

Sisteme de operareSisteme de operare

– – curs 3 –curs 3 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2013.03.13 ș.l. dr. ing. Kertész Csaba-Zoltán

2. Procese2. Procese

1. Introducere

2. Comunicarea între procese (IPC)

3. Probleme IPC clasice

4. Planificarea proceselor

5. Thread-uri

Cuprins

2.1 Introducere2.1 Introducere

● un proces este un program aflat în execuție
● fiecărui proces îi sunt alocate niște resurse

necesare pentru realizarea sarcinii
– timp procesor
– memorie
– fișiere și dispozitive I/O

● un sistem este alcătuit din mai multe procese ce
lucrează concurent

Structura unui program în execuțieStructura unui program în execuție

● program:
– stocat pe harddisk
– codul programului (text)
– variabilele inițializate (bss)

● execuție:
– în memorie
– variabilele locale + adrese de întoarcere (stivă)
– variabilele dinamice (heap)
– resurse CPU (registre de uz general, registre speciale,

program counter)

2.1.1. Procese concurente2.1.1. Procese concurente

● fiecare proces deține propriul CPU virtual
● în realitate un singur CPU este comutat de la un

proces la altul
● multitasking / multiprogramare
● program != proces

– program: șablon static generator de procese
– proces: program în execuție
– poate exista mai multe procese pe baza aceluiași

program, fiecare având resursele asociate independent
unul de celălalt

Rularea concurentăRularea concurentă
Proces 1 Proces 2

Ex
ec

uț
ie

Ex
ec

uț
ie

Ex
ec

uț
ie

A
șt

ep
ta

re

A
șt

ep
ta

re
A

șt
ep

ta
re

Sistemul
de

operare

salvare stare P1

salvare stare P2

restaurare stare P2

restaurare stare P1

INT

INT

RETI

RETI

planificare

planificare

Stările proceselorStările proceselor

● activ
– proces în execuție având controlul procesorului

● ready
– are alocat toate resursele, în afara procesorului

● suspendat
– așteaptă un eveniment, care să aducă în starea de a

concura pentru procesor

● inexistent
– un program ce nu rulează

Diagrama stărilorDiagrama stărilor

Activ

Suspendat Ready

Inexistent

așteaptă
eveniment

 planificare
 alt proces

planificare
acest proces

creare
proces

terminare

apariție
eveniment

Trecerea între stăriTrecerea între stări

● model SO:

● nivelul inferior este planificatorul (scheduler)
● întreruperile, creările, activările și suspendările de

procese sunt înglobate în scheduler
● restul SO este alcătuit din procese

Planificator

Proces
0

Proces
1

Proces
n...

2.1.2. Ierarhii de procese2.1.2. Ierarhii de procese

● SO asigură mecanisme pentru crearea și distrugerea
proceselor

● apelul sistem fork()
– creează o copie identică a procesului apelant
– cele două procese (părinte și fiu) continuă execuția în

paralel

● părintele tuturor proceselor:
– init

– creează procese fiu care încarcă programele și le execută

2.1.3. Implementarea proceselor2.1.3. Implementarea proceselor

● SO menține o tabelă (process table) cu intrare
pentru fiecare proces

● fiecare intrare conține informații despre:
– starea procesului
– PC, SP, registre
– alocarea memoriei
– starea fișierelor deschise
– informații de planificare
– alte informații legate de comutarea Active ↔ Ready

Exemplu de process tableExemplu de process table

Process management Memory management File management

Registre
Program Counter

Program Status Word
Stack Pointer
Process State

Time of process started
CPU time used

Children's CPU time
Time of next alarm

Message queue pointers
Pending signal bits

Process id
Flag bits

Pointer to text segment
Pointer to data segment
Pointer to bss segment

Exit status
Signal status

Process id
Parent process id

Process group
Real UID

Efective UID
Real GID

Efective GID
Bit maps for signals

Flag bits

UMASK mask
Root directory

Working directory
File descriptors
Efective UID
Efective GID

System call preamble
Flag bits

2.2. Comunicația între procese2.2. Comunicația între procese

● IPC – Inter Process Communication
● pentru rezolvarea diferitelor probleme comune,

procesele trebuie să se comunice între ele
● comunicarea se poate face prin zone de memorie la

care au acces amândouă procese
– pipe
– shared memory

2.2.1. Condiții de concurență2.2.1. Condiții de concurență

● condiții de concurență la accesul unor resurse
– zone de memorie partajate
– fișiere

