
Abstract — Fingerprint recognition is the most widely used
form of biometric identification. Many high performance
recognition algorithms exists, which can reliably identify
even poor fingerprint images, but most of these algorithms
require great processing power implying the use of some
computer systems to do the actual recognition. However,
more and more applications require fingerprint recognition
to be done in small embedded system with low processing
power but within an acceptable timeframe. This paper
focuses on some possible speed-up techniques for image
enhancement and their effect on recognition performance.

I. INTRODUCTION

Fingerprint recognition is regarded as a highly reliable
form of personal identification and, as such, is finding its
way into many areas of our life. Initially, automatic
fingerprint recognition was done by high performance
computers needing expensive tools and was used only in
small circles.

With the spread of low-cost powerful microcontrollers,
fingerprint recognition is finding its ways into low-cost
independent embedded systems, without the need of
computers executing the recognition algorithms in the
background.

However, these embedded systems still present large
deficiencies compared to computers, resulting in less
reliable and slower recognition. In this paper, I will
examine some methods of speeding up the execution of
these algorithms and their impact on recognition
performance.

The most important characteristic of microcontrollers,
which should be taken into account, is the lack of a
floating point unit. This means that floating point
calculations must be emulated in software and, as such,
are very time consuming. A fixed point representation
can be used instead to speed up calculations on the
expense of lower precision. Even so, complex calculation
like trigonometric functions or exponentials are rather
slow, so the number of such calculations must be kept at
a minimum.

The most popular approach for fingerprint recognition
with the lowest computational complexity is based on
minutiae-matching. Local features of the fingerprint
image such as ridge ending and ridge bifurcation – called
minutiae – are compared with a stored template of
minutiae similarity value [1]. The main steps of this
approach are presented on Fig. 1.

Minutiae extraction is usually done on the binary
skeleton of the fingerprint image, therefore not causing
performance degradation due to the lack of floating point
unit. However, captured fingerprint images present a
large quantity of noise mainly caused by sweat pores on
ridge lines and also noise introduced by the fingerprint
sensor (a typical fingerprint image captured with a
capacitive sensor is presented on Fig. 2). Ridge skeleton
cannot be reliably extracted from such images so a

Speed-optimized Fingerprint Image Enhancement
for Embedded Systems

Cs.Z. Kertész
Dept. of Electronics & Computers, Transilvania University Braşov, Romania

e-mail: csaba.kertesz@vega.unitbv.ro

Figure 1. Fingerprint recognition by minutia matching

Fingerprint
Scanner

Minutia
Extraction

Stored
Template

Minutia
Matching

Similarity
value

Figure 2. Fingerprint image captured with a capacitive sensor

preceding image enhancement step is needed to
regularize ridge lines.

Unfortunately the enhancement step implies a series of
complex operation including trigonometric and
exponential calculation. This means the enhancement step
must be seriously optimized to be practical for
implementing in microcontrollers.

II. FINGERPRINT IMAGE ENHANCEMENT

Fingerprint images due to the nature of ridge and
valley structures present a directional flow-like pattern.
The best method to enhance these images is to use a
filter, which takes into account the textural features,
namely the ridge orientation and the ridge frequency.

Many oriented filtering methods were proposed to
perform fingerprint image enhancement, the most
widespread of them being the use of even-symmetric
Gabor filter introduced by Hong et al [2].

The Hong enhancement is thought to be giving the best
result for fingerprint image enhancement, and although
many improvements were proposed for increasing the
output reliability [3][4][5], the method is basically
formed from several steps presented on Fig. 3.

The fingerprint image is divided into non-overlapping
blocks of wxw (usually 8×8 or 16×16) pixels, for which a
local orientation and a local ridge frequency is calculated.

The orientation θ for every block (i,j) is calculated by
using the least mean square approach proposed by Rao et.

al. This is based on the calculation of local gradients (Gx

and Gy) for every pixel in the block by the use of some
kind of gradient operator like the Sobel mask. After that,
the local orientation is calculated by (1) (2) and (3):

V x i , j = ∑
x=i−w

2

i w
2

∑
y= j−w

2

jw
2

2⋅G x  x , y⋅G y x , y  (1)

V y i , j = ∑
x= i− w

2

iw
2

∑
y= j−w

2

j w
2

[G x
2 x , y−G y

2 x , y] (2)

i , j =1
2
⋅arctanV y i , j 

V x i , j   (3)

The use of double angles is necessary to avoid
wrapping problems at 90° and 180°.

