Universitatea Transilvania Brasov
Facultatea de Inginerie Electrica si Stiinta Calculatoarelor
Departamentul de Electronica si Calculatoare

Sisteme de operare

— Curs 2 -

2013.03.06 s.l. dr. ing. Kertész Csaba-Zoltan



1.3. Concepte de bazi ale SO

» Sistemele de operare ofera un mediu de executie a
programelor pe un calculator

— usureaza munca utilizatorilor
— usureaza scrierea programelor

— asigura o rulare eficienta si sigura a programelor

 Serviciile SO sunt definite sub forma unui set de
apeluri de sistem care opereaza asupra unor
obiecte software reprezentand componentele
principale ale SO




Serviciile SO

» Serviciile SO oferite utilizatorilor pot fi incadrate
In:
— interfata cu utilizatorul
— executarea programelor
— operatii 1/O
— sistem de fisiere
— comunicatii
— detectia erorilor
— alocarea resurselor

— protectie si securitate



1.3.1. Interfata cu utilizatorul

* orice sistem de operare trebuie sa permita accesul
utilizatorilor la diferite resurse ale calculatorului
prin intermediul unei interfete cu utilizatorul

e aceasta poate fi de doua tipuri:

— interpretor de comenzi

 prin intermediul careia utilizatorul poate introduce comenzi
directe catre SO

— interfata grafica

 prin intermediul careia utilizatorul poate folosi o reprezentare
vizuala si mult mai intuitiva a serviciilor SO



Interpretorul de comenzi

* poate fi o componenta integrata in sistemul de
operare
— sistemul de operare este structurat in jurul unui set de

comenzi, acestea putand fi introduse Tn forma de text si
interpretat de nucleul SO

* 0 alta abordare este folosirea unor interpretoare de
comenzi dedicate (shell-uri)

— sistemul de operare este structurat pe un set de functii

— interpretorul de comenzi ruleaza ca un program simplu,
citind comenzile utilizatorilor si traducand in functiile
SO



Tipuri de shell-uri

e rolul shell-ului este de a executa comenzi

* codul ce trebuie executat poate fi incorporat in
shell
— de ex.: DOS Prompt, BusyBox

— intelege un anumit set de comenzi, pentru care este
integrat programul ce traduce in apeluri catre SO

 shell-ul executa orice comanda primita prin
programe dedicate

— de ex.: shell-urile din Linux — Bourne shell, C shell, Korn
shell, Bourne again shell

— shell-ul executa programul cu numele introdus in linia
de comanda



Bash

cel mai frecvent folosit shell Tn Linux

ofera o linie de comanda prin intermediul carei
utilizatorul poate introduce numele unui executabil
si argumentele ce trebuie plasate acestuia

» rm -f file.txt

numele programului argumentele

pot fi executate si alte programe in afara celor
sistem intr-o maniera similara

comenzile pot fi structurate in functii (scripturi
shell) si pot fi legate impreuna (redirectari)



Interfata grafica (GUI)

e ofera o interfata vizuala mai prietenoasa si mai
intuitiva pentru utilizator

e comenzile catre SO pot fi date printr-o metoda

bazata pe mouse si un sistem de ferestre-meniuri-
sistem

* interfata grafica este executata similar cu shell, ca
un program care traduce actiunile utilizatorilor in
apeluri catre sistemul de operare



1.3.2. Apeluri sistem

e programele utilizator comunica cu SO pentru a
cere anumite servicii SO prin intermediul apelurilor
sistem

 fiecarei serviciu oferit de SO este asociat un set de
functii care ruleaza pe un nivel privilegiat (cu acces
direct la resursele calculatorului)

* apelul sistem este realizat prin intermediul unei
intreruperi software (TRAP) prin intermediul careia
se poate trimite o adresa de functie (asociat
serviciului) si parametrii acesteia catre SO




Implementarea apelurilor sistem

pentru a usura programarea fiecare SO ofera un
API (Application Programming Interface) realizat
intr-o biblioteca care ofera functii standard catre
serviciile SO

aceste functii traduc comenzile utilizator in apeluri
sistem si realizeaza trap-ul corespunzator

SO realizeaza serviciul cerut si pune rezultatele in
registre speciale ce sunt preluate de functie

