Creating a Wiring Framework for Embedded GUI
Programming Course

Csaba Zoltan Kertész
Department of Electronics and Computers
Transilvania University
Brasov, Romania
csaba.kertesz@unitbv.ro

Abstract—This paper presents the results of implementing the
Wiring unit for Embedded Wizard, which offers the possibility
of using functions familiar from Arduino projects inside a high
level GUI building and prototyping environment. The unit allows
students for easier microcontroller interfacing of their embedded
GUI applications, so they can focus on studying Ul and UX
design concepts and doing online or offline prototyping of their
applications without the need for extensive hardware testing.

During the development of the Wiring-like framework also
a large-scale study was performed about the usage of the
framework in Arduino projects. Almost 200,000 Arduino source
code files were analyzed from public GitHub repositories, and
the findings about the topmost used functions and libraries are
also presented in the paper.

Index Terms—embedded systems, GUI, Arduino, Embedded
Wizard, online education, Arduino function usage

I. INTRODUCTION

Embedded graphical user interface (GUI) programming
modules are becoming and important part of embedded soft-
ware and microcontroller programming course syllabuses [1].
User interface (UI) and user experience (UX) design are
increasingly in demand for embedded electronics applications,
so teaching at least some basic concepts is a must in an
Electronics Engineering curricula.

In this paper, I am presenting a software framework which
was developed for Embedded Wizard, the GUI development
environment of choice for the new GUI programming module.
This framework mimics the Wiring framework made popular
by the Arduino development ecosystem.

Although the efficiency of using Arduino for teaching
microcontroller programming itself is debatable, the use of it
in connected fields like instrumentation, measurement, sensors,
robotics, etc. is of great success [2]-[5]. Students rapidly get
familiar with the interface and can easily focus on the actual
problems and not the microcontroller development itself.

The same idea propelled the need for this framework to
be adapted for the embedded GUI course. Although it is an
embedded development course, the main focus is on the Ul
and UX concepts and low level implementation stuff can prove
a challenge, distracting the students’ attention from the high
level issues. Using a familiar framework, like the one used
in Arduino, can lead to fast development of the low-level
microcontroller interfacing and leaves more time to focus on
the course objectives.

The proposed framework is adapted to the needs of this
course, and a thorough analysis was performed on the usage
of Arduino functions in public open source projects to deter-
mine what functions need to be implemented. Results of this
analysis are also presented in the paper.

Finally, a survey among the students involved in the GUI
module are also presented, students were very appreciative of
the new module and although the learning curve was high also
the satisfaction levels were higher than average.

II. EMBEDDED GUI COURSE - OVERVIEW

Three possible solutions were considered for embedded GUI
programming (using the STM32F746-Discovery board):

e TouchGFX ST’s own graphic library and designer inte-

grated with STM32Cube!

e STEmWin an adaptation of the SEGGER EmWin

graphic stack for STM32?

« Embedded Wizard a platform-independent high perfor-

mance GUI design solution from Tara Systems>

TouchGFX is a C++ framework with a UI designer which
generates C++ code and any additional user code is added
directly in the usual IDE in C++. This is the most direct
approach and is best optimized for STM32 microcontrollers.
Testing and debugging the application must be done directly
on the target development board.

STEmWin uses a two-step approach in which Ul is designed
in the dedicated IDE, with the possibility to add user code
directly there. The whole code can be compiled directly
from the IDE and run on the target board, or the whole
GUI application can be simulated on the host computer and
debugged with Visual Studio.

Embedded Wizard also employs a similar approach, how-
ever the high level Ul programming is done in its own
programming language called Chora. This is a high level
object-oriented programming language specifically designed
for GUI operations. The UI and the user code is then compiled
in Embedded Wizard into ANSI C code, which can then be
compiled with for the target with the ST build environment.
Besides compiling and running on the target, Embedded Wiz-
ard also includes a complete interpreter for Chora, allowing

Uhttps://www.st.com/en/development-tools/touchgfxdesigner.html
Zhttps://www.st.com/en/embedded- software/stemwin.htm]
3https://www.embedded- wizard.de

]

| BROJECT EDIT ARRANGE SEARCH MAVIGATE BUID [DEBUG EXTRAS WINDOW HELP
s o n
EwB %8 EX L
| Be) 0w - @ ke [D aeb | B, S, sTMIA Defeult (hone]
x
B unit B unit class *
p— ... G o s T i OB Scasomsppicts
15 Chora
B Unit ~
| I poject module

