

Sisteme de operareSisteme de operare

– – curs 4 –curs 4 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2013.03.20 ș.l. dr. ing. Kertész Csaba-Zoltán

Soluția lui PetersonSoluția lui Peterson

● prima soluție software pentru excluderea mutuală
fără alternare strictă a fost dat de Dekker în 1965
– introducerea unui flag prin care se semnalizează

intenția de intrare în secțiune critică

● în 1981 Peterson a introdus un algoritm mai simplu
pentru excludere mutuală cu busy-twaiting

Algoritmul PetersonAlgoritmul Peterson

#define FALSE 0
#define TRUE 1
#define N 2 //numărul proceselor

int turn;
int interested[N]; //iniţial toate valorile sunt 0

void enter_region(int process) //process = procesul care intră
{

int other; //numărul celuilalt proces
other = 1 – process; //celălalt proces
interested[process] = TRUE; //procesul nostru e interesat
turn = process; //setez flag
while (turn == process && interested[other] == TRUE);

}

void leave_region(int process) //process = procesul care iese
{

interested[process] = FALSE;
}

Algoritmul PetersonAlgoritmul Peterson

● înainte de a intra în secțiunea critică fiecare proces
apelează enter_region cu numărul său

● după părăsirea secțiunii critice vor apela
leave_region pentru a permite celuilalt proces
intrarea în secțiune critică

Algoritmul PetersonAlgoritmul Peterson

Proces 0 Proces 1

enter_region(0)
other = 1;
interested[0] = TRUE;
turn = 0;

enter_region(1)
other = 0;
interested[1] = TRUE;
turn = 1;

secțiunea critică buclă

leave_region(0)
interested[0] = FALSE;

buclă

secțiune critică

Instrucțiunea TSLInstrucțiunea TSL
Test & Set LockTest & Set Lock

● este o instrucțiune ce necesită sprijinul hardtware
(să se execute într-o singură instrucțiune)

● există procesoare care implementează în setul de
instrucțiuni de tip TSL

● citește conținutul unui cuvânt din memorie într-un
registru și apoi stochează acolo o valoare diferită

● procesorul garantează că instrucțiunea este
indivizibilă

Instrucțiunea TSLInstrucțiunea TSL

● echivalent cu
if (lock == 0)

lock = 1;

● procesorul asigură și blocarea magistralelor pentru
a preveni alt procesor să întrerupă operația

● algoritmul:
enter_region: leave_region:

tsl register, lock mov lock, #0

cmp register, #0 ret

jnz enter_region

ret

2.2.4. Sleep & twakeup2.2.4. Sleep & twakeup

● soluția Peterson și TSL au 2 neajunsuri importante:
– busy-twaiting
– inversarea priorităților:

● dacă două procese având priorități diferite (un proces de
prioritate mare H și un proces de prioritate mică L) sunt în
stare de excludere mutuală, iar L intră în secțiunea critică, H
poate fi planificat în timpul acestei secțiuni și să intre în
busy-twaiting din care nu mai iese niciodată, pentru că L nu
poate fi planificat din cauza priorităților

Sleep & twakeupSleep & twakeup

● pentru a previne aceste neajunsuri se definesc două
primitive IPC:
– sleep

apel sistem care determină blocarea procesului

– wakeup
semnal intern care deblochează procesul

● între blocare și deblocare pot fi planificate alte
procese, astfel nu se folosește inutil procesorul, iar
un proces de prioritate ridicată nu va mai bloca tot
sistemul

ProblemaProblema
producător / consumatorproducător / consumator

● două procese partajează un bufer de mărime fixă
– producător: plasează informații în bufer
– consumator: preia informații din bufer

● problema apare când producătorul dorește să
plaseze în bufer un articol, dar buferul este deja
plin

● soluția: producătorul execută sleep, iar când
consumatorul preia un articol, va genera un semnal
de twakeup

● analog și consumatorul

ProblemaProblema
producător / consumatorproducător / consumator

● abordarea sleep&twakeup este o soluție simplă dar
poate conduce la apariția condițiilor de concurență
(de ex. spooler)

● pentru a cunoaște starea buferului e nevoie de o
variabilă (count) <N

● producătorul testează count, dacă count==N,
execută sleep, altfel pune articolul în bufer și
count++

● consumatorul testează count, dacă count==0,
execută sleep, altfel count--

ImplementareImplementare
producător / consumatorproducător / consumator

#define N 100

int count = 0;

void producer(void)
{

int item;
while (TRUE) {

produce_item(&item);
if (count==N)

sleep();
enter_item(item);
count++;
if (count==1)

wakeup(consumer);
}

}

void consumer(void)
{

int item;
while (TRUE) {

if (count==0)
sleep();

remove_item(&item);
count--;
if (count==N-1)

wakeup(producer);
consume_item(item);

}
}

Condiția de concurențăCondiția de concurență

● apare la accesarea variabilei count:
– buferul e gol și consumatorul citește count
– planificatorul întrerupe consumatorul și planifică

producătorul
– producătorul plasează un articol în bufer și văzând că

count a devenit 1, emite un twakeup (care este pierdut
pentru că consumatorul nu a executat sleep)

