Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

— curs 5 -

2012.03.27 s.l. dr. ing. Kertész Csaba-Zoltan



2.3. Probleme IPC clasice

* probleme elementare ale sistemelor
multiprogramate cu comunicatie intre procese

* mai multe probleme propuse si rezolvate de-a
lungul timpului

 ori de cate ori se propune o noua primitiva de
sincronizare se testeaza functionarea pe aceste
probleme



2.3.1. Problerna cinei filozofilor

propus de Dijkstra Tn 1965
5 filozofi sunt asezati la o masa rotunda
fiecare filozof are in fata o farfurie cu spaghetti

pentru a manca spaghetti un filozof are nevoie de
doua furculite

intre doua farfurii exista o furculita (5 in total)

viata unui filozof consta din perioade in care
gandeste si perioade cand mananca



Problema cinei filozofilor

e cand un filozof devine flamand incearca sa ia
furculitele din stanga si din dreapta, daca reuseste
atunci va manca un anumit timp dupa care pune
furculitele la locul lor

#define N 5

void philosopher(int 1)
{
while (TRUE) {

think();
take_fork(1i); //block until fork present
take_fork((i+1)%N);
eat();
put_fork(1i);
put_fork((i+1)%N);



Problema cinei filozofilor

* probleme cu aceasta solutie:

— daca toti ridica furculita din stanga simultan:

deadlock

e putem modifica programul astfel incat dupa
preluarea furculitei din stanga, sa se verifice daca
furculita din dreapta este disponibila, iar daca nu
atunci se pune inapoi cea din stanga

— daca toti ridica furculita din stanga simultan, vor vedea
furculita din dreapta indisponibil, vor pune inapoi
furculita din stanga si se reia din inceput

starvation



Rezolvarea problemei cinei filozofilor

e putem introduce un timp aleator de asteptare intre
ridicarea furculitelor, dar nu putem baza pe
evolutia aleatoare a programului

* 0 solutie determinista fara deadlock si fara
starvation este obtinuta prin protejarea celor cinci
instructiuni de dupa think cu un semafor binar:

— inainte de a lua furculitele filozoful executa down, iar
dupa ce pune inapoi furculitele executa up

— performanta nesatisfacatoare (un singur filozof
mananca la un moment de timp)



Implementarea cinei filozofilor

volid take_forks(int 1)

#define N 5 {
#define LEFT ((1-1)%N) L= |
#define RIGHT ((i+1)%N) §22E?£;1 = HUNGRY;
#define THINKING O . (&mutéx)'
#define HUNGRY 1 dgwn(&s[i]s-
#define EATING 2 ) .
typedef int semaphore; ¥°1d put_forks(int 1)
int state[N];

semaphore mutex=1,

semaphore s[N];

down(&mutex) ;

down(&mutex);
state[1] = THINKING;
test(LEFT);

test (RIGHT);

void philosopher(int 1) up (&mutex):

{
while (TRUE) { b L
think(): ¥01d test(int 1)
2:??;T?rks(l); if (state[i] == HUNGRY &&
ot Forks(i); state[LEFT] != EATING &&
) PUt— ’ state[RIGHT] != EATING) {
1 state[i1i] = EATING;

up(&s[i]);
}
}



Problema scriitor/cititor

propus de Courtois in 1971
modeleaza accesul la o baza de date

avem o baza de date mare (de ex. sistemul de
rezervare a biletelor de avion) si mai multe procese
care doresc sa scrie sau sa citeasca in/din baza de
date

se accepta posibilitate ca mai multe procese sa
citeasca deodata, dar daca un proces acceseaza
pentru scriere nici un alt proces nu poate accesa
nici pentru scriere, nici pentru citire



Implementarea scriitor/cititor

typedef int semaphore;
semaphore mutex=1;
semaphore db=1;

int rc=0;

void reader(void)
{
while (TRUE) {

down(&mutex);
rc = rc+i;
if (rc == 1) down(&db);
up(&mutex) ;
read_database();
down(&mutex);
rc = rc-1;
if (rc==0) up(&db);
up(&mutex) ;
use_datal();

void writer(void)
{
while (TRUE) {
think_update();
down(&db);
write_database();
up(&db);

}
¥



Problema sleeping barber

intr-o frizerie exista 1 frizer, 1 scaun pentru frizer si
n scaune pentru clienti care asteapta

cand nu sunt clienti care asteapta frizerul sta pe
scaunul lui si doarme

cand apare un client, aceasta va trebuie sa
trezeasca frizerul

daca mai apare un client in timp ce frizerul tunde
un client, aceasta va trebui sa astepte pe un scaun
(daca este liber unul) sa va parasi frizeria



Implementarea sleeping barber

#define CHAIRS 5

typedef int semaphore;
semaphore mutex=1;
semaphore customers=0;
semaphore barbers=0;

int waiting=0; void customer(void)
{
void barber(void) down(&mutex);
{ if (waiting < CHAIRS) {
while (TRUE) { waiting = waiting + 1;
down(&customers); up(&customers);
down(&mutex); up(&mutex) ;
waiting = waliting-1; down(&barbers);
up(&barbers) get_haircut();
up(&mutex) ; }
cut_hair(); else {
} up(&mutex) ;
b b



2.4. Thread-uri

* un thread (fir de executie) este o unitate de
executie de baza a unui CPU si consta din PC, un
set de registre si un spatiu pentru stiva

— se mai numeste si lightweight process (LWP)

* sectiunea de cod, cea de date si resursele SO
(fisiere deschise, semnale) vor fi partajate intre
thread-urile care apartin unui proces

* partajarea resurselor determina timpi de comutare
mult mai mici decat a proceselor



Modele de threaduri

exista mai multe modele de threaduri in functie
cum sunt mapate intre user space si kernel space

threadurile la user level sunt tratate de procesul
carora le apartin fara interventia kernelului

threadurile la kernel level sunt tratate de catre
kernel similar cu procesele

exista relatii intre threaduri user level si kernel
level:

— multe la unu, unu la unu, multe la multe



Thread-uri user level

* unele sisteme folosesc user-level threads: acest tip
de thread-uri sunt implementate folosind biblioteci
multithreading

— implementarea se face fara a se folosi apeluri de sistem
deci la comutarea contextului intre threaduri nu este
necesar interventia SO

— comutarea se realizeaza independent de SO deci foarte
rapid

— un thread user-level poate bloca tot procesul

— siguranta Tntre threduri este lasat pe seama
programatorului



Thread-uri kernel level

* toate SO moderne ofera suport pentru threaduri
kernel level

e toate threadurile sunt tratate la nivelul
planificatorului de procese

 exista siguranta ridicata intre threaduri

* impune un overhead la crearea si schimbarea intre
threaduri

* Linux: pthreads (POSIX threads): biblioteca de
functii standard pentru manipularea threadurilor



Sincronizarea threadurilor

e siin cazul thread-urilor pot apare conditii de
concurenta care se pot rezolva ca in cazul
proceselor

* pentru pthreads exista extensii care permit
folosirea semafoarelor si a mutecsilor

 exista suport si pentru blocarea accesului la zonele
de memorie partajate



Procese vs. thread-uri

* procesele pot opera e thread-urile nu sunt
independent: exista complet independente:
protectie intre procese nu exista protectie intre

 fiecare proces are thread-uri
propriul PC, SP si e partajeaza resursele:
spatiu de adrese: utilizeaza mai putine

utilizeaza multe resurse resurse



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