Class
| mpty software component
| Constant

Storage for immutable values

| ’ Variable

Simple data storage

| - P

Computed data storage

© a1 Aray v
Compenent Templates

Resources
Views
Widgets
Effects
Event Handlers
Device

Charts <

from Path

array float datar[128];
& array float datai[125];

8 var int32 mmax;
9 var int32 m;
16 var int32 i;
11 var int32 istep;
12 var int32 i;

var float wtemp;
var float wr;
£ arar £loat -

Main Search Debug <

Ready

ation as found in Numerical Recipes

.
L L8 Bk @
O ®ra & w O F m
x
lass
Wiring:Core
o - e i Name Type Order ~
metho object Wiring:Core
{ } Init El we I Rectangles object Views:Rect.. 179
[BorderS object ViewssBorder 178
; roperty rect S
e : A\ StrokePath object Views:Swa.. 177
. / Line object Views:Line 176
2 ?‘;;ﬂe‘rﬁ‘”ﬁ oz \{} :J;;‘Sam i 5 I Rectangle object Views:Rect. 175
A © e e TSR . [Border object Views:Border 174
% {} ;;‘““ %) Path object Graphics:P. 173 .
i 1 = S e -

¥ Brick <70@,120,90@,160>

S
object Graphics::Path
Path
object Graphics: Path
Spedrum
object Graphics: Path
(™ Spectrumril

Generator false

Native false

Prototype Application: Application

in C++

1 selected SIZE 200x 40

Fig. 1. Embedded Wizard with an example Wiring project and active prototyper window

STM32F746G-DISCO
MB11918

Fig. 2. STM32F746NG-Discovery board running the example application

live testing of the UI. This means that the entire screen
instantly reacts to any code change inside the editor. Also,
the full UI application with every animation and executable
code can be run inside an integrated prototyper without the
need for compiling or connecting to the target.

Due to the COVID-19 pandemic, the ability to do some or
all of the laboratories online has become an important factor in
designing new course materials. Because of this, the choice for
GUI development environment went with Embedded Wizard.
This allowed for all the development to be done (if needed)
online on the students’ own computers, prototyping and de-
bugging fully on the host, and only in the end running the

projects on the target.

An example Embedded Wizard project (displaying a random
signal in time and frequency) running in the built-in prototyper
is presented in Fig. 1. The very same application compiled and
run on the target (without any other intervention necessary) is
shown on Fig. 2. Applications run and offer the exact same
UI look and feel both on host and target. The color cast in the
photo is due to the reflection in the camera.

III. WIRING FRAMEWORK USAGE

The Wiring framework was initially developed for AVR
microcontrollers, and the functions defined in the framework
are very much oriented towards the capabilities of this micro-
controller [6]. When I started developing a similar framework
for Embedded Wizard using an ARM processor, immediately
it became obvious that not all functionality is needed for the
GUI programming course. Reasons for this include:

o Implementation differences between AVR and ARM,;

o Language differences between Chora and C;

o Functionalities already included in the Mosaic frame-

work;

o Functionalities for which better Chora-oriented alterna-

tive can be implemented.
And of course, not all functions are really needed and used
by the students in their projects. This in particular has driven
a need for doing a statistical overview of the usage of Wiring
functions in general.

For usage statistics, a very good source to start with are the
open source projects hosted on GitHub. The base repositories,

excluding any forks, were added into a public dataset hosted
on Google BigQuery, for large-scale data mining operation on
them using a cloud-based distributed engine. This BigQuery
dataset was successfully used for various code quality analysis
[7], code snippet provenience [8], finding the top program-
ming languages [9] or even the most used words in various
programming languages [10].

The GitHub contents dataset on BigQuery is a very large
one (well above 1TB for the contents table), so a filtered
subset should be analyzed in detail. Standard SQL queries
can be used to filter the results as needed. Filtering can be
done on file type, size, and other metadata before even starting
the code analysis. All the above-mentioned studies employ
some sort of such filtering. For example, searching for the
most common words in a programming language is done by
first selecting only the files with the corresponding extension.
Wiring functions are implemented and used in C/C++ code, so
it would be a good start for searching for them in C/C++ files
only. However, as they are mostly used in Arduino projects,
the source files will have an ’.ino’ extension instead of the
more traditional *.c’ or *.cpp’. Because of this, existing studies
ignored Arduino projects completely.

