Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

— curs 4 —

2013.03.20 s.l. dr. ing. Kertész Csaba-Zoltan

Solutia lui Peterson

e prima solutie software pentru excluderea mutuala
fara alternare stricta a fost dat de Dekker in 1965

— introducerea unui flag prin care se semnalizeaza
intentia de intrare in sectiune critica

* in 1981 Peterson a introdus un algoritm mai simplu
pentru excludere mutuala cu busy-waiting

Algoritmul Peterson

#define FALSE 0
#define TRUE 1
#define N 2 //numarul proceselor

int turn;
int interested[N]; //initial toate valorile sunt 0

void enter_region(1nt process) //process = procesul care intra

{

int other; //numarul celuilalt proces

other = 1 - process; //celalalt proces
interested[process] = TRUE; //procesul nostru e interesat
turn = process; //setez flag

while (turn == process && interested[other] == TRUE);
h

void leave_region(int process) //process = procesul care iese

{
}

interested[process] = FALSE;

Algoritmul Peterson

* Tnainte de a intra in sectiunea critica fiecare proces
apeleaza enter_region cu numarul sau

e dupa parasirea sectiunii critice vor apela
leave_region pentru a permite celuilalt proces
Intrarea in sectiune critica

Algoritmul Peterson

Proces 0

Proces 1

enter_region(0)
other = 1;
interested[0] = TRUE;
turn = 0;

enter_region(1)
other = 0;
interested[1] = TRUE;
turn = 1;

sectiunea critica

bucla

leave_region(0)
interested[0] = FALSE;

bucla

sectiune critica

Instructiunea TSL
Test & Set Lock

este o instructiune ce necesita sprijinul hardware
(sa se execute intr-o singura instructiune)

exista procesoare care implementeaza in setul de
instructiuni de tip TSL

citeste continutul unui cuvant din memorie intr-un
registru si apoi stocheaza acolo o valoare diferita

procesorul garanteaza ca instructiunea este
indivizibila

Instructiunea TSL

e echivalent cu

if (lock == 0)
lock = 1;

* procesorul asigura si blocarea magistralelor pentru
a preveni alt procesor sa intrerupa operatia

e algoritmul:

enter_region: leave_region:
tsl register, lock mov lock, #0
cmp register, #0 ret

jnz enter_region
ret

2.2.4. Sleep & wakeup

 solutia Peterson si TSL au 2 neajunsuri importante:
— busy-waiting
— inversarea prioritatilor:

e daca doua procese avand prioritati diferite (un proces de
prioritate mare H si un proces de prioritate mica L) sunt in
stare de excludere mutuala, iar L intra in sectiunea critica, H
poate fi planificat in timpul acestei sectiuni si sa intre in
busy-waiting din care nu mai iese niciodata, pentru ca L nu
poate fi planificat din cauza prioritatilor

Sleep & wakeup

* pentru a previne aceste neajunsuri se definesc doua
primitive IPC:
— sleep
apel sistem care determina blocarea procesului
- wakeup
semnal intern care deblocheaza procesul
* intre blocare si deblocare pot fi planificate alte
procese, astfel nu se foloseste inutil procesorul, iar

un proces de prioritate ridicata nu va mai bloca tot
sistemul

Problema
producator / consumator

doua procese partajeaza un buffer de marime fixa

— producator: plaseaza informatii in buffer

— consumator: preia informatii din buffer

broblema apare cand producatorul doreste sa
vlaseze in buffer un articol, dar bufferul este deja
olin

solutia: producatorul executa sleep, iar cand
consumatorul preia un articol, va genera un semnal
de wakeup

analog si consumatorul

Problema
producator / consumator

* abordarea sleep&wakeup este o solutie simpla dar
poate conduce la aparitia conditiilor de concurenta
(de ex. spooler)

e pentru a cunoaste starea bufferului e nevoie de o
variabila (count) <N

* producatorul testeaza count, daca count==N,
executa sleep, altfel pune articolul in buffer si
count++

e consumatorul testeaza count, daca count==0,
executa sleep, altfel count--

Implementare
producator / consumator

#define N 100

int count = 0;

void producer(void) void consumer(void)
Lo Lo
int 1item; int 1item;
while (TRUE) { while (TRUE) {
produce_item(&item); i1f (count==0)
1f (count==N) sleep();
sleep(); remove_item(&item);
enter_item(item); count--;
count++; 1f (count==N-1)
i1f (count==1) wakeup(producer);
wakeup(consumer) ; consume_item(item);
b b

Conditia de concurenta

e apare la accesarea variabilei count:

— bufferul e gol si consumatorul citeste count

— planificatorul intrerupe consumatorul si planifica
oroducatorul

— producatorul plaseaza un articol in buffer si vazand ca
count a devenit 1, emite un wakeup (care este pierdut
pentru ca consumatorul nu a executat sleep)

