Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

—curs 7 -

2012.04.10 s.l. dr. ing. Kertész Csaba-Zoltan



Capitolul 3.
Managementul memoriel

* Partea sistemului de operare care se ocupa cu
modul de utilizare a memoriei este managerul de

memorie

 managerul va trebui sa tina evidenta zonelor de
memorie utilizata si neutilizata, sa aloce / dealoce
memorie proceselor cand este necesar, sa ofere
protectia diferitelor zone de memorie si sa realizeze
swappingul intre memoria principala si disk

 exista o serie de scheme de management a
memoriel



3.1. Managementul memoriei fara
utilizarea paginarii si swappingului
* exista manager de memorie:

— care transfera procesele din memorie pe harddisk si
invers in timpul executiei (paging, swapping)

— care nu transfera procese

* paginarea si swappingul se utilizeaza datorita
marimii insuficiente a memoriei principale



3.1.1. Monoprogramare fara paginare si
swapping

e cea mai simpla schema de MM este de a avea un
singur proces Tn memorie la un moment dat, iar
procesul respectiv poate sa utilizeze toata memoria
disponibila

— aceasta metoda s-a folosit pana pe la'60

e procesul trebuie sa contina cate un driver pentru
fiecare dispozitiv 1/O utilizat



Scheme de monoprogramare

SO (in ROM) drivere (in ROM)

(BIOS)
User
Prog
User ILDerr
Prog 9
SO (in RAM) SO (in RAM)

* un singur proces poate fi rulat la un moment dat

e utilizatorul introduce o comanda la un terminal,
SO va incarca programul Tn memorie si va executa

 |la terminarea programului SO revine si asteapta
urmatoarea comanda



3.1.2. Multiprogramarea si utilizarea
mernoriei

e avantajele multiprogramarii:

— o aplicatie va fi mai usor de programat daca este
impartita in mai multe procese

— se asigura servirea mai multor utilizatori simultan (pot
exista mai multe procese in memorie la un moment dat)

— multe procese isi petrec o mare parte din timp
asteptand terminarea unor operatii [/O

e de exemplu procesul citeste date pe care trebuie sa opereze de
pe disk



Modelarea multiprogramarii

* se poate imbunatati utilizarea CPU prin
multiprogramare

— ex. ideal: 5 procese in memorie, fiecare cu 20% calcule si
80% 10 => CPU va fi utilizat tot timpul (presupunand ca
procesele nu asteapta la 10 toate deodata)

e vom obtine un model mai bun daca privim
utilizarea CPU d.p.d.v. probabilist

— un proces petrece o fractiune p din timpul total pentru
a astepta terminarea unei operatii 1/O



Modelul probabilist

e avand n procese in memorie la un moment dat,
probabilitatea ca toate cele n procese sa astepte
terminare unei operatii /O este p"

e utilizarea CPU: 1 - p"
n = grad de multiprogramare
e de exemplu: p = 0.8

e 1 proces: CPU utilizat =1-0.8 =0.2
2 procese: CPU utilizat = 1-0.64 = 0.36

e 10 procese: CPU utilizat = 0.94



Modelul probabilist

modelul prezentat este doar o aproximare pentru
ca s-a presupus ca procesele sunt independente

in realitate procesele nu sunt independente (ele vor
trebui sa astepte unul pe celalalt)

un model mai precis se obtine utilizand teoria
cozilor

totusi cu modelul probabilist putem realiza o
predictie buna a performantelor



Analiza performantelor pe baza
modelului probabilist

e daca avem 1TMB memorie:

- 200 kB SO
— 4 x 200 KB procese cu timpul mediu in 10 = 80%

— CPU utilizat=1-08'=1-04=<0.6
e adaugand inca 1MB:
- CPU utilizat=1-0.8°=1-0.12=0.88
— crestere cu 45% (investitie buna)
e adaugand inca 1MB:
- CPU utilizat=1-0.8"*=1-0.04 =0.96
— crestere cu 10% (investitie mal putin buna)



3.1.3. Multiprogramarea utilizand
partitii fixate

* cum putem organiza memoria pentru a putea avea
mai multe procese in memorie la un moment dat?

e o0 modalitate simpla este de a imparti memoria in n
partitii (posibil inegale)

— acest lucru se poate realiza de exemplu de catre
operator la bootarea sistemului

* deoarece partitiile sunt fixe, spatiul neutilizat dintr-
o partitie nu va putea fi utilizat de catre alte joburi