– după ce consumatorul va fi planificat din nou, testează
count, care e 0 și execută sleep (din care nu va mai fi
trezit)

Wakeup întârziatWakeup întârziat

● poate rezolva problema, pentru că nu permite
semnalul twakeup să fie pierdut

● dacă se emite un semnal twakeup către un proces
care este „treaz” atunci se setează un flag special

● când procesul căruia a fost setat flagul execută
sleep, aceasta nu se mai execută, ci doar flagul va fi
resetat

● nu rezolvă problema în totalitate pentru că
twakeup-urile multiple se vor pierde

2.2.5. Semafoare2.2.5. Semafoare

● în 1965 Dijkstra a propus folosirea unei variabile
pentru contorizarea twakeup-urilor salvate pentru
viitoarea utilizare:

semafor
● semafor = 0: nici un twakeup nu a fost salvat
● semafor = n > 0: n twakeup-uri au fost salvate
● se folosesc două proceduri: down și up (care sunt

practic generalizări ale apelurilor sleep și wakeup)

dotwndotwn

● verifică valoarea semaforului
● dacă semafor > 0, decrementează semaforul și

continuă execuția procesului
● dacă semafor == 0, execută sleep
● verificarea valorii, modificarea și executarea sleep

(dacă e cazul) formează o operație atomică (o
operație indivizibilă) => pe durata executării acestei
operații nici un alt proces nu are acces la semafor

● atomicitate este esențială pentru evitarea
condițiilor de concurență

upup

● incrementează valoarea semaforului
● dacă unul sau mai multe procese executau sleep

determinat de semafor (incapabil să execute
down), unul din ele va fi ales de sistem și va
executa dotwn

● după up semaforul poate să rămână 0, dar vor fi
mai puține procese blocate de acel semafor

● up este de asemenea o operație atomică
● up nu poate bloca procesul respectiv

Problema producător / consumator Problema producător / consumator
rezolvat cu semafoarerezolvat cu semafoare

● semafoarele vor rezolva problema pierderii
semnalelor wakeup

● operații up și down vor fi implementate ca apel
sistem

● pentru rezolvarea problemei e nevoie de 3
semafoare:
– full: contorizarea pozițiilor ocupate
– empty: contorizarea pozițiilor libere
– mutex: excludere mutuală pentru accesul la bufer

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
{

int item;
while (TRUE) {

produce_item(&item);
down(&empty);
down(&mutex);
enter_item(item);
up(&mutex);
up(&full);

}
}

void consumer(void)
{

int item;
while (TRUE) {

down(&full);
down(&mutex);
remove_item(&item);
up(&mutex);
up(&empty);
consume_item(item);

}
}

Implementare prod. / cons.Implementare prod. / cons.
cu semafoarecu semafoare

Moduri de utilizare a semafoarelorModuri de utilizare a semafoarelor

● full și empty sunt folosite pentru a asigura
respectarea limitelor buferului

● mutex: pentru excludere mutuală
– dacă semaforul este inițializat cu 1 și este utilizat de

unul sau mai multe procese pentru a se asigura accesul
numai a unei dintre ele la o secțiune critică se numește
semafor binar

– dacă înainte de fiecare secțiune critică se va executa un
down, iar după secțiune un up atunci excluderea
mutuală este garantată

2.2.6. Contoare de evenimente2.2.6. Contoare de evenimente

● soluția problemei prod./cons. cu semafoare s-a
bazat pe excluderea mutuală pentru evitarea
condiției de concurență

● există însă și o soluție care nu necesită excludere
mutuală prin utilizarea unui tip special de variabilă:

contor de evenimente
● se definesc 3 operații:

– read(E): returnează valoarea curentă a lui E
– advance(E): incrementează atomic E
– atwait(E, v): așteaptă până când E >= v

#define N 100

typedef int ev_counter;

ev_counter in = 0;
ev_counter out = 0;

void producer(void)
{

int item, seq=0;
while (TRUE) {

produce_item(&item);
seq++;
await(out, seq-N);
enter_item(item);
advance(&in);

}
}

void consumer(void)
{

int item, seq=0;
while (TRUE) {

seq++;
await(in, seq);
remove_item(&item);
advance(&out);
consume_item(item);

}
}

Implementare prod. / cons.Implementare prod. / cons.
cu contoare de evenimentecu contoare de evenimente

2.2.7. Monitoare2.2.7. Monitoare

● dacă la problema prod./cons. cu semafoare,
operațiile dotwn-dotwn respectiv up-up sunt
inversate poate apare situația blocării proceselor

● dacă mutex va fi decrementat înainte de empty și
buferul a fost plin, producătorul blochează
mutexul, după care consumatorul face dotwn și el la
mutex, astfel blocându-se amândouă procese la
mutex:

dead-lock

MonitoareMonitoare

● pentru a ușura scrierea corectă a programelor
Hoare ('74) și Hansen ('75) au propus o primitivă de
nivel înalt numit monitor

