

Sisteme de operareSisteme de operare

– – curs 6 –curs 6 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.04.03 ș.l. dr. ing. Kertész Csaba-Zoltán

2.5. Planificarea proceselor2.5. Planificarea proceselor

● componenta SO care determină care dintre
procesele din sistem va deveni activ:

scheduler
● schedulerul implementează un algoritm de

planificare (scheduling algorithm)
● acest algoritm permite alegerea uneia din procesele

aflate în starea ready și marcarea acesteia ca fiind
activ

● după alegere schedulerul realizează schimbarea
contextului între procesul care a fost activ și cel
care este marcat să devină activ

Criteriile planificăriiCriteriile planificării

● fairness: fiecare proces să ocupe procesorul în mod
cinstit

● eficient: să mențină utilizarea CPU cât mai
aproape de 100%

● timp de răspuns: minim
● turnaround: minimizare timpului de așteptare
● throughput: maximizarea numărului de joburi pe

oră

Problemele planificatoruluiProblemele planificatorului

● criteriile sunt contradictorii
– de ex. pentru a minimiza timpul de răspuns ar trebui

rulate cât mai puține procese

● o complicație prezintă faptul că fiecare proces este
unic și impredictibil
– unele procese petrec foarte mult timp așteptând

operații IO, altele pot rula ore întregi fără așteptare
– la activarea unui proces schedulerul nu poate să știe cât

timp va rula procesul înainte de a se bloca

Strategiile planificatoruluiStrategiile planificatorului

● strategii de planificare preemtive: permit
suspendarea temporară a proceselor care rulează
– la fiecare întrerupere de ceas se rulează schedulerul care

decide dacă procesul curent continuă să ruleze sau nu,
dacă nu procesul va fi suspendat și controlul dat altui
proces

● strategii de planificare non-preemptive: procesele
rulează până când își termină execuția sau se vor
bloca în așteptarea unei operații IO
– la apelul sistem de terminare sau cel blocant se rulează

schedulerul

2.5.1. First Come First Served 2.5.1. First Come First Served
SchedulingScheduling

● planificarea cea mai simplă
● CPU va fi alocat proceselor în ordinea în care

acestea se pornesc
● procesele continuă până la terminare sau blocare,

moment în care următorul proces din listă va fi
planificat

● se poate implementa foarte ușor cu un FIFO
● este o planificare non-preemptivă

2.5.2. Round Robin Scheduling2.5.2. Round Robin Scheduling

● este unul din cele mai vechi și simpli algoritmi de
planificare preemptive

● fiecărei proces i se atribuie un interval de timp
numit cuantă, în care procesul se poate executa

● dacă procesul nu-și termină execuția până la
expirarea cuantei de timp alocate, el va fi întrerupt
iar CPU este alocat altui proces

● dacă procesul termină înainte de expirarea cuantei,
se va planifica alt proces fără a se aștepta expirarea
cuantei

Round RobinRound Robin

● algoritmul este ușor de implementat
– planificatorul va menține o listă a proceselor ce pot fi

rulate (ready)
– la expirarea cuantei, procesul activ va fi trecut la

sfârșitul listei, iar următorul proces din listă va obține
CPU

● mean turnaround time
– de ex. procesele A,B,C,D cu timpi de execuție 4,2,5,3,

mtt=10.75; iar pentru 6,1,4,2, mtt=8.25

AFB GD AF BGD

current
process

current
process

next
process

Alegerea cuanteiAlegerea cuantei

● o problemă importantă în proiectare este alegerea
cuantei

● comutarea proceselor necesită un anumit interval
de timp pentru salvarea și încărcarea registrelor,
actualizarea tabelelor și listelor, etc.

● de ex. cuantă 20ms, timp de comutare 5ms t=>
overhead de 20%
– pentru a mări eficiența trebuie micșorat overheadul, de

ex. cuantă 495ms, overhead 1%
– dar cu cuanta mare timpul de răspuns crește: de ex. 10

utilizatori apasă Enter, ultimul va trebui să aștepte 5s

Alegerea cuanteiAlegerea cuantei

● stabilirea unei cuante mici va conduce la comutări
multe scăzând eficiența CPU

● stabilirea unei cuante mari cauzează un timp de
răspuns mare pentru utilizator

● valorile uzuale pentru cuante sunt 1-100ms
● informații despre eficiență

/proc/cpuinfo

/proc/stat

/proc/schedstat

2.5.3. Priority scheduling2.5.3. Priority scheduling

● în cazul Round Robin, procesele aveau aceeași
prioritate

● uneori însă va trebui să ținem cont de prioritățile în
rezolvarea unor probleme

● fiecărei proces i se alocă o prioritate
● la un moment dat va fi rulat procesul cel mai

prioritar
● pentru a previne rularea indefinită a proceselor

prioritare schedulerul poate descrește prioritatea
procesului activ la fiecare întrerupere