To search for the most used Wiring functions, first, a table
with all *.ino’ files is generated with the following SQL query:

SELECT repo_name as repo, ref, path
FROM ‘bigquery-public-data.github_repos.files®
WHERE RIGHT (path, 4) =

Analyzing the content of the files themselves is a bit more
cumbersome, as C/C++ code is notoriously hard to parse
without relying on an external preprocessor and compiler [11].
So instead of parsing completely these files, a compromise
solution is to use a small Python script to search for any
identifiers that would look like a function call. To avoid
listing also function declarations, only identifiers that follow an
operator or delimiter are to be considered (identifiers directly
after a type name are ignored). This of course also includes
function-like macros, but these also can have some significance
for the usage statistics.

The Python scripts directly access the BigQuery database
through the google.cloud.bigquery.Client API for
getting the names and path of ’.ino’ files. Afterwards, the file
content is read directly from GitHub to reduce data processing
(.ino’ files are just a very small portion of the available
GitHub content). At the writing of the paper, there were
198057 files available from 24988 repositories. Given that
BigQuery GitHub dataset is updated weekly, the actual counts
can change quite fast, but one can safely assume to have only
a small impact on the usage ranking.

The scripts and the results are available in the https://github.
com/kcs/ino-analysis repository, due to size constraints I am
reproducing here only the top 25 ranked functions (see Fig. 3).
The usage count of the functions decreases rapidly, so even
this graphic is quite conclusive as to which functions should
be first and foremost added to the GUI Wiring framework.
Functions are ranked both by absolute number of function

Serialprint | G55
Seriaprintn [0.7
delay | 79,655
digitatwrite | 233,191
F I 203,994
pinMode | 186,412
Serial.begin | 121,876

millis [l 107,062

analogRead [59,550
digitalRead [JJjjj 55,281
led.print [48,043
String [Jjjj 46,403
client.println [Jj 44,810
analogWrite [JJj 38,808
Serial.write [JJ] 36,816
PSTR | 34,502
Serial.available JJj 31,898
random [31,663
Serial.read J 30,471
led.setCursor JJj 29,201
client.print [Jj 28,151
map] 23,934
micros [J] 23,758
display.height JJ 20,598
myGLCD.setColor] 19,538

(a)

Serilbegin | 9.
deloy | ¢
pinMod R |6.170
Serial print | 115
digitalWrite || I £ 277
Serial.print ||| I (£ 133
millis | ©.<70
analogRead || NN 7.°65
digitalRead | NN 7359
Serial.available || NN 7132
Serial.read || N ¢.736
analogWrite [4,205
Serial.write | 3,882
String | 3,706
F I 3643
Wire.begin [l 3,220
delayMicroseconds [l 3,069
map [3,009
attachInterrupt [2,558
random [2,557
abs [2,369
sprintf [2,249
led.print [2,138
led.setCursor [Jij 2,074
led.begin [2,003

(d)

Fig. 3. Top 25 functions used in Arduino projects by total number of calls
(a) and by number of repositories they are used in (b)

calls and by the number of repositories that make at least
one call to the function. There are some differences in the
two lists, as there are some Wiring functions (initialization for
example) that are required only once to be called, but without
them other functions would not work. Some other functions
are also intensively used only in a handful of repos, while the

vast majority of repos do not use them at all. For example,
the myGLCD.setColor function ranked 25th in overall use, but
only 58 repos ever use it.

Besides the function usage, it is also interesting to see the
top most used libraries in Arduino projects. Due to the nature
of the Arduino IDE regarding the linking of libraries, a good
clue to measure library usage is to parse the ’.ino’ files for
#include directives. The top 10 libraries resulted from the
parsing of the same files as before are presented on Fig. 4.
The most important libraries used are not surprisingly for the
SPI and I?’C (Wire in Arduino terms) peripherals.

wire.: [.
spL [o
SoftwareSerial.h || N 3014
Servo.h | 2710
EEPROM.h | 241!
Arduino.h | 2.063
LiquidCrystal.h | 1.924
Ethernet.h | 1.850
ESP8266WiFih [1515
sD.h [1,379

Fig. 4. Top 10 libraries used in Arduino projects

IV. IMPLEMENTING THE WIRING FUNCTIONS

When starting the design process of the Wiring framework
adaptation for Embedded Wizard, a couple of design choices
had to made regarding what to implement and what differ-
ences to the original scheme should be allowed. First, the
Chora programming language’s paradigm differences had to
be addressed. Chora is fully object-oriented, in contrast to
C++ which is both procedural and object-oriented. As such,
there is no concept for global functions in Chora. It has some
built-in functions which act on a global scope, but only object
methods can be implemented. This means that the Wiring core
functions could not be implemented as global functions, so a
dedicated Wiring::Core class was devised for holding these
functions. Simple calling of functions like digitalWrite
is not possible, instead a call to a digitalWrite method
of an object must be issued. This object, of course, can be
a global autoobject. One catch is that the user must ensure
to keep a reference to this object throughout the life of the
GUI root object, otherwise it can be garbage collected. The
objects defined in the Wiring framework, of course, can be
implemented as Chora objects.

