

Sisteme de operareSisteme de operare

– – curs 2 –curs 2 –

Universitatea Transilvania Brașov
Facultatea de Inginerie Electrică și Știința Calculatoarelor
Departamentul de Electronică și Calculatoare

2013.03.06 ș.l. dr. ing. Kertész Csaba-Zoltán

1.3. Concepte de bază ale SO1.3. Concepte de bază ale SO

● Sistemele de operare oferă un mediu de execuție a
programelor pe un calculator
– ușurează munca utilizatorilor
– ușurează scrierea programelor
– asigură o rulare eficientă și sigură a programelor

● Serviciile SO sunt definite sub forma unui set de
apeluri de sistem care operează asupra unor
obiecte software reprezentând componentele
principale ale SO

Serviciile SOServiciile SO

● Serviciile SO oferite utilizatorilor pot fi încadrate
în:
– interfața cu utilizatorul
– executarea programelor
– operații I/O
– sistem de fișiere
– comunicații
– detecția erorilor
– alocarea resurselor
– protecție și securitate

1.3.1. Interfața cu utilizatorul1.3.1. Interfața cu utilizatorul

● orice sistem de operare trebuie să permită accesul
utilizatorilor la diferite resurse ale calculatorului
prin intermediul unei interfețe cu utilizatorul

● aceasta poate fi de două tipuri:
– interpretor de comenzi

● prin intermediul căreia utilizatorul poate introduce comenzi
directe către SO

– interfață grafică
● prin intermediul căreia utilizatorul poate folosi o reprezentare

vizuală și mult mai intuitivă a serviciilor SO

Interpretorul de comenziInterpretorul de comenzi

● poate fi o componentă integrată în sistemul de
operare
– sistemul de operare este structurat în jurul unui set de

comenzi, acestea putând fi introduse în formă de text și
interpretat de nucleul SO

● o altă abordare este folosirea unor interpretoare de
comenzi dedicate (shell-uri)
– sistemul de operare este structurat pe un set de funcții
– interpretorul de comenzi rulează ca un program simplu,

citind comenzile utilizatorilor și traducând în funcțiile
SO

Tipuri de shell-uriTipuri de shell-uri

● rolul shell-ului este de a executa comenzi
● codul ce trebuie executat poate fi încorporat în

shell
– de ex.: DOS Prompt, BusyBox
– înțelege un anumit set de comenzi, pentru care este

integrat programul ce traduce în apeluri către SO

● shell-ul execută orice comandă primită prin
programe dedicate
– de ex.: shell-urile din Linux – Bourne shell, C shell, Korn

shell, Bourne again shell
– shell-ul execută programul cu numele introdus în linia

de comandă

BashBash

● cel mai frecvent folosit shell în Linux
● oferă o linie de comandă prin intermediul cărei

utilizatorul poate introduce numele unui executabil
și argumentele ce trebuie plasate acestuia

● pot fi executate și alte programe în afara celor
sistem într-o manieră similară

● comenzile pot fi structurate în funcții (scripturi
shell) și pot fi legate împreună (redirectări)

» rm -f file.txt

numele programului argumentele

Interfața grafică (GUI)Interfața grafică (GUI)

● oferă o interfață vizuală mai prietenoasă și mai
intuitivă pentru utilizator

● comenzile către SO pot fi date printr-o metodă
bazată pe mouse și un sistem de ferestre-meniuri-
sistem

● interfața grafică este executată similar cu shell, ca
un program care traduce acțiunile utilizatorilor în
apeluri către sistemul de operare

1.3.2. Apeluri sistem1.3.2. Apeluri sistem

● programele utilizator comunică cu SO pentru a
cere anumite servicii SO prin intermediul apelurilor
sistem

● fiecărei serviciu oferit de SO este asociat un set de
funcții care rulează pe un nivel privilegiat (cu acces
direct la resursele calculatorului)

● apelul sistem este realizat prin intermediul unei
întreruperi software (TRAP) prin intermediul căreia
se poate trimite o adresă de funcție (asociat
serviciului) și parametrii acesteia către SO

Implementarea apelurilor sistemImplementarea apelurilor sistem

● pentru a ușura programarea fiecare SO oferă un
API (Application Programming Interface) realizat
într-o bibliotecă care oferă funcții standard către
serviciile SO

● aceste funcții traduc comenzile utilizator în apeluri
sistem și realizează trap-ul corespunzător

● SO realizează serviciul cerut și pune rezultatele în
registre speciale ce sunt preluate de funcție

