Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

— curs 6 —

2012.04.03 s.l. dr. ing. Kertész Csaba-Zoltan

2.5. Planificarea proceselor

componenta SO care determina care dintre
procesele din sistem va deveni activ:

scheduler

schedulerul implementeaza un algoritm de
planificare (scheduling algorithm)

acest algoritm permite alegerea uneia din procesele
aflate Tn starea ready si marcarea acesteia ca fiind
activ

dupa alegere schedulerul realizeaza schimbarea
contextului intre procesul care a fost activ si cel
care este marcat sa devina activ

Criteriile planificarii

fairness: fiecare proces sa ocupe procesorul in mod
cinstit

eficient: sa mentina utilizarea CPU cat mai
aproape de 100%

timp de raspuns: minim
turnaround: minimizare timpului de asteptare

throughput: maximizarea numarului de joburi pe
ora

Problemele planificatorului

e criteriile sunt contradictorii

— de ex. pentru a minimiza timpul de raspuns ar trebui
rulate cat mai putine procese

e o complicatie prezinta faptul ca fiecare proces este
unic si impredictibil
— unele procese petrec foarte mult timp asteptand

operatii lO, altele pot rula ore intregi fara asteptare

— la activarea unui proces schedulerul nu poate sa stie cat
timp va rula procesul inainte de a se bloca

Strategiile planificatorului

 strategii de planificare preemtive: permit
suspendarea temporara a proceselor care ruleaza

— la fiecare intrerupere de ceas se ruleaza schedulerul care
decide daca procesul curent continua sa ruleze sau nu,
daca nu procesul va fi suspendat si controlul dat altui
proces

 strategii de planificare non-preemptive: procesele
ruleaza pana cand isi termina executia sau se vor
bloca Tn asteptarea unei operatii O

— la apelul sistem de terminare sau cel blocant se ruleaza
schedulerul

2.5.1. First Come First Served
Scheduling

planificarea cea mai simpla

CPU va fi alocat proceselor in ordinea in care
acestea se pornesc

procesele continua pana la terminare sau blocare,
moment in care urmatorul proces din lista va fi
planificat

se poate implementa foarte usor cu un FIFO

este o planificare non-preemptiva

2.5.2. Round Robin Scheduling

este unul din cele mai vechi si simpli algoritmi de
planificare preemptive

fiecarei proces i se atribuie un interval de timp
numit cuanta, in care procesul se poate executa

daca procesul nu-si termina executia pana la
expirarea cuantei de timp alocate, el va fi intrerupt
iar CPU este alocat altui proces

daca procesul termina inainte de expirarea cuantei,
se va planifica alt proces fara a se astepta expirarea
cuantei

Round Robin

e algoritmul este usor de implementat

— planificatorul va mentine o lista a proceselor ce pot fi
rulate (ready)

— la expirarea cuantei, procesul activ va fi trecut la
sfarsitul listei, iar urmatorul proces din lista va obtine

CPU
B D D B
current next current
process process process

e mean turnaround time

— de ex. procesele A,B,C,D cu timpi de executie 4,2,5,3,
mtt=10.75; iar pentru 6,1,4,2, mtt=8.25

Alegerea cuantei

* 0 problema importanta in proiectare este alegerea
cuantel

* comutarea proceselor necesita un anumit interval
de timp pentru salvarea si incarcarea registrelor,
actualizarea tabelelor si listelor, etc.

* de ex. cuanta 20ms, timp de comutare 5ms =>
overhead de 20%

— pentru a mari eficienta trebuie micsorat overheadul, de
ex. cuanta 495ms, overhead 1%

— dar cu cuanta mare timpul de raspuns creste: de ex. 10
utilizatori apasa Enter, ultimul va trebui sa astepte 5s

Alegerea cuantei

stabilirea unei cuante mici va conduce la comutari
multe scazand eficienta CPU

stabilirea unei cuante mari cauzeaza un timp de
raspuns mare pentru utilizator

valorile uzuale pentru cuante sunt 1-100ms

informatii despre eficienta
/proc/cpuinfo

/proc/stat
/proc/schedstat

2.5.3. Priority scheduling

in cazul Round Robin, procesele aveau aceeasi
prioritate

uneori insa va trebui sa tinem cont de prioritatile in
rezolvarea unor probleme

fiecarei proces i se aloca o prioritate

a un moment dat va fi rulat procesul cel mai
prioritar

pbentru a previne rularea indefinita a proceselor
orioritare schedulerul poate descreste prioritatea
orocesului activ la fiecare intrerupere

Atribuirea prioritatilor

e atribuire statica

— prioritate constanta definita pentru un proces sau
pentru utilizatorul care porneste procesul

e atribuire dinamica
— modificare a prioritatii in timpul rularii

— de ex. comanda nice permite unui utilizator sa-si
descreasca prioritatea pentru a fi dragut cu ceilalti :)

— SO poate acorda prioritate mai mare unui proces care
asteapta foarte mult pentru 1O si utilizeaza foarte putin