● un monitor este o colecție de proceduri, variabile și
structuri de date grupate într-un mod special

● procesele pot apela procedurile monitoarelor, dar
nu pot accesa direct structurile de date interne ale
monitoarelor

Exemplu de monitorExemplu de monitor

monitor example

integer i;

condition c;

procedure producer(x);

...

end;

procedure consumer(x);

...

end;

end monitor

Proprietăți ale monitoarelorProprietăți ale monitoarelor

● numai un proces poate fi activ într-un monitor la
un moment dat

● monitoarele sunt elemente ale unui limbaj de
programare

● dacă un proces apelează o procedură a unui
monitor, primele instrucțiuni ale procedurii
respective vor verifica dacă există un alt proces
activ în cadrul monitorului, dacă da procesul
apelant va fi suspendat până când celălalt proces
părăsește monitorul

● compilatorul implementează excluderea mutuală
cu semafoare binare

Variabile de condițieVariabile de condiție

● excluderea mutuală (realizată de compilator) nu
este suficient, este nevoie de o modalitate de a
bloca un proces când nu poate realiza o acțiune (de
ex. teste pentru bufer full sau empty)

● soluția este folosirea variabilelor de condiție
împreună cu două operații asociate:
– twait
– signal

Variabile de condițieVariabile de condiție

● când o procedură monitor descoperă că nu poate
continua va executa un wait asupra unei variabile
de condiție, care va bloca procesul apelant și va
permite altor procese să intre în monitor

● celălalt proces poate trezi procesul blocat prin
execuția unui signal asupra variabila de condiție

● signal trebuie să fie ultima instrucțiune într-un
monitor

Dezavantaje ale monitoarelorDezavantaje ale monitoarelor

● variabilele de condiție nu sunt contoare, deci
semnalele pot fi pierdute

● sunt puține limbaje care implementează monitoare
(de ex. Concurent Euclid)
– în alte limbaje vor trebui implementate rutine în

asamblare

● în cazul în care există mai multe CPU și nu există
memorie partajată (sistem distribuite)
semafoarele și monitoarele nu pot fi folosite

monitor ProducerConsumer
condition full, empty;
integer count;
procedure enter;
begin

if count=N then wait(full)
enter_item;
count := count+1;
if count=1 then signal(empty)

end;
procedure remove;
begin

if count=0 then wait(empty)
remove_item;
count := count-1;
if count=N-1 then signal(full)

end
count := 0;

end monitor;

procedure producer;
begin

while true do
begin

produce_item;
ProducerConsumer.enter;

end
end;

procedure consumer;
begin

while true do
begin

ProducerConsumer.remove;
consume_item;

end
end;

Implementare prod. / cons.Implementare prod. / cons.
cu monitoarecu monitoare

2.2.8. Message passing2.2.8. Message passing

● dacă procesele se află pe două mașini diferite,
sincronizarea între ele se poate face prin transmisia
și recepția unor mesaje

● se utilizează două primitive (apeluri sistem)
– send (destination, &message);

● neblocant

– receive (source, &message);
● blochează când nu există nici un mesaj

Mecanismele message-passingMecanismele message-passing

– mesajele transmise prin rețea pot fi pierdute, de aceea
receptorul trimite un mesaj de confirmare la
transmițător, în lipsa confirmării transmițătorul
retrimite mesajul

– dacă se pierde confirmarea, transmițătorul va transmite
din nou, iar receptorul va trebui să distingă între
mesajele diferite și copiile mesajelor

● trebuie să existe o metodă de marcare a mesajelor

– trebuie să existe posibilitate identificării
transmițătorului și receptorului

– trebuie rezolvat problema autentificării transmițătorului

Problema prod. / cons. cuProblema prod. / cons. cu
message-passingmessage-passing

#define N 100
#define MSIZE 4

typedef int message[MSIZE];

void producer(void)
{

int item;
message m;

while (TRUE) {
produce_item(&item);
receive(consumer, &m); //empty
build_message(&m, item);
send(consumer, &m);

}
}

void consumer(void)
{

int item, i;
message m;
for (i=0; i<N; i++)

send(consumer, &m); //empty
while (TRUE) {

receive(producer, &m);
extract_item(&m, &item);
send(producer, &m);
consume_item(item);

}
}

Problema prod. / cons. cuProblema prod. / cons. cu
message-passingmessage-passing

● mesajele trimise dar nerecepționate sunt buferate
de SO

● avem în total N mesaje
● dacă producătorul a create elementul, va prelua un

mesaj empty și va trimite un mesaj full
● dacă nu este nici un mesaj empty recepția va bloca
● numărul de mesaje este constant => putem folosi

bufer finit pentru stocarea mesajelor

Aspecte message-passingAspecte message-passing

● există 2 posibilități de implementare:
– utilizând mailbox-uri

● fiecare proces va avea un mailbox cu capacitatea de N mesaje

– rendezvous
● nu există nici un fel de buferare

● semafoarele, monitoarele și message-passing sunt
echivalente: putem utiliza una din ele pentru a
implementa oricare alta

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

