
Abstract — Fingerprint recognition is the most widely used 
form of  biometric  identification.  Many  high  performance 
recognition  algorithms  exists,  which  can  reliably  identify 
even poor fingerprint images, but most of these algorithms 
require  great  processing  power  implying  the  use  of  some 
computer  systems  to  do  the  actual  recognition.  However, 
more and more applications require fingerprint recognition 
to be done in small  embedded system with low processing 
power  but  within  an  acceptable  timeframe.  This  paper 
focuses  on  some  possible  speed-up  techniques  for  image 
enhancement and their effect on recognition performance.

I. INTRODUCTION

Fingerprint recognition is regarded as a highly reliable 
form of personal identification and, as such, is finding its 
way  into  many  areas  of  our  life.  Initially,  automatic 
fingerprint  recognition  was  done  by  high  performance 
computers needing expensive tools and was used only in 
small circles.

With the spread of low-cost powerful microcontrollers, 
fingerprint recognition is finding its ways into low-cost 
independent  embedded  systems,  without  the  need  of 
computers  executing  the  recognition  algorithms  in  the 
background.

However,  these embedded systems  still  present  large 
deficiencies  compared  to  computers,  resulting  in  less 
reliable  and  slower  recognition.  In  this  paper,  I  will 
examine some methods of speeding up the execution of 
these  algorithms  and  their  impact  on  recognition 
performance.

The most important characteristic of microcontrollers, 
which  should  be  taken  into  account,  is  the  lack  of  a 
floating  point  unit.  This  means  that  floating  point 
calculations must be emulated in software and, as such, 
are  very  time  consuming.  A fixed  point  representation 
can  be  used  instead  to  speed  up  calculations  on  the 
expense of lower precision. Even so, complex calculation 
like  trigonometric  functions  or  exponentials  are  rather 
slow, so the number of such calculations must be kept at 
a minimum.

The most popular approach for fingerprint recognition 
with  the  lowest  computational  complexity  is  based  on 
minutiae-matching.  Local  features  of  the  fingerprint 
image such as ridge ending and ridge bifurcation – called 
minutiae  –  are  compared  with  a  stored  template  of 
minutiae  similarity  value  [1].  The  main  steps  of  this 
approach are presented on Fig. 1.

Minutiae  extraction  is  usually  done  on  the  binary 
skeleton of the fingerprint  image,  therefore not  causing 
performance degradation due to the lack of floating point 
unit.  However,  captured  fingerprint  images  present  a 
large quantity of noise mainly caused by sweat pores on 
ridge lines and also noise introduced by the fingerprint 
sensor  (a  typical  fingerprint  image  captured  with  a 
capacitive sensor is presented on Fig.  2). Ridge skeleton 
cannot  be  reliably  extracted  from  such  images  so  a 
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Figure 1. Fingerprint recognition by minutia matching

Fingerprint 
Scanner

Minutia 
Extraction

Stored 
Template

Minutia 
Matching

Similarity 
value

Figure 2. Fingerprint image captured with a capacitive sensor



preceding  image  enhancement  step  is  needed  to 
regularize ridge lines.

Unfortunately the enhancement step implies a series of 
complex  operation  including  trigonometric  and 
exponential calculation. This means the enhancement step 
must  be  seriously  optimized  to  be  practical  for 
implementing in microcontrollers. 

II. FINGERPRINT IMAGE ENHANCEMENT

Fingerprint  images  due  to  the  nature  of  ridge  and 
valley structures  present  a directional  flow-like pattern. 
The  best  method  to  enhance  these  images  is  to  use  a 
filter,  which  takes  into  account  the  textural  features, 
namely the ridge orientation and the ridge frequency.

Many  oriented  filtering  methods  were  proposed  to 
perform  fingerprint  image  enhancement,  the  most 
widespread  of  them  being  the  use  of  even-symmetric 
Gabor filter introduced by Hong et al [2]. 

The Hong enhancement is thought to be giving the best 
result  for  fingerprint  image enhancement,  and although 
many  improvements  were  proposed  for  increasing  the 
output  reliability  [3][4][5],  the  method  is  basically 
formed from several steps presented on Fig. 3.