The second design choice was about which functions to be
implemented. This started from the analysis presented before,
from which the most popular functions were determined, and
only those with a high probability to be used by the students
were implemented. However, this list was further filtered, as
some of the more popular functions were deemed unnecessary
for the GUI integration.

For example, the LiquidCrystal library is unnecessary as
we already have a full color graphic display for building GUI
applications. Also, the Arduino library and the ESP8266WiFi
is of no use on the STM32 target. After careful thoughts,

only the SPI, I2C and Serial libraries were considered to be
necessary to implement. For SoftwareSerial was not the case,
as it is specially thought for AVR microcontrollers having
only one hardware UART which is used for debugging pur-
poses. The STM32F746 microcontroller has multiple USART
interfaces even on the Arduino headers which can be used
for any application needing it. Also, the Serial.print
and Serial.println functions, which are the mostly used
functions in Arduino projects, are actually used for debugging
purposes as they are connected through the USB interface
directly into Arduino IDE. The SoftwareSerial library (which
gives access to other serial connections on the Arduino header)
is much less used anyway. For debugging purposes, however,
Chora also has the built-in trace command which is by
default uses the USART which is connected through ST-Link
to the host computer, so it is no need for another serial
debugging feature. The built-in Chora debugging features are
more powerful anyway.

Of the other popular functions the F and PSTR macros are
AVR specific, String constructors are not needed, because of
the built-in string handling of Chora, and LCD functions are
not needed either, the GUI display is completely driven by
Embedded Wizard.

Some other functions, even though are very used in Arduino
environments, were deliberately left out to force students using
the Chora alternatives for them. The timing functions (delay,
millis, etc.) do not have direct counterparts in Chora, but
one of the most important features for students to learn in GUI
development was the signal-slot mechanism and effect handler,
which covers more than enough any timing functionalities
needed.

Another design choice in the development of the wiring
functions was to implement the whole functionality entirely
in a single Chora unit. According to the Embedded Wizard
manual [12], the normal approach to integrate the GUI ap-
plication written in Chora with the low level microcontroller
drivers is to use the Device Interface template. This template
offers 3 mechanisms to for interaction: commands, event
handlers, and properties. Out of the 3, the easiest to use
are commands which use a native function call directly to
low level functions implemented in C. Event handlers will
channel an external event or an interrupt into the Mosaic
DispatchEvent-HandleEvent queue, but of course they need
proper multi-threaded synchronization in the main loop. De-
vice interface properties are the most complex interfaces,
allowing bidirectional communication between Chora code
and C code, and offering the best integration into Chora.
They also need complete knowledge of the C code generation
behavior of Embedded Wizard.

Using these Device Interface templates, however, increases
the application development complexity, needing code tweak-
ing both in Embedded Wizard and in an external editor (like
STM32CubelDE) and synchronizing both of them. This extra
complexity was deemed unnecessary for educational purposes,
the main focus of the course being on the GUI development
concepts. Because of this, every Wiring function was imple-

inline
</ HAl Includes

HHE em

B PinModes

HH =um 1 @} velass Wiring:PinsClass
MM PinState insClass M7} Pins_STM32F746_DISCO
T

MW Port

autoobject Wiring: PinsClas:
Pins
a

sss
8% RandomNumberGener

Fig. 5. Wiring unit structure

mented in Chora, and low-level interfacing was included in
there using native statements. This allows mixing pure C
code and connecting to low-level drivers written in C inside
Chora code.

The implemented Wiring unit (Fig. 5) includes the Core
class for the core wiring functions, the SPI, TwoWire and
Serial units for the corresponding peripheral access. There are
also some internal units containing low level functions. The
most important of these is the Pins unit, which contains the
pin mapping for the on-board Arduino headers. This is board
dependent, and it was implemented to make full use of Chora
features. They can be used through normal property-based
interfacing, and what makes is truly portable is the variant
dedicated to the Discovery board used in the laboratory. A
variant is a Chora feature which transparently overloads a class
based on the build profile used. This allows to correctly map
pins and pin functions (normal and alternate) to those used on
the given board, but also to seamlessly work in the Windows
based prototyper where actual pin functionality does not make
sense and has just a simulated behavior.