POSIX — API-ul standard ce trebuie sa fie oferit de
un SO



1.3.3. Procese

* un proces este un program in executie

e procesul cuprinde:

— programul executabil
— datele si stiva programului
- registrele de uz general

- registrele speciale: program counter, stack pointer

e toate informatiile despre un proces sunt stocate
intr-o tabela (process table) administrat de SO
(cate o intrare pentru fiecare proces)



Procese

* crearea si terminarea proceselor se realizeaza prin

apeluri sistem (astfel SO poate actualiza tabelul de
procese)

— de ex. shell citeste comenzile de la linia de comanda si
creeaza procese pentru fiecare comanda prin
intermediul unui apel sistem, iar la terminarea executiei
acesteia este executat un alt apel sistem de terminare

e Un proces poate sa creeze procese fiu
D
- fork()



Semnalizari intre procese

e SO sau alte procese poate sa trimita semnale catre
un proces

 la aparitia unui semnal executia procesului este
suspendat temporar, registrele si stiva este salvata
si se executa o procedura de tratare a semnalului;
dupa terminarea procedurii, procesul isi reia
activitatea din punctul unde a fost suspendat

* semnalele sunt echivalente a intreruperilor
hardware



Proprietarii proceselor

e Intr-un sistem multiprogramat este important sa
cunoastem proprietarii proceselor

e fiecare utilizator are un identificator unic: uid

* utilizatorii de asemenea pot fi impartiti in grupe
avand si acestea un identificator: gid

 fiecarei proces i se atribuie uid-ul si gid-ul
proprietarului

 aceste identificatori ofera protectia proceselor



1.3.4. Fisiere

e contin datele intr-o forma grupata
e fisierele pot fi grupate la randul lor in directoare

e SO asigura apeluri de sistem pentru:

— crearea unui fisier/director

— stergerea unui fisier/director

— scrierea unui fisier

— citirea unui fisier

— adaugare unui fisier intr-un director

— eliminarea unui fisier dintr-un director



Mecanisme de protectie

e SO ofera mecanisme de protectie a fisierelor

e In UNIX
— 9 biti rwx (pentru user, grup, altii)
- r: posibilitate de citire
— w: posibilitate de scriere

— x: posibilitate de executie a unui fisier / posibilitatea de
intrare Tntr-un director

 |a apelurile de sistem de deschidere a unui fisier
pentru citire/scriere se verifica acesti biti



Fisiere speciale

 dispozitivele 10 sunt reprezentate in forma unor
fisiere speciale

— astfel se poate utiliza aceleasi apeluri sistem pentru
accesul la dispozitive ca si la accesul la fisiere

e tipuri de fisiere speciale:

— block special file: utilizate la modelare dispozitivelor
constand dintr-o colectie de blocuri adresabile aleator

— character special file: utilizate la modelarea
dispozitivelor constand din fluxuri de caractere



Fisiere speciale

 fiecare proces are 3 descriptoare de fisiere deschise
mereu

- stdin (Standard Input)
— stdout (Standard Output)

— stderr (Standard Error)

* pipe: este un fisier special care conecteaza doua
procese



1.3.5. Operatii /O

* un rol important a SO este de a ascunde hardware-
ul de utilizator:

— siguranta crescuta in functionare

— independenta de platforma hardware

e aplicatiile trebuie sa acceseze dispozitivele
hardware prin intermediul unor apeluri sistem

* SO ofera si anumite nivele de abstractizare a
dispozitivelor hardware — HAL (Hardware
Abstraction Layer)

— nivel superior (ex dispozitive de stocare, afisare)

— nivel inferior (acces direct)



Accesul direct la dispozitive 1/O

* in Linux accesul la dispozitive 1/O se realizeaza prin
intermediul sistemului de fisiere

e SO asociaza fiecarei dispozitiv un fisier special,
utilizatorul poate sa scrie/citeasca la/de la
dispozitiv scriind/citind fisierul respectiv

* SO controleaza accesul utilizatorului pentru a oferi
o fiabilitate crescuta a sistemului



1.3.6. Comunicatii

D)

e procesele utilizatorilor uneori au nevoie de a
interactiona intre ele

e SO asigura modalitati de comunicatii intre procese
(intr-o maniera sigura si fiabila)
— procesele nu pot accesa direct datele celuilalt,

comunicarea realizandu-se prin mesaje ce trec prin SO

— sincronizare la trimiterea si receptia mesajelor

e comunicatia poate fi extinsa si pe procese rulate pe
alte calculatoare, pentru care SO integreaza si
protocoale de comunicatii