CPU

Gruparea prioritatilor

* procesele pot fi grupate in clase de prioritati

* se va utiliza priority scheduling intre clase cu
diferite prioritati

e n cadrul fiecarei clase se va utiliza round-robin
(intre procese cu acelasi prioritate)

priority 3

priority 2

priority 1

priority 0

Priority inversion

e 0 problema mare la algoritmii bazate pe prioritati
este posibilitate aparitiei fenomenului de inversare
a prioritatilor

* daca un proces prioritar asteapta dupa un proces
mai putin prioritar (pentru sincronizarea
sectiunilor critice), atunci procesele cu prioritati
intermediare vor bloca procesul prioritar astfel
devenind aparent mai prioritari

— solutia poate fi schimbarea temporare a prioritatii
procesului la prioritatea celui care este blocat in
asteptarea sincronizarii

2.5.4. Multiple queues

se folosesc clase de prioritati

procesele din clasa cea mai prioritara vor avea o
cuanta de timp, cele din urmatoarea clasa 2 cuante,
urmatoarea 4 cuante, s.a.m.d.

daca un proces si-a utilizat toate cuantele dintr-o
clasa, va fi trecut intr-o clasa inferioara

de ex. un proces necesita 100 cuante:

— ruleaza 1 cuanta, intrerupt, dupa care 2, 4, 8, 16, 32, 37
=> 7 comutari in loc de 100

un proces lung se va rula din ce in ce mai rar

2.5.5. Shortest job first

algoritmii de pana acum au fost proiectati pentru
sisteme interactive

algoritmul SJF este proiectat pentru sisteme in care
timpul de rulare este cunoscut in avans

de exemplu patru procese de aceeasi prioritate:

Procese: AlB]1]C|D

Timpexecutie: | 8 | 4| 4| 4

mtt =14,ml'tSJF=11

FCFS

primul job rulat contribuie cel mai mult la mtt

Shortest job first

e SJF conduce la un timp de raspuns mediu minim

 ar fi bine de utilizat si la procese interactive

— problema: cum se estimeaza timpul de rulare pentru
astfel de procese
* ageing:
o timpul initial estimat =T , dupa rulare timpul masurat =T

e Urmatoarea estimare = aTO +(1- a)T1

e T, T/2+T /2T /4+T/4+T/2,T/8+T /8+T /4 +T /2

Shortest job first

* SJF este optim doar daca toate job-urile sunt

disponibile

e de exemplu:

Procese: A

B

C

D

E

Timp executie: | 2

4

1

1

1

e daca initial numai A si B pot fi p

fiind blocate: mtt = 4.6

anificate, restul

* daca toate procesele pot fi planificate: mtt = 4.4

2.5.6. Planificare garantata

* 0 abordare diferita de planificare:

— se face promisiuni utilizatorului legat de marimea
timpului CPU atribuit

— de exemplu daca sunt n utilizatori logati in sistem,
fiecare va primi 1/n din timpul CPU

* sistemul calculeaza mereu cat timp CPU a utilizat
fiecare utilizator si imparte cu n, apoi calculeaza
raportul intre timpul utilizat si timpul de la ultimul
calcul

* ruleaza tot timpul procesul cu cel mai mic raport

2.5.7. Politici si mecanisme

e nici unul din algoritmii prezentati nu acceptau
informatii de la procesele utilizator, pe care sa le
foloseasca in luarea deciziilor

— schedulerul nu va lua intotdeauna decizia cea mai buna
 solutia este separarea mecanismului planificarii de
politica planificarii

* mecanismul este realizat de kernel, dar politica este
stabilita de procesul utilizator

Politici si mecanisme

 algoritmul de planificare este parametrizat intr-un
anume mod astfel incat parametrii sa pot fi setati
de procesele utilizator

e de exemplu:

— kernelul foloseste priority scheduling si asigura un apel
sistem prin care un proces poate seta prioritatile
proceselor fii, astfel procesul parinte va controla
planificarea proceselor fii

2.5.8. Two-level scheduling

pana acum am presupus ca procesele ready se afla
In memorie

daca insa nu dispunem de suficienta memorie,
unele din procese ready va trebui plasate pe disc

comutarea proceselor de pe disc va lua un timp
mult mai mare decat celor din memorie

vom utiliza un scheduler cu 2 nivele

Two-level scheduling

initial o submultime a proceselor ready vor fi
Incarcate Tn memorie

schedulerul va planifica numai aceste procese

neriodic un schec
nentru a elimina
de mult timp aco
disc

pentru o perioada de timp

uler de nivel inalt este utilizat
brocesele din memorie (care sunt

0) si a incarca procese noi de pe

apoi se foloseste schedulerul de nivel jos pentru
planificare intre aceste procese noi

Criteriile folosite de schedulerul de
nivel inalt

cat de mult a stat un proces in memorie sau pe disc
cat timp CPU a utilizat procesul
cat de mare este procesul

care este prioritatea procesului

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

