

Sisteme de operareSisteme de operare

– – curs 5 –curs 5 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2012.03.27 ş.l. dr. ing. Kertész Csaba-Zoltán

2.3. Probleme IPC clasice2.3. Probleme IPC clasice

● probleme elementare ale sistemelor
multiprogramate cu comunicație între procese

● mai multe probleme propuse și rezolvate de-a
lungul timpului

● ori de câte ori se propune o nouă primitivă de
sincronizare se testează funcționarea pe aceste
probleme

2.3.1. Problema cinei filozofilor2.3.1. Problema cinei filozofilor

● propus de Dijkstra în 1965
● 5 filozofi sunt așezați la o masă rotundă
● fiecare filozof are în față o farfurie cu spagheti
● pentru a mânca spagheti un filozof are nevoie de

două furculițe
● între două farfurii există o furculiță (5 în total)
● viața unui filozof constă din perioade în care

gândește și perioade când mănâncă

Problema cinei filozofilorProblema cinei filozofilor

● când un filozof devine flămând încearcă să ia
furculițele din stânga și din dreapta, dacă reușește
atunci va mânca un anumit timp după care pune
furculițele la locul lor

#define N 5

void philosopher(int i)
{

while (TRUE) {
think();
take_fork(i); //block until fork present
take_fork((i+1)%N);
eat();
put_fork(i);
put_fork((i+1)%N);

}
}

Problema cinei filozofilorProblema cinei filozofilor

● probleme cu această soluție:
– dacă toți ridică furculița din stânga simultan:

deadlock
● putem modifica programul astfel încât după

preluarea furculiței din stânga, să se verifice dacă
furculița din dreapta este disponibilă, iar dacă nu
atunci se pune înapoi cea din stânga
– dacă toți ridică furculița din stânga simultan, vor vedea

furculița din dreapta indisponibil, vor pune înapoi
furculița din stânga și se reia din început

starvation

Rezolvarea problemei cinei filozofilorRezolvarea problemei cinei filozofilor

● putem introduce un timp aleator de așteptare între
ridicarea furculițelor, dar nu putem baza pe
evoluția aleatoare a programului

● o soluție deterministă fără deadlock și fără
starvation este obținută prin protejarea celor cinci
instrucțiuni de după think cu un semafor binar:
– înainte de a lua furculițele filozoful execută down, iar

după ce pune înapoi furculițele execută up
– performanța nesatisfăcătoare (un singur filozof

mănâncă la un moment de timp)

Implementarea cinei filozofilorImplementarea cinei filozofilor
#define N 5
#define LEFT ((i-1)%N)
#define RIGHT ((i+1)%N)
#define THINKING 0
#define HUNGRY 1
#define EATING 2

typedef int semaphore;
int state[N];
semaphore mutex=1;
semaphore s[N];

void philosopher(int i)
{

while (TRUE) {
think();
take_forks(i);
eat();;
put_forks(i);

}
}

void take_forks(int i)
{

down(&mutex);
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&s[i]);

}
void put_forks(int i)
{

down(&mutex);
state[i] = THINKING;
test(LEFT);
test(RIGHT);
up(&mutex);

}
void test(int i)
{

if (state[i] == HUNGRY &&
 state[LEFT] != EATING &&
 state[RIGHT] != EATING) {

state[i] = EATING;
up(&s[i]);

}
}

Problema scriitor/cititorProblema scriitor/cititor

● propus de Courtois în 1971
● modelează accesul la o bază de date
● avem o bază de date mare (de ex. sistemul de

rezervare a biletelor de avion) și mai multe procese
care doresc să scrie sau să citească în/din baza de
date

● se acceptă posibilitate ca mai multe procese să
citească deodată, dar dacă un proces accesează
pentru scriere nici un alt proces nu poate accesa
nici pentru scriere, nici pentru citire

Implementarea scriitor/cititorImplementarea scriitor/cititor

typedef int semaphore;
semaphore mutex=1;
semaphore db=1;
int rc=0;

void reader(void)
{

while (TRUE) {
down(&mutex);
rc = rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_database();
down(&mutex);
rc = rc-1;
if (rc==0) up(&db);
up(&mutex);
use_data();

}
}

void writer(void)
{

while (TRUE) {
think_update();
down(&db);
write_database();
up(&db);

}
}

Problema sleeping barberProblema sleeping barber

● într-o frizerie există 1 frizer, 1 scaun pentru frizer și
n scaune pentru clienți care așteaptă

● când nu sunt clienți care așteaptă frizerul stă pe
scaunul lui și doarme

● când apare un client, aceasta va trebuie să
trezească frizerul

● dacă mai apare un client în timp ce frizerul tunde
un client, aceasta va trebui să aștepte pe un scaun
(dacă este liber unul) sa va părăsi frizeria

Implementarea sleeping barberImplementarea sleeping barber

#define CHAIRS 5

typedef int semaphore;
semaphore mutex=1;
semaphore customers=0;
semaphore barbers=0;
int waiting=0;

void barber(void)
{

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting-1;
up(&barbers)
up(&mutex);
cut_hair();

}
}

void customer(void)
{

down(&mutex);
if (waiting < CHAIRS) {

waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();

}
else {

up(&mutex);
}

}

2.4. Thread-uri2.4. Thread-uri

● un thread (fir de execuție) este o unitate de
execuție de bază a unui CPU și constă din PC, un
set de registre și un spațiu pentru stivă
– se mai numește și lightweight process (LWP)

● secțiunea de cod, cea de date și resursele SO
(fișiere deschise, semnale) vor fi partajate între
thread-urile care aparțin unui proces

● partajarea resurselor determină timpi de comutare
mult mai mici decât a proceselor

Modele de threaduriModele de threaduri

● există mai multe modele de threaduri în funcție
cum sunt mapate între user space și kernel space

● threadurile la user level sunt tratate de procesul
cărora le aparțin fără intervenția kernelului

● threadurile la kernel level sunt tratate de către
kernel similar cu procesele

● există relații între threaduri user level și kernel
level:
– multe la unu, unu la unu, multe la multe

Thread-uri user levelThread-uri user level

● unele sisteme folosesc user-level threads: acest tip
de thread-uri sunt implementate folosind biblioteci
multithreading
– implementarea se face fără a se folosi apeluri de sistem

deci la comutarea contextului între threaduri nu este
necesar intervenția SO

– comutarea se realizează independent de SO deci foarte
rapid

– un thread user-level poate bloca tot procesul
– siguranța între threduri este lăsat pe seama

programatorului

Thread-uri kernel levelThread-uri kernel level

● toate SO moderne oferă suport pentru threaduri
kernel level

● toate threadurile sunt tratate la nivelul
planificatorului de procese

● există siguranță ridicată între threaduri
● impune un overhead la crearea și schimbarea între

threaduri
● Linux: pthreads (POSIX threads): bibliotecă de

funcții standard pentru manipularea threadurilor

Sincronizarea threadurilorSincronizarea threadurilor

● și în cazul thread-urilor pot apare condiții de
concurență care se pot rezolva ca în cazul
proceselor

● pentru pthreads există extensii care permit
folosirea semafoarelor și a mutecșilor

● există suport și pentru blocarea accesului la zonele
de memorie partajate

Procese vs. thread-uriProcese vs. thread-uri

● procesele pot opera
independent: există
protecție între procese

● fiecare proces are
propriul PC, SP și
spațiu de adrese:
utilizează multe resurse

● thread-urile nu sunt
complet independente:
nu există protecție între
thread-uri

● partajează resursele:
utilizează mai puține
resurse

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

