paginii virtuale cu campurile
corespunzatoare din memoria asociativa

daca se gaseste, are loc translatarea hardware

MIPS R2000

daca adresa virtuala nu se gaseste in memoria
asociativa, nu se va mai cauta in tabele de pagini, ci
se va cauza un trap

SO determina care pagina virtuala este necesara si
va Tnlocui o linie din memoria asociativa cu
informatiile determinate

daca pagina nu se afla in memorie se va executa
page fault normal

se genereaza page fault si pentru nepotrivirile din
memoria asoclativa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 33

