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Capitolul 3.Capitolul 3.
Managementul memorieiManagementul memoriei

● Partea sistemului de operare care se ocupă cu 
modul de utilizare a memoriei este managerul de 
memorie

● managerul va trebui să țină evidența zonelor de 
memorie utilizată și neutilizată, să aloce / dealoce 
memorie proceselor când este necesar, să ofere 
protecția diferitelor zone de memorie și să realizeze 
swappingul între memoria principală și disk

● există o serie de scheme de management al 
memoriei



  

3.1. Managementul memoriei fără 3.1. Managementul memoriei fără 
utilizarea paginării și swappinguluiutilizarea paginării și swappingului

● există manager de memorie:
– care transferă procesele din memorie pe harddisk și 

invers în timpul execuției (paging, swapping)
– care nu transferă procese

● paginarea și swappingul se utilizează datorită 
mărimii insuficiente a memoriei principale



  

3.1.1. Monoprogramare fără paginare și 3.1.1. Monoprogramare fără paginare și 
swappingswapping

● cea mai simplă schemă de MM este de a avea un 
singur proces în memorie la un moment dat, iar 
procesul respectiv poate să utilizeze toată memoria 
disponibilă
– această metodă s-a folosit până pe la '60

● procesul trebuie să conțină câte un driver pentru 
fiecare dispozitiv I/O utilizat



  

Scheme de monoprogramareScheme de monoprogramare

● un singur proces poate fi rulat la un moment dat
● utilizatorul introduce o comandă la un terminal, 

SO va încărca programul în memorie și va executa
● la terminarea programului SO revine și așteaptă 

următoarea comandă
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3.1.2. Multiprogramarea și utilizarea 3.1.2. Multiprogramarea și utilizarea 
memorieimemoriei

● avantajele multiprogramării:
– o aplicație va fi mai ușor de programat dacă este 

împărțită în mai multe procese
– se asigură servirea mai multor utilizatori simultan (pot 

exista mai multe procese în memorie la un moment dat)
– multe procese își petrec o mare parte din timp 

așteptând terminarea unor operații I/O
● de exemplu procesul citește date pe care trebuie să opereze de 

pe disk



  

Modelarea multiprogramăriiModelarea multiprogramării

● se poate îmbunătăți utilizarea CPU prin 
multiprogramare
– ex. ideal: 5 procese în memorie, fiecare cu 20% calcule și 

80% IO => CPU va fi utilizat tot timpul (presupunând că 
procesele nu așteaptă la IO toate deodată)

● vom obține un model mai bun dacă privim 
utilizarea CPU d.p.d.v. probabilist
– un proces petrece o fracțiune p din timpul total pentru 

a aștepta terminarea unei operații I/O 



  

Modelul probabilistModelul probabilist

● având n procese în memorie la un moment dat, 
probabilitatea ca toate cele n procese să aștepte 
terminare unei operații I/O este pn

● utilizarea CPU: 1 – pn

n = grad de multiprogramare

● de exemplu: p = 0.8
● 1 proces: CPU utilizat = 1 – 0.8 = 0.2
● 2 procese: CPU utilizat = 1 – 0.64 = 0.36
● ...
● 10 procese: CPU utilizat ≈ 0.94



  

Modelul probabilistModelul probabilist

● modelul prezentat este doar o aproximare pentru 
că s-a presupus că procesele sunt independente

● în realitate procesele nu sunt independente (ele vor 
trebui să aștepte unul pe celălalt)

● un model mai precis se obține utilizând teoria 
cozilor

● totuși cu modelul probabilist putem realiza o 
predicție bună a performanțelor



  

Analiza performanțelor pe baza Analiza performanțelor pe baza 
modelului probabilistmodelului probabilist

● dacă avem 1MB memorie:
– 200 kB SO
– 4 x 200 KB procese cu timpul mediu în IO = 80%
– CPU utilizat = 1 – 0.84 ≈ 1 – 0.4 ≈ 0.6

● adăugând încă 1MB:
– CPU utilizat = 1 – 0.89 ≈ 1 – 0.12 ≈ 0.88

– creștere cu 45% (investiție bună)

● adăugând încă 1MB:
– CPU utilizat = 1 – 0.814 ≈ 1 – 0.04 ≈ 0.96

– creștere cu 10% (investiție mai puțin bună)



  

3.1.3. Multiprogramarea utilizând 3.1.3. Multiprogramarea utilizând 
partiții fixatepartiții fixate

● cum putem organiza memoria pentru a putea avea 
mai multe procese în memorie la un moment dat?