● POSIX – API-ul standard ce trebuie să fie oferit de
un SO

1.3.3. Procese1.3.3. Procese

● un proces este un program în execuție
● procesul cuprinde:

– programul executabil
– datele și stiva programului
– registrele de uz general
– registrele speciale: program counter, stack pointer

● toate informațiile despre un proces sunt stocate
într-o tabelă (process table) administrat de SO
(câte o intrare pentru fiecare proces)

ProceseProcese

● crearea și terminarea proceselor se realizează prin
apeluri sistem (astfel SO poate actualiza tabelul de
procese)
– de ex. shell citește comenzile de la linia de comandă și

creează procese pentru fiecare comandă prin
intermediul unui apel sistem, iar la terminarea execuției
acesteia este executat un alt apel sistem de terminare

● un proces poate să creeze procese fiu
– fork()

Semnalizări între proceseSemnalizări între procese

● SO sau alte procese poate să trimită semnale către
un proces

● la apariția unui semnal execuția procesului este
suspendat temporar, registrele și stiva este salvată
și se execută o procedură de tratare a semnalului;
după terminarea procedurii, procesul își reia
activitatea din punctul unde a fost suspendat

● semnalele sunt echivalente a întreruperilor
hardtware

Proprietarii proceselorProprietarii proceselor

● într-un sistem multiprogramat este important să
cunoaștem proprietarii proceselor

● fiecare utilizator are un identificator unic: uid
● utilizatorii de asemenea pot fi împărțiți în grupe

având și acestea un identificator: gid
● fiecărei proces i se atribuie uid-ul şi gid-ul

proprietarului
● aceste identificatori oferă protecția proceselor

1.3.4. Fișiere1.3.4. Fișiere

● conțin datele într-o formă grupată
● fișierele pot fi grupate la rândul lor în directoare
● SO asigură apeluri de sistem pentru:

– crearea unui fișier/director
– ștergerea unui fișier/director
– scrierea unui fișier
– citirea unui fișier
– adăugare unui fișier într-un director
– eliminarea unui fișier dintr-un director

Mecanisme de protecțieMecanisme de protecție

● SO oferă mecanisme de protecție a fișierelor
● În UNIX

– 9 biți rtwx (pentru user, grup, alții)
– r: posibilitate de citire
– tw: posibilitate de scriere
– x: posibilitate de execuție a unui fișier / posibilitatea de

intrare într-un director

● la apelurile de sistem de deschidere a unui fișier
pentru citire/scriere se verifică acești biți

Fișiere specialeFișiere speciale

● dispozitivele IO sunt reprezentate în forma unor
fișiere speciale
– astfel se poate utiliza aceleași apeluri sistem pentru

accesul la dispozitive ca și la accesul la fișiere

● tipuri de fișiere speciale:
– block special file: utilizate la modelare dispozitivelor

constând dintr-o colecție de blocuri adresabile aleator
– character special file: utilizate la modelarea

dispozitivelor constând din fluxuri de caractere

Fișiere specialeFișiere speciale

● fiecare proces are 3 descriptoare de fișiere deschise
mereu
– stdin (Standard Input)
– stdout (Standard Output)
– stderr (Standard Error)

● pipe: este un fișier special care conectează două
procese

1.3.5. Operații I/O1.3.5. Operații I/O

● un rol important a SO este de a ascunde hardtware-
ul de utilizator:
– siguranță crescută în funcționare
– independență de platforma hardtware

● aplicațiile trebuie să acceseze dispozitivele
hardtware prin intermediul unor apeluri sistem

● SO oferă și anumite nivele de abstractizare a
dispozitivelor hardtware – HAL (Hardtware
Abstraction Layer)
– nivel superior (ex dispozitive de stocare, afișare)
– nivel inferior (acces direct)

Accesul direct la dispozitive I/OAccesul direct la dispozitive I/O

● în Linux accesul la dispozitive I/O se realizează prin
intermediul sistemului de fișiere

● SO asociază fiecărei dispozitiv un fișier special,
utilizatorul poate să scrie/citească la/de la
dispozitiv scriind/citind fișierul respectiv

● SO controlează accesul utilizatorului pentru a oferi
o fiabilitate crescută a sistemului

1.3.6. Comunicații1.3.6. Comunicații

● procesele utilizatorilor uneori au nevoie de a
interacționa între ele

● SO asigură modalități de comunicații între procese
(într-o manieră sigură și fiabilă)
– procesele nu pot accesa direct datele celuilalt,

comunicarea realizându-se prin mesaje ce trec prin SO
– sincronizare la trimiterea și recepția mesajelor