The fingerprint image is divided into non-overlapping 
blocks of wxw (usually 8×8 or 16×16) pixels, for which a 
local orientation and a local ridge frequency is calculated.

The orientation θ for every block (i,j) is calculated by 
using the least mean square approach proposed by Rao et. 

al. This is based on the calculation of local gradients (Gx 

and Gy) for every pixel in the block by the use of some 
kind of gradient operator like the Sobel mask. After that, 
the local orientation is calculated by (1) (2) and (3):
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The  use  of  double  angles  is  necessary  to  avoid 
wrapping problems at 90° and 180°.

The  extraction  of  correct  ridge  orientation  might  be 
compromised  in  some  blocks,  especially  the  ones 
including some minutiae, making the entire enhancement 
process  to  be  unreliable  exactly  in  the  areas  of  most 
significance.  Knowing the fact  that  ridge  orientation is 
varying slowly, a further smoothing step can be included 
on the local orientations.

The smoothing can be done by using a lowpass filter 
on a continuous vector field given by (4) and (5):
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y i , j =sin 2i , j  (5)

The lowpass filtering can be done using any type of 
filter  kernel  (for  example  a  5×5 gaussian  kernel).  The 
resulted vectors are converted back to orientation with (6)
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For  calculating  ridge  frequency,  a  1-D  x-signature 
calculated  in  a  l×w window,  orthogonal  to  local  ridge 
orientation,  can  be  used  (7).  The  coordinates  in  the 
oriented window are calculated with (8) and (9).

X k = 1
w∑d=0

w−1

I u , v (7)

u=id−w
2
cos i , j k− l

2
sin i , j  (8)

v= jd−w
2
 sin i , j −k− l

2
 cos i , j  (9)

Figure 3. Gabor filtering method
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For a well defined ridge structure, the x-signature gives 
sinusoidal shape wave. The frequency of this wave can be 
easily determined by measuring the period of the signal. 
However,  in  the  blocks  containing  minutia  or  other 
distortions, the x-signature will be distorted as well, so a 
smoothing step of the frequency image is necessary as in 
the case of the orientation image.

Gabor  filters  have  both  frequency-selective  and 
orientation-selective  properties  and,  therefore,  are 
appropriate to be used as bandpass filters to remove noise 
but preserve ridge structure. [2]

The even-symmetric Gabor filter has the form (10)
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 x  and   y  are  the  standard  deviations  of  the 
Gaussian envelope and are experimentally determined for 
a given type of fingerprint images; x and y are the indices 
in  the  filter  kernel  ranging  −W

2 , W
2 ,  W being  the 

kernel size.
The  result  of  Gabor-filtering  a  fingerprint  image  is 

presented in Fig. 4. 

Unfortunately  the  straightforward  implementation  of 
this method is  not  very suitable for  embedded systems 
because  of  the  large  number  for  trigonometric  and 
exponential operations.

Another approach to Gabor-filtering is proposed in [6], 
offering  better  performance  while  eliminating  some  of 
these operations.

A filter bank consisting of 8 Gabor kernels is used to 
filter the input image. The filters are tuned to 8 evenly 

distributed  orientations  at  22.5°  apart  and  a  single 
frequency.

The  output  image  is  then  calculated  from  these  8 
filtered images using a rather computationally intensive 
voting algorithm.  First  a  coarse  ridge  map is  extracted 
from all 8 images, then the local orientation of these ridge 
maps  is  calculated.  For  every  pixel  an  orientation  is 
selected based on the highest local variance in the filtered 
images  and  ridge  maps.  Finally  the  output  image  is 
constructed  pixel-by-pixel  from  the  filtered  images 
corresponding to the estimated local orientation.

Although Gabor kernel calculation is avoided by this 
algorithm,  the  increased  amount  of  simple  calculations 
(like the 8 filtering and the voting algorithm) makes this 
approach as unsuitable for embedded systems as the first 
one.

However, a combination of the two methods, where the 
local  orientation is  calculated,  after  which fixed Gabor 
kernels  are  used  for  filtering,  can  be  successfully 
employed  to  reduce  the  execution  time  of  the  image 
enhancement.

III. LOCAL ORIENTATION ESTIMATION

As  we  have  seen,  the  local  orientation  can  be 
calculated  from the local  gradients  with the use of  the 
arctangent  function.  This  is  very  time  consuming  in 
embedded systems without dedicated floating point unit.

