Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

- curs 3 -

2013.03.13 s.l. dr. ing. Kertész Csaba-Zoltan

2. Procese

Cuprins

1. Introducere

2. Comunicarea intre procese (IPC)
3. Probleme IPC clasice

4. Planificarea proceselor

5. Thread-uri

2.1 Introducere

* un proces este un program aflat in executie

 fiecarui proces ii sunt alocate niste resurse
necesare pentru realizarea sarcinii

— timp procesor
— memorie
— fisiere si dispozitive 1/0O

* un sistem este alcatuit din mai multe procese ce
lucreaza concurent

Structura unui program in executie

* program:
— stocat pe harddisk
— codul programului (text)
— variabilele initializate (bss)
* executie:

— In memorie
— variabilele locale + adrese de intoarcere (stiva)
— variabilele dinamice (heap)

— resurse CPU (registre de uz general, registre speciale,
program counter)

2.1.1. Procese concurente

 fiecare proces detine propriul CPU virtual

* in realitate un singur CPU este comutat de la un
proces la altul

* multitasking / multiprogramare
* program != proces
— program: sablon static generator de procese

— proces: program in executie

— poate exista mai multe procese pe baza aceluiasi
brogram, fiecare avand resursele asociate independent
unul de celalalt

Aste

Executie

ptare

3

Rularea concurenta

Sistemul
de

ope€rare

salvare stare P1

planificare

restaurare stare P2

salvare stare P2

planificare

restaurare stare P1

Proces 2

Asteptare

RETI
Qo
)
=)
(@)
(D)
X

JINT -
L
)
o
et
W~
<

Starile proceselor

activ

— proces in executie avand controlul procesorului
ready

— are alocat toate resursele, in afara procesorului
suspendat

— asteapta un eveniment, care sa aduca in starea de a
concura pentru procesor

Inexistent

— un program ce nu ruleaza

Diagrama starilor

planificare

5 alt proces
asteapta

eveniment

planificare
acest proces

terminare

Suspendat

aparitie
eveniment

creare
proces

Trecerea intre stari

model SO:

Proces Proces
0 .

Planificator

nivelul inferior este planificatorul (schedu

intreruperile, crearile, activarile si suspenc
procese sunt inglobate in scheduler

restul SO este alcatuit din procese

er)

arile de

2.1.2. lerarhii de procese

e SO asigura mecanisme pentru crearea si distrugerea
proceselor

e apelul sistem fork()

— creeaza o copie identica a procesului apelant

— cele doua procese (parinte si fiu) continua executia in
paralel

e parintele tuturor proceselor:
— init

— creeaza procese fiu care Tncarca programele si le executa

2.1.3. Implementarea proceselor

* SO mentine o tabela (process table) cu intrare
pentru fiecare proces

e fiecare intrare contine informatii despre:

— starea procesului

- PC, SP, registre

— alocarea memoriei

— starea fisierelor deschise
— informatii de planificare

— alte informatii legate de comutarea Active « Ready

Exemplu de process table

Process management

Memory management

File management

Registre
Program Counter
Program Status Word
Stack Pointer
Process State
Time of process started
CPU time used
Children's CPU time
Time of next alarm
Message queue pointers
Pending signal bits
Process id
Flag bits

Pointer to text segment
Pointer to data segment
Pointer to bss segment
Exit status
Signal status
Process id
Parent process id
Process group
Real UID
Effective UID
Real GID
Effective GID
Bit maps for signals
Flag bits

UMASK mask
Root directory
Working directory
File descriptors
Effective UID
Effective GID
System call preamble
Flag bits

2.2. Comunicatia intre procese

e |PC - Inter Process Communication

e pentru rezolvarea diferitelor probleme comune,
procesele trebuie sa se comunice intre ele

e comunicarea se poate face prin zone de memorie la
care au acces amandoua procese
- pipe

— shared memory

2.2.1. Conditii de concurenta

* conditii de concurenta la accesul unor resurse

— zone de memorie partajate
— fisiere
* exemplu: print spooler

— cand un proces doreste sa tipareasca un fisier, depune
numele fisierului intr-un director special (printer spool)

— exista un proces (printer daemon) care verifica periodic
continutul directorului si daca gaseste ceva le tipareste
si sterge din director

Accesul la printer spooler

abc

def

BN

procesele A si B vor sa tipareasca

se citeste pointerul

next free slot, stocheaza numele
fisierului in acel loc si se
incrementeaza pointerul

daca A e intrerupt intre citirea
next free_slot si incrementarea
acestuia, atunci cele doua vor
scrie numele fisierului in aceeasi
locatie, si unul se va pierde

2.2.2. Sectiuni critice

* suprascrierea datelor in cazul unei conditii de
concurenta trebuie evitat

e e nevoie de excludere mutuala la accesul unei
resurse comune

— o cale de a se asigura ca nici un proces nu va accesa o
variabila protejata in cazul in care un alt proces o
utilizeaza

* sectiunea critica

— partea dintr-un program unde se realizeaza accesul la o
resursa comuna

Conditii de cooperare corecta

nu pot exista 2 procese simultan in sectiunea
critica

nu se poate face nici o presupunere asupra vitezei
si numarului de CPU

nici un proces care ruleaza cod in afara sectiunii
critice nu poate bloca alte procese

nici un proces nu va astepta pentru totdeauna sa
Intre in sectiunea critica

Dezactivare intreruperilor

e cea mai simpla solutie pentru realizarea sectiunilor
critice

— la intrarea in sectiune critica se dezactiveaza
intreruperile, iar la iesirea din sectiune se reactiveaza

— planificatorul nu mai poate intervine in interiorul
sectiunii critice

* procesul detine controlul asupra masinii
— poate duce la blocarea sistemului

 se foloseste numai in interiorul kernelului

2.2.3. Excluderea mutuala prin Busy-
Waiting

* busy-waiting: procesul asteapta intr-o bucla pana
la eliberarea resurselor pentru a intra in sectiunea
critica

* implementare simpla

e consuma timp procesor

Lock variables

se utilizeaza o singura variabila partajata intre
procese

— are valoarea 0 cand nici un proces nu foloseste resursele
comune, si 1 cand exista un proces care foloseste
resursele comune

la intrarea in sectiunea critica se testeaza aceasta
variabila, daca este 0 se intra Tn sectiune critica si
se seteaza variabila la 1, altfel se asteapta pana
cand devine 0

la iesire se reseteaza variabila la 0

exista riscul ca cele doua procese sa intre simultan
In sectiunea critica

Alternare stricta

Proces 0:

Proces 1:
while (TRUE) { while (TRUE) {
while (turn !'= 0),; //walt while (turn !'= 1); //wailt

critical_section(); critical_section();

turn = 1; turn = 0;

non_critical_section(); non_critical_section();

Alternare strictd
dezavantaje

* Testarea continua a unei variabile
— trebuie evitata pentru ca consuma timp procesor

e daca unul din procese termina mult mai rapid
atunci va trebuie sa astepte mult pana cand si
celalalt termina atat sectiunea critica cat si cea
non-critica

— un proces in sectiunea non-critica blocheaza un alt
proces: violarea conditiei 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