Atribuirea prioritățilorAtribuirea priorităților

● atribuire statică
– prioritate constantă definită pentru un proces sau

pentru utilizatorul care pornește procesul

● atribuire dinamică
– modificare a priorității în timpul rulării
– de ex. comanda nice permite unui utilizator să-și

descrească prioritatea pentru a fi drăguț cu ceilalți :)
– SO poate acorda prioritate mai mare unui proces care

așteaptă foarte mult pentru IO și utilizează foarte puțin
CPU

Gruparea prioritățilorGruparea priorităților

● procesele pot fi grupate în clase de priorități
● se va utiliza priority scheduling între clase cu

diferite priorități
● în cadrul fiecărei clase se va utiliza round-robin

(între procese cu același prioritate)

priority 3

priority 2

priority 1

priority 0

Priority inversionPriority inversion

● o problemă mare la algoritmii bazate pe priorități
este posibilitate apariției fenomenului de inversare
a priorităților

● dacă un proces prioritar așteaptă după un proces
mai puțin prioritar (pentru sincronizarea
secțiunilor critice), atunci procesele cu priorități
intermediare vor bloca procesul prioritar astfel
devenind aparent mai prioritari
– soluția poate fi schimbarea temporare a priorității

procesului la prioritatea celui care este blocat în
așteptarea sincronizării

2.5.4. Multiple queues2.5.4. Multiple queues

● se folosesc clase de priorități
● procesele din clasa cea mai prioritară vor avea o

cuantă de timp, cele din următoarea clasă 2 cuante,
următoarea 4 cuante, ş.a.m.d.

● dacă un proces și-a utilizat toate cuantele dintr-o
clasă, va fi trecut într-o clasă inferioară

● de ex. un proces necesită 100 cuante:
– rulează 1 cuantă, întrerupt, după care 2, 4, 8, 16, 32, 37

t=> 7 comutări în loc de 100

● un proces lung se va rula din ce în ce mai rar

2.5.5. Shortest job first2.5.5. Shortest job first

● algoritmii de până acum au fost proiectați pentru
sisteme interactive

● algoritmul SJF este proiectat pentru sisteme în care
timpul de rulare este cunoscut în avans

● de exemplu patru procese de aceeași prioritate:

● mtF C F S t= 14, mtS J F t= 11

● primul job rulat contribuie cel mai mult la mt

A B C DProcese:

8 4 4 4Timp execuţie:

Shortest job firstShortest job first

● SJF conduce la un timp de răspuns mediu minim
● ar fi bine de utilizat și la procese interactive

– problema: cum se estimează timpul de rulare pentru
astfel de procese

● ageing:
● timpul inițial estimat t= T0, după rulare timpul măsurat t= T1

● următoarea estimare t= aT0 + (1 – a)T1

● T0, T0/2 + T1/2, T0/4 + T1/4 + T2/2, T0/8 + T1/8 + T2/4 + T3/2

Shortest job firstShortest job first

● SJF este optim doar dacă toate job-urile sunt
disponibile

● de exemplu:

● dacă inițial numai A și B pot fi planificate, restul
fiind blocate: mt t= 4.6

● dacă toate procesele pot fi planificate: mt t= 4.4

A B C DProcese:

2 4 1 1Timp execuţie:

E

1

2.5.6. Planificare garantată2.5.6. Planificare garantată

● o abordare diferită de planificare:
– se face promisiuni utilizatorului legat de mărimea

timpului CPU atribuit
– de exemplu dacă sunt n utilizatori logați în sistem,

fiecare va primi 1/n din timpul CPU

● sistemul calculează mereu cât timp CPU a utilizat
fiecare utilizator și împarte cu n, apoi calculează
raportul între timpul utilizat și timpul de la ultimul
calcul

● rulează tot timpul procesul cu cel mai mic raport

2.5.7. Politici și mecanisme2.5.7. Politici și mecanisme

● nici unul din algoritmii prezentați nu acceptau
informații de la procesele utilizator, pe care să le
folosească în luarea deciziilor
– schedulerul nu va lua întotdeauna decizia cea mai bună

● soluția este separarea mecanismului planificării de
politica planificării

● mecanismul este realizat de kernel, dar politica este
stabilită de procesul utilizator

● algoritmul de planificare este parametrizat într-un
anume mod astfel încât parametrii să pot fi setați
de procesele utilizator

● de exemplu:
– kernelul folosește priority scheduling și asigură un apel

sistem prin care un proces poate seta prioritățile
proceselor fii, astfel procesul părinte va controla
planificarea proceselor fii

Politici și mecanismePolitici și mecanisme

2.5.8. Two-level scheduling2.5.8. Two-level scheduling

● până acum am presupus că procesele ready se află
în memorie

● dacă însă nu dispunem de suficientă memorie,
unele din procese ready va trebui plasate pe disc

● comutarea proceselor de pe disc va lua un timp
mult mai mare decât celor din memorie

● vom utiliza un scheduler cu 2 nivele

Two-level schedulingTwo-level scheduling

● inițial o submulțime a proceselor ready vor fi
încărcate în memorie

● schedulerul va planifica numai aceste procese
pentru o perioadă de timp

● periodic un scheduler de nivel înalt este utilizat
pentru a elimina procesele din memorie (care sunt
de mult timp acolo) și a încărca procese noi de pe
disc

● apoi se folosește schedulerul de nivel jos pentru
planificare între aceste procese noi

Criteriile folosite de schedulerul de Criteriile folosite de schedulerul de
nivel înaltnivel înalt

● cât de mult a stat un proces în memorie sau pe disc
● cât timp CPU a utilizat procesul
● cât de mare este procesul
● care este prioritatea procesului

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