● comunicația poate fi extinsă și pe procese rulate pe
alte calculatoare, pentru care SO integrează și
protocoale de comunicații

1.4. Structura SO1.4. Structura SO

● SO este alcătuit dintr-o colecție de proceduri,
fiecare putând apela oricare alta

● aceste proceduri sunt compilate și legate împreună
● nu există o protecție a informației între aceste

proceduri
● apelurile sistem asigurate de SO sunt apelate

plasând parametrii în registrii sau stivă și apoi se
execută un trap numit kernel call

Structura SOStructura SO

● programele utilizator se rulează în user mode, iar
procedurile în kernel mode, trecerea făcându-se
prin aceste trapuri

● programele din user mode nu pot accesa direct
procedurile din SO, astfel oferind o protecție a
informațiilor din sistem

● SO examinează registrele încărcate înainte de trap
și caută din tabela de proceduri cea
corespunzătoare parametrilor

1.4.1. Organizare SO în nivele1.4.1. Organizare SO în nivele

● organizarea SO în nivele a fost propus de Dijkstra
în 1968

Alocare procesor și multiprogramare

Memory management

Comunicații operator – proces

I/O management

Programe utilizator

Operatorul

0

1

2

3

4

5

● accesul de la un nivel mai puțin prioritar către un
nivel mai prioritar se face cu un trap

Implementare SO pe niveleImplementare SO pe nivele

● avantajul implementării pe nivele este protecția și
fiabilitatea crescută a sistemului
– nivelele superioare nu pot accesa direct sistemul,

evitând problemele datorate malfuncționării
programelor utilizator

● dezavantajul este greutatea implementării acestei
separări între nivele
– de obicei arhitecturile hardtware nu oferă suport pentru

multe nivele software
– arhitectura x86 oferă 4 nivele de privilegiere, din care

efectiv și eficient se poate folosi 2, de aceea este
preferat o implementare SO pe 2 nivele

1.4.2. Kernel monolitic1.4.2. Kernel monolitic

App 1 App 2 App n

FS Network Drivere

HAL

...

IPC MM Sched.

Apeluri sistem

user-space

kernel-space

Caracteristici kernel monoliticCaracteristici kernel monolitic

● distincție între user-space și kernel-space
– aplicațiile rulează în user-space
– nucleul și driverele rulează în kernel-space
– între ele există un strat de apeluri sistem

● suportă sistem complexe cu multe aplicații
● oferă protecție între aplicații

– dacă o aplicație se blochează sau funcționează incorect
atunci nu afectează pe celelalte

● poate rula și pe arhitecturi fără MMU, dar cu
protecție limitată

1.4.3. Microkernel1.4.3. Microkernel

App 1 App 2 App n

FS Network Drivere

Message passing

...

IPC MM Sched.

mesaje sistem
kernel-space

user-space

Caracteristici microkernelCaracteristici microkernel

● teoretic cea mai performantă arhitectură de SO
● practic implementările existente prezintă prea

multe limitări din cauza complexității
● toate funcțiile SO rulează în user-space în afara

unui strat foarte subțire de message passing
● sistemul are un overhead mare datorită mulțimii de

mesaje ce trebuie să treacă din user-space în
kernel-space și invers

1.4.4. Modelul client-server1.4.4. Modelul client-server

● SO oferă funcțiile sale în forma unui server care
rulează în user mode

● se minimizează nucleul sistemului de operare
● pentru a realiza un system call, procesul apelant

trimite cererea către un alt proces (server) ce va
realiza acțiunea dorită și întoarce răspunsul

● este ușor adaptabil sistemelor distribuite: SO și
programele nici nu trebuie să fie pe aceleași
calculatoare

Implementare SO client-serverImplementare SO client-server

● pentru a putea avea o rulare pseudoparalelă a mai
multor procese pe un singur procesor, trebuie să
existe măcar un planificator de procese

● implementările reale de obicei se bazează pe un SO
existent, care este extins cu funcționalități client-
server

● de ex.: Linux poate fi extins pe o structură client-
server, în care majoritatea funcționalității este
realizat de servere (fișiere, I/O, rețea)

1.5. Mașini virtuale1.5. Mașini virtuale

● abstractizarea hardtware-ului poate fi extins la un
nivel la care practic sunt create medii de execuție
complete pentru diferite programe
– programele astfel vor avea iluzia că dețin un calculator

complet
– chiar și părți din SO pot fi transferate în aceste medii de

execuție

● permite o implementare mai simplă a programelor:
– nu trebuie să aibă grijă de resurse partajate
– platforma virtuală pe care rulează este identică

indiferent de platforma reală

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