1.4. Structura SO

SO este alcatuit dintr-o colectie de procedursi,
fiecare putand apela oricare alta

aceste proceduri sunt compilate si legate impreuna

nu exista o protectie a informatiei intre aceste
proceduri

apelurile sistem asigurate de SO sunt apelate
plasand parametrii in registrii sau stiva si apoi se
executa un trap numit kernel call



Structura SO

brogramele utilizator se ruleaza in user mode, iar
brocedurile in kernel mode, trecerea facandu-se

orin aceste trapuri

orogramele din user mode nu pot accesa direct
orocedurile din SO, astfel oferind o protectie a
informatiilor din sistem

SO examineaza registrele incarcate Tnainte de trap
si cauta din tabela de proceduri cea
corespunzatoare parametrilor



1.4.1. Organizare SO in nivele

* organizarea SO in nivele a fost propus de Dijkstra
In 1968

e accesul de la un nivel mai putin prioritar catre un
nivel mai prioritar se face cu un trap

Operatorul

Programe utilizator

I/O management

Comunicatii operator — proces

Memory management

OlFrR, IDN]JTW]IP>] O

Alocare procesor si multiprogramare




Implementare SO pe nivele

e avantajul implementarii pe nivele este protectia si
fiabilitatea crescuta a sistemului

— nivelele superioare nu pot accesa direct sistemul,
evitand problemele datorate malfunctionarii
programelor utilizator

* dezavantajul este greutatea implementarii acestei
separari intre nivele

— de obicei arhitecturile hardware nu ofera suport pentru
multe nivele software

— arhitectura x86 ofera 4 nivele de privilegiere, din care
efectiv si eficient se poate folosi 2, de aceea este
preferat o implementare SO pe 2 nivele



1.4.2. Kernel monolitic

kernel-space

: :
HAL




Caracteristici kernel monolitic

distinctie intre user-space si kernel-space

— aplicatiile ruleaza in user-space
— nucleul si driverele ruleaza in kernel-space

— intre ele exista un strat de apeluri sistem
suporta sistem complexe cu multe aplicatii
ofera protectie intre aplicatii

— daca o aplicatie se blocheaza sau functioneaza incorect
atunci nu afecteaza pe celelalte

poate rula si pe arhitecturi fara MMU, dar cu
protectie limitata



1.4.3. Microkernel

kernel-space

Message passing j



Caracteristici microkernel

teoretic cea mai performanta arhitectura de SO

practic implementarile existente prezinta prea
multe limitari din cauza complexitatii

toate functiile SO ruleaza in user-space in afara
unui strat foarte subtire de message passing

sistemul are un overhead mare datorita multimii de
mesaje ce trebuie sa treaca din user-space in
kernel-space si invers



1.4.4. Modelul client-server

SO ofera functiile sale in forma unui server care
ruleaza in user mode

se minimizeaza nucleul sistemului de operare

pentru a realiza un system call, procesul apelant
trimite cererea catre un alt proces (server) ce va
realiza actiunea dorita si intoarce raspunsul

este usor adaptabil sistemelor distribuite: SO si
programele nici nu trebuie sa fie pe aceleasi
calculatoare



Implementare SO client-server

* pentru a putea avea o rulare pseudoparalela a mai
multor procese pe un singur procesor, trebuie sa
existe macar un planificator de procese

* implementarile reale de obicei se bazeaza pe un SO
existent, care este extins cu functionalitati client-
server

* de ex.: Linux poate fi extins pe o structura client-
server, in care majoritatea functionalitatii este
realizat de servere (fisiere, 1/O, retea)



1.5. Masini virtuale

* abstractizarea hardware-ului poate fi extins la un
nivel [a care practic sunt create medii de executie
complete pentru diferite programe

— programele astfel vor avea iluzia ca detin un calculator
complet

— chiar si parti din SO pot fi transferate in aceste medii de
executie

* permite o implementare mai simpla a programelor:

— nu trebuie sa aiba grija de resurse partajate

— platforma virtuala pe care ruleaza este identica
indiferent de platforma reala



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