The Core class (Fig. 6) contains the implemented core
functions. Not all wiring functions were deemed necessary
to be implemented, so it contains only a subset of all the
functions. These are:

e pinMode configures a pin (numbered according to Ar-
duino header board) to either input, output, analog or
alternate function - the latter is not a usual Wiring feature,
but it is the STM32 GPIO behavior, and is normally only
used by the peripheral units;

e« digitalWrite sets or resets an output pin;

e digitalRead reads a boolean value from a digital
input pin;

e analogRead reads an analog value from an ADC input
pin;

e analogWrite configures a PWM output pin which
with proper filtering can give a desired analog voltage;

e« random is a special case, as normally the random
functions generates a pseudo-random number, but we
already have a Chora built-in function for pseudo-
random numbers (math_rand), so the function from the
Wiring::Core will generate a true random number, using
the STM32 hardware Random Number Generator;

« map will map a number from one range to another range
(usually used to convert ADC range into corresponding

Core Wirinig furictions

{3 moves
} e

Core Wiririg properties
{ method

Jf it
{ method

} digitalWrite
{ method

} digitalRead

{y ot oo v
} analogReadResolution AnalogReadResolution

{ method { method
} Sneiogread } mep

{ method
} analogWrite

{} o
'/ OnSetAnalogReadRest

Initemal furictionis
Do riot use outside the ¢l

Iriternal variables.

£y ST
mg

. . .
& {y meves 1
ade_resolution % 1} celoctDCResolution |7

e

‘‘‘‘‘‘ 32
@ ic cormection

Fig. 6. Core class structure

voltage value).

All the implemented functions were tested, and an example
Embedded Wizard project was created for each of them,
covering every available laboratory module. The examples
are available alongside the Wiring unit source code and are
configured to fully use the build environment that comes
along with the Embedded Wizard platform package for the
STM32F746 Discovery board. Only a few minor modifications
have to be made to compile and run the examples on the target.

V. STUDENTS’ FEEDBACK

Embedded GUI development was introduced as a module of
the Software for Embedded Electronics course, at the Faculty
of Electrical Engineering and Computer Science of Transil-
vania University, Brasov. This course essentially is about ad-
vanced development techniques for microcontrollers. Students
already had previous courses of Computer Architecture and of
Microcontrollers, so they were proficient in basic development
techniques using AVR and PIC microcontrollers and especially
the Arduino platform. The other modules of the course, before
the GUI development module, involved low level development
for ATxmega and STM32 microcontrollers using direct register
access and low-level drivers. ATxmega microcontrollers were
programmed using Atmel Studio with direct register pro-
gramming and a few examples from the Advanced Software
Framework*. The STM32 microcontrollers were programmed
with STM32Cubelde’ using the HAL drivers included in
STM32Cube.

At the end of the course, a survey was conducted about
their experiences with both low level development and GUI
development. In total, 21 students responded to the survey,
grading their satisfaction levels from 1 to 5 for the three as-
pects of the laboratory work: programming an ATxmegal28B1
with direct register access, programming an STM32F746 using
HAL drivers from STM32Cube and finally GUI programming
with Embedded Wizard, using the Wiring library for peripheral
access. The results are shown on Fig. 7. For the low level

“https://asf.microchip.com/docs/latest/
Shttps://www.st.com/en/development-tools/stm32cubeide.html

00 Atmel Studio —
[l 0 STM32Cube
[l 0 Embedded Wizard

8

7 ,

. 6

4 4
3 3
1

ho o Hﬂ |

1 2 3 4

satisfaction level

4 4

1

Fig. 7. Distribution of the students by their satisfaction levels on the various
development environments

number of students

programming modules we can observe a normal distribution
of the satisfaction levels, however the GUI programming had
a pretty obvious takeoff among the students with two thirds
of the students affirming very satisfied with the outcomes of
this module.

This survey result is of course skewed by the impact of
COVID-109 restrictions. Most of the laboratories were carried
out online, students working at home, using simulators instead
of running their projects on the hardware target and hardware
tests were carried out only occasionally. Because of this, the
low level programming modules were seriously impacted by
the rather cumbersome simulation environments.

