

Sisteme de operareSisteme de operare

– – curs 7 –curs 7 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.04.10 ș.l. dr. ing. Kertész Csaba-Zoltán

Capitolul 3.Capitolul 3.
Managementul memorieiManagementul memoriei

● Partea sistemului de operare care se ocupă cu
modul de utilizare a memoriei este managerul de
memorie

● managerul va trebui să țină evidența zonelor de
memorie utilizată și neutilizată, să aloce / dealoce
memorie proceselor când este necesar, să ofere
protecția diferitelor zone de memorie și să realizeze
swappingul între memoria principală și disk

● există o serie de scheme de management al
memoriei

3.1. Managementul memoriei fără 3.1. Managementul memoriei fără
utilizarea paginării și swappinguluiutilizarea paginării și swappingului

● există manager de memorie:
– care transferă procesele din memorie pe harddisk și

invers în timpul execuției (paging, swapping)
– care nu transferă procese

● paginarea și swappingul se utilizează datorită
mărimii insuficiente a memoriei principale

3.1.1. Monoprogramare fără paginare și 3.1.1. Monoprogramare fără paginare și
swappingswapping

● cea mai simplă schemă de MM este de a avea un
singur proces în memorie la un moment dat, iar
procesul respectiv poate să utilizeze toată memoria
disponibilă
– această metodă s-a folosit până pe la '60

● procesul trebuie să conțină câte un driver pentru
fiecare dispozitiv I/O utilizat

Scheme de monoprogramareScheme de monoprogramare

● un singur proces poate fi rulat la un moment dat
● utilizatorul introduce o comandă la un terminal,

SO va încărca programul în memorie și va executa
● la terminarea programului SO revine și așteaptă

următoarea comandă

User
Prog

SO (în RAM)

User
Prog

SO (în ROM)

User
Prog

SO (în RAM)

drivere (în ROM)
(BIOS)

3.1.2. Multiprogramarea și utilizarea 3.1.2. Multiprogramarea și utilizarea
memorieimemoriei

● avantajele multiprogramării:
– o aplicație va fi mai ușor de programat dacă este

împărțită în mai multe procese
– se asigură servirea mai multor utilizatori simultan (pot

exista mai multe procese în memorie la un moment dat)
– multe procese își petrec o mare parte din timp

așteptând terminarea unor operații I/O
● de exemplu procesul citește date pe care trebuie să opereze de

pe disk

Modelarea multiprogramăriiModelarea multiprogramării

● se poate îmbunătăți utilizarea CPU prin
multiprogramare
– ex. ideal: 5 procese în memorie, fiecare cu 20% calcule și

80% IO => CPU va fi utilizat tot timpul (presupunând că
procesele nu așteaptă la IO toate deodată)

● vom obține un model mai bun dacă privim
utilizarea CPU d.p.d.v. probabilist
– un proces petrece o fracțiune p din timpul total pentru

a aștepta terminarea unei operații I/O

Modelul probabilistModelul probabilist

● având n procese în memorie la un moment dat,
probabilitatea ca toate cele n procese să aștepte
terminare unei operații I/O este pn

● utilizarea CPU: 1 – pn

n = grad de multiprogramare

● de exemplu: p = 0.8
● 1 proces: CPU utilizat = 1 – 0.8 = 0.2
● 2 procese: CPU utilizat = 1 – 0.64 = 0.36
● ...
● 10 procese: CPU utilizat ≈ 0.94

Modelul probabilistModelul probabilist

● modelul prezentat este doar o aproximare pentru
că s-a presupus că procesele sunt independente

● în realitate procesele nu sunt independente (ele vor
trebui să aștepte unul pe celălalt)

● un model mai precis se obține utilizând teoria
cozilor

● totuși cu modelul probabilist putem realiza o
predicție bună a performanțelor

Analiza performanțelor pe baza Analiza performanțelor pe baza
modelului probabilistmodelului probabilist

● dacă avem 1MB memorie:
– 200 kB SO
– 4 x 200 KB procese cu timpul mediu în IO = 80%
– CPU utilizat = 1 – 0.84 ≈ 1 – 0.4 ≈ 0.6

● adăugând încă 1MB:
– CPU utilizat = 1 – 0.89 ≈ 1 – 0.12 ≈ 0.88

– creștere cu 45% (investiție bună)

● adăugând încă 1MB:
– CPU utilizat = 1 – 0.814 ≈ 1 – 0.04 ≈ 0.96

– creștere cu 10% (investiție mai puțin bună)

3.1.3. Multiprogramarea utilizând 3.1.3. Multiprogramarea utilizând
partiții fixatepartiții fixate

● cum putem organiza memoria pentru a putea avea
mai multe procese în memorie la un moment dat?