However,  if  fixed orientation Gabor kernels are used 
for filtering, then there is no need for the exact orientation 
to be calculated.

The 8 filter kernels are tuned to orientations of -90°, 
-67.5°, -45°, -22.5°, 0°, 22,5°, 45° and 67,5°. As stated 
before,  when  calculating  the  local  orientation  from 
averaging the gradients, a double angle is used to have a 
proper  rolling  over  at  -90°/90°.  This  means  the  angles 
-180°, -135°, -90°, -45°, 0°, 45°, 90° and 135° must be 
checked against the gradients.

Table  1 shows these angles and the corresponding  x- 
and y-gradients ( cosθ and sinθ ).

TABLE 1.
GRADIENTS OF THE PREDEFINED ANGLES

θ 2θ cos(2θ) sin(2θ)

-90° -180° -1 0

-67.5° -135° - 2
2 - 2

2

-45° -90° 0 -1

-22.5° -45° 2
2 - 2

2

0° 0° 1 0

22.5° 45° 2
2

2
2

45° 90° 0 1

67.5° 135° - 2
2

2
2

If  the  intermediate  angles  are  approximated  by  the 
predefined  value,  three  simple  comparison  of  the 

Figure 4. Result of Gabor filtering



gradients are sufficient for determining the corresponding 
angle without the need of an arctangent calculation.

The sign of the x- and y-gradients has to be checked 
and their  absolute value to be compared.  For  example, 
orientation is considered to be -90° (i.e. between -90° – 
-67.5°),  if  both gradients  are  negative  and the absolute 
value of the x-gradient is lower than the absolute value of 
the  y-gradient.  The  complete  comparison  chart  is 
presented on Figure 5.

Also, it has to be noted that the gradient values can be 
used  to  determine  a  region  mask:  if  both  gradients  in 
absolute  value  are  below  a  threshold,  then  the  image 
block contains no variation and, hence,  no useful  ridge 
information.  Such  blocks  can  be  excluded  for  further 
processing.

Another  advantage  of  this  method  is  that  all  the 
gradients  can  be  calculated  and  stored  without  loss  of 
precision in 32 bit integers, so there is no need for costly 
floating point representation.

IV. GABOR FILTERING

Using  predefined  Gabor  kernels  for  filtering  reduces 
the  execution  time  because  there  is  no  need  for  the 
exponential and cosine calculus from (10) and sine and 
cosine from (11) and (12).

Also, as demonstrated in  [7], fixed point computation 
can be adopted instead of floating point with acceptable 
errors: in case of 15.16 format fixed point representation, 
the errors are below 1%, which is more than acceptable if 
we consider  that  the  output  of  the  Gabor  filtering  is  a 
binary image (or binarized in the next step).

The main disadvantage of this approach is the use of a 
single ridge frequency for filtering. Problems occur when 
the filtering frequency is a harmonic of the actual ridge 
frequency.  In  this  case  a  ridge  doubling  appears 
introducing 2 false minutiae (ridge bifurcation). To avoid 
this,  filtering  kernels  were  designed  for  4  different 
frequencies  (the  most  probable  frequencies  for  the 
specific sensor).

Calculating  the  frequencies  for  the  predefined 
orientations is much simplified as, for every orientation, a 
separate pattern for x-signature calculation can be used. 

Gabor  filtering  is  done  for  every  image  block  by 
choosing  the  right  kernel  and  executing  the  2-D 
convolution on every pixel in that block.

To further  speed-up  the  filtering,  separability  of  the 
filtering kernel is applied. 

For orientations -90° and 0°, the filter kernel is fully 
separable: equations (11) and (12) become (13) for -90°, 
respective (14) for 0°.

x=−x , y=−y (13)

x= y , y=−x (14)

The filter kernel will then be separable into 1-D filters 
(15) and (16).

G x  x , f =exp−1
2
⋅x2

 x
2 ⋅cos2 f x (15)

G y  y , f =exp−1
2
⋅ y2

 y
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In  this  case,  W+W multiplications  and  additions  are 
necessary instead of W×W, meaning a 5.5 times speed-up 
in case of a kernel size W=11. 