— dupa ce consumatorul va fi planificat din nou, testeaza
count, care e 0 si executa sleep (din care nu va mai fi
trezit)

Wakeup intarziat

poate rezolva problema, pentru ca nu permite
semnalul wakeup sa fie pierdut

daca se emite un semnal wakeup catre un proces
care este ,treaz” atunci se seteaza un flag special

cand procesul caruia a fost setat flagul executa
sleep, aceasta nu se mai executa, ci doar flagul va fi
resetat

nu rezolva problema in totalitate pentru ca
wakeup-urile multiple se vor pierde

2.2.5. Semafoare

in 1965 Dijkstra a propus folosirea unei variabile
pentru contorizarea wakeup-urilor salvate pentru

viitoarea utilizare:
semafor
semafor = 0: nici un wakeup nu a fost sa

semafor = n > 0: n wakeup-uri au fost sa

vat

vate

se folosesc doua proceduri: down si up (care sunt
practic generalizari ale apelurilor sleep si wakeup)

down

verifica valoarea semaforului

daca semafor > 0, decrementeaza semaforul si
continua executia procesului

daca semafor == 0, executa sleep

verificarea valorii, modificarea si executarea sleep
(daca e cazul) formeaza o operatie atomica (o
operatie indivizibila) => pe durata executarii acestei
operatii nici un alt proces nu are acces la semafor

atomicitate este esentiala pentru evitarea
conditiilor de concurenta

up

incrementeaza valoarea semaforului

daca unul sau mai multe procese executau sleep
determinat de semafor (incapabil sa execute
down), unul din ele va fi ales de sistem si va
executa down

dupa up semaforul poate sa ramana 0, dar vor fi
mai putine procese blocate de acel semafor

up este de asemenea o operatie atomica

up nu poate bloca procesul respectiv

Problema producator / consumator
rezolvat cu sernafoare

* semafoarele vor rezolva problema pierderii
semnalelor wakeup

* operatii up si down vor fi implementate ca apel
sistem

* pentru rezolvarea problemei e nevoie de 3
semafoare:

— full: contorizarea pozitiilor ocupate
— empty: contorizarea pozitiilor libere

— mutex: excludere mutuala pentru accesul la buffer

Implementare prod. / cons.
cu sermafoare

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
{
int item;
while (TRUE) {
produce_item(&item);
down(&empty);
down(&mutex);
enter_item(item);
up(&mutex) ;
up(&full);

void consumer(void)
{
int item;
while (TRUE) {
down(&full);
down(&mutex);
remove_item(&item);
up(&mutex) ;
up(&empty);
consume_item(item);

Moduri de utilizare a semafoarelor

e full si empty sunt folosite pentru a asigura
respectarea limitelor bufferului

* mutex: pentru excludere mutuala

— daca semaforul este initializat cu 1 si este utilizat de
unul sau mai multe procese pentru a se asigura accesul
numai a unei dintre ele la o sectiune critica se numeste
semafor binar

— daca inainte de fiecare sectiune critica se va executa un
down, iar dupa sectiune un up atunci excluderea
mutuala este garantata

2.2.6. Contoare de evenimente

* solutia problemei prod./cons. cu semafoare s-a
bazat pe excluderea mutuala pentru evitarea
conditiei de concurenta

 exista insa si o solutie care nu necesita excludere
mutuala prin utilizarea unui tip special de variabila:

contor de evenimente

* se definesc 3 operatii:

— read(E): returneaza valoarea curenta a lui E
— advance(E): incrementeaza atomic E

— await(E, v): asteapta pana cand E >=v

Implementare prod. / cons.
cu contoare de evenimente

#define N 100
typedef int ev_counter;

ev_counter in = 0;
ev_counter out = 0,

void producer(void)

{

int item, seqg=0;

while (TRUE) {
produce_item(&item);
seq++;
awalt(out, seqg-N);
enter_item(item);
advance(&in);

void consumer(void)
{
int item, seqg=0;
while (TRUE) {
seq++;
awalt(in, seq);
remove_item(&item);
advance(&out);
consume_item(item);

2.2.7. Monitoare

* daca la problema prod./cons. cu semafoare,
operatiile down-down respectiv up-up sunt
inversate poate apare situatia blocarii proceselor

* daca mutex va fi decrementat inainte de empty si
bufferul a fost plin, producatorul blocheaza
mutexul, dupa care consumatorul face down si el la
mutex, astfel blocandu-se amandoua procese la
mutex:

dead-lock

Monitoare

* pentru a usura scrierea corecta a programelor
Hoare ('74) si Hansen ('75) au propus o primitiva de
nivel inalt numit monitor