Alocarea proceselor in partitii

 multiple input queues ¢ single input queues

Partition 4

Partition 4
| Partition 3

Partition 3

Partition 2

\ Partition 2
Partition 1

Partition 1

O




Relocatarea si protectia

* multiprogramarea conduce la aparitia a 2 probleme
ce trebuie rezolvate

— relocatarea
— protectia
e joburi diferite vor rula la adrese diferite

e |link-editorul va trebui sa cunoasca la ce adresa de
memorie va incepe programul

— daca prima instructiune in program este un salt la
adresa 0x100:

e in partitia 1 va trebui sa sara la 100k + 0x100

e in partitia 2 va trebui sa sara la 200k + 0x100



Relocatarea si protectia

e pentru relocatare trebuie modificate instructiunile
programului la incarcarea acestuia

e programele incarcate in partitia 1 vor avea 100k adaugat la
fiecare adresa

* programele incarcate in partitia 2 vor avea 200k adaugat la
fiecare adresa

 relocatarea in timpul incarcarii nu rezolva
problema protectiei

— programele pot intotdeauna construi orice adresa din
memorie deci pot citi sau scrie orice cuvant din
memorie



Relocatarea si protectia

* nu este de dorit ca un proces sa poata accesa
memoria unui alt proces

 solutia: folosirea a doua registre

— baza

— limita

* la planificarea unui proces se incarca registrul baza
cu adresa de inceput a partitiei, iar registrul limita
cu sfarsitul partitiei



Relocatarea si protectia

 fiecare adresa folosita de catre program va fi
relativa la adresa de inceput a partitiei (registrul
baza)

e adresele vor fi verificate sa nu depaseasca limita
partitiel

* numai SO poate modifica registrele baza si limita

* avantajul acestei abordari ca putem muta
programul oriunde in memorie



3.2. Swapping

in cazul sistemelor time-sharing exista mai multe
procese care trebuie sa se execute

deseori memoria nu este suficienta pentru a
memora toate aceste procese

unele procese vor trebui mutate pe disc, iar n
momentul rularii acestora trebui aduse Tnapoi in
memorie:

transferarea proceselor intre memoria si disc se
numeste swapping



3.2.1. Multiprogramarea utilizand
partitii variabile

 in principiu swappingul poate fi folosit si cu partitii
fixe, dar aceasta abordare nu este eficienta
(ramanand zone neutilizate de memorie)

o astfel in cazul in care se foloseste swapping se
abordeaza o partitionare variabila a memoriei:

— numarul, pozitia si marimea partitiilor variaza dinamic
in functie de procesele care vor fi plasate sau eliberate
din memorie

- se imbunatateste folosirea memoriei



variabile

Parti!:ii

////—

n-_




Probleme la alocare si dealocare

* scopul este ca procesele sa fie aranjate astfel incat
sa foloseasca cat mai bine memoria

* 0 metoda ar fi mutarea proceselor astfel incat sa nu
existe gauri:
— compactarea memoriel

— nu prea se foloseste pentru ca consuma mult timp

* 0 problema care mai apare este: cata memorie va
trebui alocat pentru un proces

— cele mai multe ori segmentele de date alocate
procesului cresc in timp (heap, stack)



Problema cresterii memoriei necesare

pentru un proces

daca zona de memorie adiacenta procesului este

el

ver, se poate extinde Tn aceasta zona

tfel va trebui mutat procesul intr-o alta zona de

memorie mal mare care permite cresterea
dimensiunii

daca nu e loc suficient Tn memoria, va trebui
trimise unele procese din memorie pe disc

daca nici pe disc nu mai e loc atunci procesul
trebuie suspendat sau omorat



Alocare/dealocare

e pentru a reduce overhead-ul datorat swappingului
se poate aloca o zona mica de memorie goala in
care procesele adiacente pot sa creasca

— diminueaza eficienta folosirii memoriei

stack

|
1

heap

spatiu utilizat program

SO SO



3.2.2. Managementul memoriei
utilizand bit maps
* memoria este divizata in unitati de alocare (zeci de

B — zeci de kB)

e fiecarei unitati de alocare ii va corespunde un bit in
bit map

— 0: daca unitatea nu a fost alocata

— 1: daca a fost alocata

IIIII %IIIIIIIIII//IIIIIIII%%

A B C D

11111000
11111111
11001111
11110000



Bit maps

e 0 problema importanta este alegerea dimensiunii
unitatii de alocare

— unitati mici: bit map necesar mare (de ex. pentru o
unitate de 4B vom avea nevoie de un bit pentru fiecare
32 de biti => 1/33 din memorie ocupat pentru bit map)

— unitati mari: bit map mic, dar poate conduce la
utilizarea ineficienta a memoriei

* 0 alta problema este faptul ca la alocare unui
proces, managerul de memorie va trebui sa caute
un numar de biti de 0 consecutivi suficient pentru
procesul respectiv



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 24