The  kernels  for  other  orientations  are  not  fully 
separable,  but  the  approach  presented  in  [8] can  be 
applied  simply  for  orientations  -45°  and  45°.  This 
approach assumes filtering with the kernels for -90° and 
0°, but on an image rotated by 45°. With 45° rotation, no 
interpolation is  necessary,  the filtering will  be done on 
the diagonals  with a  filtering kernel  resampled  to  2  
times larger displacements.

For other orientations rotating image is not practical, as 
interpolation  is  necessary,  which  introduces  too  much 
calculations due to the trigonometric functions involved.

For  these  orientations  singular  value  decomposition 
(SVD) of the filter kernels can be used for reducing the 
number of calculations. All of the Gabor kernels tested 
proved to be of rank 2 meaning 2×(W+W) calculations 
are necessary instead of W×W (64% faster filtering).

Figure 5. Comparison chart for orientation estimation
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The result of this fixed kernel filtering is presented  in 
Fig. 6. As it can be seen, the result is similar to the Gabor 
filtered  image  from  Fig.  4,  but  there  are  more  ridges 
connected instead of independent ridge portions. This is 
due  to  the  fact  that  larger  standard  deviations  of  the 
Gaussian were used to compensate the lack of exact ridge 
frequency.

V. EXPERIMENTAL RESULTS

Experiments  were  carried  out  on  the  MDFP200 
development kit containing:
• MBF200 capacitive fingerprint sensor
• MB91F302 microcontroller
• 8MB SDRAM and 2MB Flash

The MBF200 fingerprint sensor is a 500dpi resolution 
256x300  pixel  capacitive  sensor  with  integrated  ADC, 
offering good quality fingerprints.  The captured images 
have sufficient similarity (like gray level distribution and 
ridge  characteristics),  making  the  use  of  fixed  kernel 
filtering easy.

The  microcontroller  used  is  a  32  bit  RISC  type 
processor with external SDRAM interface running at 68 
MHz. The 32 bit architecture offers a good precision in 
15.16  format  fixed  point  calculation  and  enough  word 
size to avoid overflow in integer additions.

The  algorithms  were  implemented  in  C  (for  high 
portability) and without extreme optimizations.

Execution  times  of  the  original  Gabor  filtering 
algorithm and of the fixed kernel filtering are presented in 
Table  2.  The  performance  of  the  algorithms  were  also 
evaluated  using the Goodness  Index  (GI)  [2],  which is 
basically  the  ratio  of  the  difference  of  the  correct  and 
false  minutiae  to  the  total  number  of  minutiae,  as 
compared with the minutiae identified by a human expert. 
The higher  the GI the better  the performance.  A GI=1 
means  that  all  the  minutiae  in  the  fingerprint  were 
correctly extracted and no false minutiae were found.

TABLE 2.
EXECUTION TIMES OF THE DISCUSSED ALGORITHMS

Algorithm Average 
execution time GI

Gabor filtering (floating point) 54.98 s 0.60
Gabor filtering (fixed point) 8.30s 0.59
Fixed kernel filtering 0.22 s 0.53

The  execution  times  were  averaged  for  40  different 
fingerprint  impressions,  but  they  are  still  highly 
dependent on the contents of the image, so these values 
are only estimative, giving only an idea of the speed-up 
caused by the use of fixed kernel filtering.

VI. CONCLUSIONS

The execution times for image enhancement are greatly 
reduced in the case of fixed kernel filtering compared to 
dynamic kernel filtering. However,  the reliability of the 
filtering is also somewhat lowered, resulting in a higher 
number of false minutiae. Some of the false minutiae can 
be removed in a later  step;  however,  this increases  the 
overall execution time of the fingerprint recognition.

The  speedup  resulted  from  this  technique  still 
outweighs  the  loss  of  reliability  if  we  consider  the 
intended  application  area:  small  embedded  system  for 
fingerprint  identification  where  almost  instantaneous 
response time is more important than the occasional false 
reject, e.g. simple door control system.

Although  serious  speedup  of  the  enhancement  was 
achieved, the algorithm was implemented in C, leaving 
some  space  for  instruction  level  optimizations  for  the 
final  product.  Also,  the  memory  consumption  was  not 
taken into account; minimizing it involves future work.
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