Using the Wiring unit in Embedded Wizard, students were
able to access the microcontroller peripherals through a proven
and familiar interface, and could focus their development
process entirely to the very reliable and easy to use prototyping
mechanism of Embedded Wizard. This resulted in the higher
satisfaction levels for the GUI programming module compared
to the low level programming modules.

Students’ opinion was also expressed in the open-text feed-
back next to the self-grading of their satisfaction with the
course. Here are a few remarks about using Embedded Wizard:

o "It is a very interesting environment, but GUI program-
ming is more arduous than programming an Arduino."

o "Personally, I like GUI programming more compared to
Arduino.”

o "It is rather hard adapting to Embedded Wizard, but after
a short while the process becomes easier."”

e "It is not an easy-to-use tool, it is completely different
from other tools we learned so far, but it is very interest-
ing."

o "It is very intuitive, I liked working in this environment;
everything I intended to build, I did easily and fast."”

This points out the very diverse opinions about the difficulty
of GUI programming, but by the end of the semester the
satisfaction levels of the students show that they adapted quite
well to the new environment. In this adapting process the
Wiring unit was really helpful for them, because they could
concentrate only on the GUI programming tasks and leave the
microcontroller interfacing to the already familiar functions.

VI. CONCLUSIONS

In this paper I have presented a framework that mimics the
Wiring framework used in Arduino programming which was
developed for a GUI programming course, using Embedded
Wizard as the main GUI building tool. This tool proved
very advantageous for fast GUI development with full in-host
prototyping capability, making it a good choice especially for
mixed (online and offline) laboratories.

While the GUI building capabilities of Embedded Wizard
are excellent, the low-level microcontroller interfacing is rather
cumbersome, and the proposed Wiring-like framework makes
this interfacing much easier in a simple educational envi-
ronment. The implemented library and examples were well-
received by the students, allowing them to focus only on the
graphic design and GUI programming aspects of the course.

The source code of the Wiring unit and the example Embed-
ded Wizard projects are all made available in the https://github.
com/kcs/emwi-wiring repository. Examples and configurations
are only available for the STM32F746-Discovery board, but
can be easily reconfigured for any other STM32 boards. The
Wiring unit itself consists only of a single source file and can
be easily copied into any new Embedded Wizard project.

REFERENCES

[1] D. Van Merode, G. Tabunshchyk, P. Arras, and K. Henke, “New teaching
approaches in embedded system courses,” in International symposium
on Ambient intelligence and embedded systems, 2015, pp. 24-26.

[2] J. C. Martinez-Santos, O. Acevedo-Patino, and S. H. Contreras-Ortiz,

“Influence of arduino on the development of advanced microcontrollers

courses,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje,

vol. 12, no. 4, pp. 208-217, 2017.

P. Plaza, E. Sancristobal, G. Carro, M. Blazquez, F. Garcia-Loro,

S. Martin, C. Perez, and M. Castro, “Arduino as an educational tool to

introduce robotics,” in 2018 IEEE International Conference on Teaching,

Assessment, and Learning for Engineering (TALE). 1EEE, 2018, pp.

1-8.

[4] L. M. Herger and M. Bodarky, “Engaging students with open source
technologies and arduino,” in 2015 IEEE Integrated STEM Education
Conference. 1EEE, 2015, pp. 27-32.

[5S] M. A. Rubio, C. M. Hierro, and A. Pablo, “Using arduino to enhance
computer programming courses in science and engineering,” in Proceed-
ings of EDULEARNI13 conference. IATED Barcelona, Spain, 2013, pp.
1-3.

[6] C. Reas, B. Fry, and J. Maeda, Processing: A Programming Handbook
for Visual Designers and Artists. The MIT Press, 2007.

[7]1 B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 155-165. [Online].
Available: https://doi.org/10.1145/2635868.2635922

[8] S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1259-1295, 2019.

[9] S. Kumar. (2019) Finding top programming language with

bigquery. [Online]. Available: https://towardsdatascience.com/finding-

top-programming-language- with-bigquery-dbe96d463d99

A. Kashcha. (2016) Common words. [Online]. Available:

/fanvaka.github.io/common- words/#?lang=cpp

Y. Padioleau, “Parsing c/c++ code without pre-processing,” in Inter-

national Conference on Compiler Construction. Springer, 2009, pp.

109-125.

P. Banach and M. Schweyer. (2020) Embedded Wizard manual.

[Online]. Available: https://doc.embedded-wizard.de/

3

—

[10] https:

[11]

[12]