* un monitor este o colectie de proceduri, variabile si
structuri de date grupate intr-un mod special

* procesele pot apela procedurile monitoarelor, dar
nu pot accesa direct structurile de date interne ale
monitoarelor

Exemplu de monitor

monitor example

integer 1;

condition c;

procedure producer(x);

end;
procedure consumer(Xx);

end;
end monitor

Proprietati ale monitoarelor

* numai un proces poate fi activ intr-un monitor la
un moment dat

 monitoarele sunt elemente ale unui limbaj de
programare

* daca un proces apeleaza o procedura a unui
monitor, primele instructiuni ale procedurii
respective vor verifica daca exista un alt proces
activ Tn cadrul monitorului, daca da procesul
apelant va fi suspendat pana cand celalalt proces
paraseste monitorul

e compilatorul implementeaza excluderea mutuala
cu semafoare binare

®

Variabile de conditie

* excluderea mutuala (realizata de compilator) nu
este suficient, este nevoie de o modalitate de a
bloca un proces cand nu poate realiza o actiune (de
ex. teste pentru buffer full sau empty)

* solutia este folosirea variabilelor de conditie
impreuna cu doua operatii asociate:

— walit

- signal

Variabile de conditie

e cand o procedura monitor descopera ca nu poate
continua va executa un wait asupra unei variabile
de conditie, care va bloca procesul apelant si va
permite altor procese sa intre in monitor

 celalalt proces poate trezi procesul blocat prin
executia unui signal asupra variabila de conditie

* signal trebuie sa fie ultima instructiune intr-un
monitor

Dezavantaje ale monitoarelor

* variabilele de conditie nu sunt contoare, deci
semnalele pot fi pierdute

e sunt putine limbaje care implementeaza monitoare
(de ex. Concurent Euclid)

— in alte limbaje vor trebui implementate rutine in
asamblare

* in cazul in care exista mai multe CPU si nu exista
memorie partajata (sistem distribuite)
semafoarele si monitoarele nu pot fi folosite

Implementare prod. / cons.
cu monitoare

monitor ProducerConsumer procedure producer;
condition full, empty, begin
integer count; while true do
procedure enter; begin
begin produce_item;
if count=N then wait(full) ProducerConsumer .enter;
enter_item; end
count := count+1; end;
if count=1 then signal(empty)
end; procedure consumer;
procedure remove; begin
begin while true do
if count=0 then wait(empty) begin
remove_item; ProducerConsumer.remove;
count := count-1; consume_item;
if count=N-1 then signal(full) end
end end;
count := 0;

end monitor:

2.2.8. Message passing

e daca procesele se afla pe doua masini diferite,
sincronizarea intre ele se poate face prin transmisia
SI receptia unor mesaje

 se utilizeaza doua primitive (apeluri sistem)

- send (destination, &message);

* neblocant
- recelve (source, &message);

e blocheaza cand nu exista nici un mesaj

Mecanismele message-passing

— mesajele transmise prin retea pot fi pierdute, de aceea
receptorul trimite un mesaj de confirmare la
transmitator, in lipsa confirmarii transmitatorul
retrimite mesajul

— daca se pierde confirmarea, transmitatorul va transmite
din nou, iar receptorul va trebui sa distinga intre
mesajele diferite si copiile mesajelor

* trebuie sa existe o metoda de marcare a mesajelor

— trebuie sa existe posibilitate identificarii
transmitatorului si receptorului

— trebuie rezolvat problema autentificarii transmitatorului

Problema prod. / cons. cu
message-passing

#define N 100
#define MSIZE 4

typedef int message[MSIZE];

volid producer(void) volid consumer(void)
int item; int item, 1;
message m; message m;

for (1=0; i<N; i++)
send(consumer, &m); //empty

while (TRUE) { while (TRUE) {
produce_item(&item);
receive(consumer, &m); //empty receive(producer, &m);
build_message(&m, item); extract_item(&m, &item);
send(consumer, &m); send(producer, &m);
} consume_item(item);
b h

Problema prod. / cons. cu
message-passing

mesajele trimise dar nereceptionate sunt bufferate
de SO

avem in total N mesaje

daca producatorul a create elementul, va prelua un
mesaj empty si va trimite un mesaj full

daca nu este nici un mesaj empty receptia va bloca

numarul de mesaje este constant => putem folosi
buffer finit pentru stocarea mesajelor

Aspecte message-passing

 exista 2 posibilitati de implementare:
— utilizand mailbox-uri
e fiecare proces va avea un mailbox cu capacitatea de N mesaje
- rendezvous
* nu exista nici un fel de bufferare
e semafoarele, monitoarele si message-passing sunt

echivalente: putem utiliza una din ele pentru a
implementa oricare alta

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