● o modalitate simplă este de a împărți memoria în n 
partiții (posibil inegale)
– acest lucru se poate realiza de exemplu de către 

operator la bootarea sistemului

● deoarece partițiile sunt fixe, spațiul neutilizat dintr-
o partiție nu va putea fi utilizat de către alte joburi



  

Alocarea proceselor în partițiiAlocarea proceselor în partiții
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Relocatarea și protecțiaRelocatarea și protecția

● multiprogramarea conduce la apariția a 2 probleme 
ce trebuie rezolvate
– relocatarea 
– protecția

● joburi diferite vor rula la adrese diferite
● link-editorul va trebui să cunoască la ce adresă de 

memorie va începe programul
– dacă prima instrucțiune în program este un salt la 

adresa 0x100:
● în partiția 1 va trebui să sară la 100k + 0x100
● în partiția 2 va trebui să sară la 200k + 0x100



  

Relocatarea și protecțiaRelocatarea și protecția

● pentru relocatare trebuie modificate instrucțiunile 
programului la încărcarea acestuia

● programele încărcate în partiția 1 vor avea 100k adăugat la 
fiecare adresă

● programele încărcate în partiția 2 vor avea 200k adăugat la 
fiecare adresă

● relocatarea în timpul încărcării nu rezolvă 
problema protecției
– programele pot întotdeauna construi orice adresă din 

memorie deci pot citi sau scrie orice cuvânt din 
memorie



  

Relocatarea și protecțiaRelocatarea și protecția

● nu este de dorit ca un proces să poată accesa 
memoria unui alt proces

● soluția: folosirea a două registre
– bază
– limită

● la planificarea unui proces se încarcă registrul bază 
cu adresa de început a partiției, iar registrul limită 
cu sfârșitul partiției



  

Relocatarea și protecțiaRelocatarea și protecția

● fiecare adresă folosită de către program va fi 
relativă la adresa de început a partiției (registrul 
bază)

● adresele vor fi verificate să nu depășească limita 
partiției

● numai SO poate modifica registrele bază și limită
● avantajul acestei abordări că putem muta 

programul oriunde în memorie



  

3.2. Swapping3.2. Swapping

● în cazul sistemelor time-sharing există mai multe 
procese care trebuie să se execute

● deseori memoria nu este suficientă pentru a 
memora toate aceste procese

● unele procese vor trebui mutate pe disc, iar în 
momentul rulării acestora trebui aduse înapoi în 
memorie:

● transferarea proceselor între memoria și disc se 
numește swapping



  

3.2.1. Multiprogramarea utilizând 3.2.1. Multiprogramarea utilizând 
partiții variabilepartiții variabile

● în principiu swappingul poate fi folosit și cu partiții 
fixe, dar această abordare nu este eficientă 
(rămânând zone neutilizate de memorie)

● astfel în cazul în care se folosește swapping se 
abordează o partiționare variabilă a memoriei:
– numărul, poziția și mărimea partițiilor variază dinamic 

în funcție de procesele care vor fi plasate sau eliberate 
din memorie

– se îmbunătățește folosirea memoriei



  

Partiții variabilePartiții variabile
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Probleme la alocare și dealocareProbleme la alocare și dealocare

● scopul este ca procesele să fie aranjate astfel încât 
să folosească cât mai bine memoria

● o metodă ar fi mutarea proceselor astfel încât să nu 
existe găuri:
– compactarea memoriei
– nu prea se folosește pentru că consumă mult timp

● o problemă care mai apare este: câtă memorie va 
trebui alocat pentru un proces
– cele mai multe ori segmentele de date alocate 

procesului cresc în timp (heap, stack)



  

Problema creșterii memoriei necesare Problema creșterii memoriei necesare 
pentru un procespentru un proces

● dacă zona de memorie adiacentă procesului este 
liber, se poate extinde în această zonă

● altfel va trebui mutat procesul într-o altă zonă de 
memorie mai mare care permite creșterea 
dimensiunii

● dacă nu e loc suficient în memoria, va trebui 
trimise unele procese din memorie pe disc

● dacă nici pe disc nu mai e loc atunci procesul 
trebuie suspendat sau omorât



  

Alocare/dealocareAlocare/dealocare

● pentru a reduce overhead-ul datorat swappingului 
se poate aloca o zonă mică de memorie goală în 
care procesele adiacente pot să crească
– diminuează eficiența folosirii memoriei
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zonă de creștere
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program

stack
↓
↑
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3.2.2. Managementul memoriei 3.2.2. Managementul memoriei 
utilizând bit mapsutilizând bit maps

● memoria este divizată în unități de alocare (zeci de 
B – zeci de kB)

● fiecărei unități de alocare îi va corespunde un bit în 
bit map
– 0: dacă unitatea nu a fost alocată
– 1: dacă a fost alocată

1111111000
1111111111
1110011111
1111101000

A B C D



  

Bit mapsBit maps

● o problemă importantă este alegerea dimensiunii 
unității de alocare
– unități mici: bit map necesar mare (de ex. pentru o 

unitate de 4B vom avea nevoie de un bit pentru fiecare 
32 de biți => 1/33 din memorie ocupat pentru bit map)

– unități mari: bit map mic, dar poate conduce la 
utilizarea ineficientă a memoriei

● o altă problemă este faptul că la alocare unui 
proces, managerul de memorie va trebui să caute 
un număr de biți de 0 consecutivi suficient pentru 
procesul respectiv
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