● exemplu: print spooler
– când un proces dorește să tipărească un fișier, depune

numele fișierului într-un director special (printer spool)
– există un proces (printer daemon) care verifică periodic

conținutul directorului și dacă găsește ceva le tipărește
și șterge din director

Accesul la printer spoolerAccesul la printer spooler

● procesele A și B vor să tipărească
● se citește pointerul

next_free_slot, stochează numele
fișierului în acel loc și se
incrementează pointerul

● dacă A e întrerupt între citirea
next_free_slot și incrementarea
acestuia, atunci cele două vor
scrie numele fișierului în aceeași
locație, și unul se va pierde

abc

def

ghi

4

5

6

7

2.2.2. Secțiuni critice2.2.2. Secțiuni critice

● suprascrierea datelor în cazul unei condiții de
concurență trebuie evitat

● e nevoie de excludere mutuală la accesul unei
resurse comune
– o cale de a se asigura că nici un proces nu va accesa o

variabilă protejată în cazul în care un alt proces o
utilizează

● secțiunea critică
– partea dintr-un program unde se realizează accesul la o

resursă comună

Condiții de cooperare corectăCondiții de cooperare corectă

● nu pot exista 2 procese simultan în secțiunea
critică

● nu se poate face nici o presupunere asupra vitezei
și numărului de CPU

● nici un proces care rulează cod în afara secțiunii
critice nu poate bloca alte procese

● nici un proces nu va aștepta pentru totdeauna să
intre în secțiunea critică

Dezactivare întreruperilorDezactivare întreruperilor

● cea mai simplă soluție pentru realizarea secțiunilor
critice
– la intrarea în secțiune critică se dezactivează

întreruperile, iar la ieșirea din secțiune se reactivează
– planificatorul nu mai poate intervine în interiorul

secțiunii critice

● procesul deține controlul asupra mașinii
– poate duce la blocarea sistemului

● se folosește numai în interiorul kernelului

2.2.3. Excluderea mutuală prin Busy-2.2.3. Excluderea mutuală prin Busy-
WaitingWaiting

● busy-waiting: procesul așteaptă într-o buclă până
la eliberarea resurselor pentru a intra în secțiunea
critică

● implementare simplă
● consumă timp procesor

Lock variablesLock variables

● se utilizează o singură variabilă partajată între
procese
– are valoarea 0 când nici un proces nu folosește resursele

comune, și 1 când există un proces care folosește
resursele comune

● la intrarea în secțiunea critică se testează această
variabilă, dacă este 0 se intră în secțiune critică și
se setează variabila la 1, altfel se așteaptă până
când devine 0

● la ieșire se resetează variabila la 0
● există riscul ca cele două procese să intre simultan

în secțiunea critică

Alternare strictăAlternare strictă

Proces 0:

while (TRUE) {

while (turn != 0); //wait

critical_section();

turn = 1;

non_critical_section();

}

Proces 1:

while (TRUE) {

while (turn != 1); //wait

critical_section();

turn = 0;

non_critical_section();

}

Alternare strictăAlternare strictă
dezavantajedezavantaje

● Testarea continuă a unei variabile
– trebuie evitată pentru că consumă timp procesor

● dacă unul din procese termină mult mai rapid
atunci va trebuie să aștepte mult până când și
celălalt termină atât secțiunea critică cât și cea
non-critică
– un proces în secțiunea non-critică blochează un alt

proces: violarea condiției 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