● o modalitate simplă este de a împărți memoria în n
partiții (posibil inegale)
– acest lucru se poate realiza de exemplu de către

operator la bootarea sistemului

● deoarece partițiile sunt fixe, spațiul neutilizat dintr-
o partiție nu va putea fi utilizat de către alte joburi

Alocarea proceselor în partițiiAlocarea proceselor în partiții

Partition 4

Partition 3

Partition 2

Partition 1

SO

● multiple input queues ● single input queues

Partition 4

Partition 3

Partition 2

Partition 1

SO

Relocatarea și protecțiaRelocatarea și protecția

● multiprogramarea conduce la apariția a 2 probleme
ce trebuie rezolvate
– relocatarea
– protecția

● joburi diferite vor rula la adrese diferite
● link-editorul va trebui să cunoască la ce adresă de

memorie va începe programul
– dacă prima instrucțiune în program este un salt la

adresa 0x100:
● în partiția 1 va trebui să sară la 100k + 0x100
● în partiția 2 va trebui să sară la 200k + 0x100

Relocatarea și protecțiaRelocatarea și protecția

● pentru relocatare trebuie modificate instrucțiunile
programului la încărcarea acestuia

● programele încărcate în partiția 1 vor avea 100k adăugat la
fiecare adresă

● programele încărcate în partiția 2 vor avea 200k adăugat la
fiecare adresă

● relocatarea în timpul încărcării nu rezolvă
problema protecției
– programele pot întotdeauna construi orice adresă din

memorie deci pot citi sau scrie orice cuvânt din
memorie

Relocatarea și protecțiaRelocatarea și protecția

● nu este de dorit ca un proces să poată accesa
memoria unui alt proces

● soluția: folosirea a două registre
– bază
– limită

● la planificarea unui proces se încarcă registrul bază
cu adresa de început a partiției, iar registrul limită
cu sfârșitul partiției

Relocatarea și protecțiaRelocatarea și protecția

● fiecare adresă folosită de către program va fi
relativă la adresa de început a partiției (registrul
bază)

● adresele vor fi verificate să nu depășească limita
partiției

● numai SO poate modifica registrele bază și limită
● avantajul acestei abordări că putem muta

programul oriunde în memorie

3.2. Swapping3.2. Swapping

● în cazul sistemelor time-sharing există mai multe
procese care trebuie să se execute

● deseori memoria nu este suficientă pentru a
memora toate aceste procese

● unele procese vor trebui mutate pe disc, iar în
momentul rulării acestora trebui aduse înapoi în
memorie:

● transferarea proceselor între memoria și disc se
numește swapping

3.2.1. Multiprogramarea utilizând 3.2.1. Multiprogramarea utilizând
partiții variabilepartiții variabile

● în principiu swappingul poate fi folosit și cu partiții
fixe, dar această abordare nu este eficientă
(rămânând zone neutilizate de memorie)

● astfel în cazul în care se folosește swapping se
abordează o partiționare variabilă a memoriei:
– numărul, poziția și mărimea partițiilor variază dinamic

în funcție de procesele care vor fi plasate sau eliberate
din memorie

– se îmbunătățește folosirea memoriei

Partiții variabilePartiții variabile

SO

A

● se complică foarte mult procesul de alocare și
dealocare a memoriei

SO

A

B

SO

A

SO

A

B

C

B

C

D

SO

C

D

SO

E

C

D

Probleme la alocare și dealocareProbleme la alocare și dealocare

● scopul este ca procesele să fie aranjate astfel încât
să folosească cât mai bine memoria

● o metodă ar fi mutarea proceselor astfel încât să nu
existe găuri:
– compactarea memoriei
– nu prea se folosește pentru că consumă mult timp

● o problemă care mai apare este: câtă memorie va
trebui alocat pentru un proces
– cele mai multe ori segmentele de date alocate

procesului cresc în timp (heap, stack)

Problema creșterii memoriei necesare Problema creșterii memoriei necesare
pentru un procespentru un proces

● dacă zona de memorie adiacentă procesului este
liber, se poate extinde în această zonă

● altfel va trebui mutat procesul într-o altă zonă de
memorie mai mare care permite creșterea
dimensiunii

● dacă nu e loc suficient în memoria, va trebui
trimise unele procese din memorie pe disc

● dacă nici pe disc nu mai e loc atunci procesul
trebuie suspendat sau omorât

Alocare/dealocareAlocare/dealocare

● pentru a reduce overhead-ul datorat swappingului
se poate aloca o zonă mică de memorie goală în
care procesele adiacente pot să crească
– diminuează eficiența folosirii memoriei

SO

spațiu utilizat

zonă de creștere

SO

program

stack
↓
↑

heap

3.2.2. Managementul memoriei 3.2.2. Managementul memoriei
utilizând bit mapsutilizând bit maps

● memoria este divizată în unități de alocare (zeci de
B – zeci de kB)

● fiecărei unități de alocare îi va corespunde un bit în
bit map
– 0: dacă unitatea nu a fost alocată
– 1: dacă a fost alocată

1111111000
1111111111
1110011111
1111101000

A B C D

Bit mapsBit maps

● o problemă importantă este alegerea dimensiunii
unității de alocare
– unități mici: bit map necesar mare (de ex. pentru o

unitate de 4B vom avea nevoie de un bit pentru fiecare
32 de biți => 1/33 din memorie ocupat pentru bit map)

– unități mari: bit map mic, dar poate conduce la
utilizarea ineficientă a memoriei

● o altă problemă este faptul că la alocare unui
proces, managerul de memorie va trebui să caute
un număr de biți de 0 consecutivi suficient pentru
procesul respectiv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 24