The extraction of correct ridge orientation might be
compromised in some blocks, especially the ones
including some minutiae, making the entire enhancement
process to be unreliable exactly in the areas of most
significance. Knowing the fact that ridge orientation is
varying slowly, a further smoothing step can be included
on the local orientations.

The smoothing can be done by using a lowpass filter
on a continuous vector field given by (4) and (5):

x i , j =cos 2i , j  (4)

y i , j =sin 2i , j  (5)

The lowpass filtering can be done using any type of
filter kernel (for example a 5×5 gaussian kernel). The
resulted vectors are converted back to orientation with (6)

i , j =1
2
⋅arctan y

' i , j 
x

'  j , j  (6)

For calculating ridge frequency, a 1-D x-signature
calculated in a l×w window, orthogonal to local ridge
orientation, can be used (7). The coordinates in the
oriented window are calculated with (8) and (9).

X k = 1
w∑d=0

w−1

I u , v (7)

u=id−w
2
cos i , j k− l

2
sin i , j  (8)

v= jd−w
2
 sin i , j −k− l

2
 cos i , j  (9)

Figure 3. Gabor filtering method

Normalization

Local orientation estimation

Local ridge frequency estimation

Region mask generation

Gabor filtering

For a well defined ridge structure, the x-signature gives
sinusoidal shape wave. The frequency of this wave can be
easily determined by measuring the period of the signal.
However, in the blocks containing minutia or other
distortions, the x-signature will be distorted as well, so a
smoothing step of the frequency image is necessary as in
the case of the orientation image.

Gabor filters have both frequency-selective and
orientation-selective properties and, therefore, are
appropriate to be used as bandpass filters to remove noise
but preserve ridge structure. [2]

The even-symmetric Gabor filter has the form (10)

G  x , y , , f =exp{−1
2  x

2

 x
2

y
2

 y
2 }⋅cos2 f x (10)

where:

x=x siny cos  (11)

y=y sin −x cos (12)

 x and  y are the standard deviations of the
Gaussian envelope and are experimentally determined for
a given type of fingerprint images; x and y are the indices
in the filter kernel ranging −W

2 , W
2 , W being the

kernel size.
The result of Gabor-filtering a fingerprint image is

presented in Fig. 4.

Unfortunately the straightforward implementation of
this method is not very suitable for embedded systems
because of the large number for trigonometric and
exponential operations.

Another approach to Gabor-filtering is proposed in [6],
offering better performance while eliminating some of
these operations.

A filter bank consisting of 8 Gabor kernels is used to
filter the input image. The filters are tuned to 8 evenly

distributed orientations at 22.5° apart and a single
frequency.

The output image is then calculated from these 8
filtered images using a rather computationally intensive
voting algorithm. First a coarse ridge map is extracted
from all 8 images, then the local orientation of these ridge
maps is calculated. For every pixel an orientation is
selected based on the highest local variance in the filtered
images and ridge maps. Finally the output image is
constructed pixel-by-pixel from the filtered images
corresponding to the estimated local orientation.

Although Gabor kernel calculation is avoided by this
algorithm, the increased amount of simple calculations
(like the 8 filtering and the voting algorithm) makes this
approach as unsuitable for embedded systems as the first
one.

However, a combination of the two methods, where the
local orientation is calculated, after which fixed Gabor
kernels are used for filtering, can be successfully
employed to reduce the execution time of the image
enhancement.

III. LOCAL ORIENTATION ESTIMATION

As we have seen, the local orientation can be
calculated from the local gradients with the use of the
arctangent function. This is very time consuming in
embedded systems without dedicated floating point unit.

However, if fixed orientation Gabor kernels are used
for filtering, then there is no need for the exact orientation
to be calculated.

The 8 filter kernels are tuned to orientations of -90°,
-67.5°, -45°, -22.5°, 0°, 22,5°, 45° and 67,5°. As stated
before, when calculating the local orientation from
averaging the gradients, a double angle is used to have a
proper rolling over at -90°/90°. This means the angles
-180°, -135°, -90°, -45°, 0°, 45°, 90° and 135° must be
checked against the gradients.

Table 1 shows these angles and the corresponding x-
and y-gradients (cosθ and sinθ).

TABLE 1.
GRADIENTS OF THE PREDEFINED ANGLES

θ 2θ cos(2θ) sin(2θ)

-90° -180° -1 0

-67.5° -135° - 2
2 - 2

2

-45° -90° 0 -1

-22.5° -45° 2
2 - 2

2

0° 0° 1 0

22.5° 45° 2
2

2
2

45° 90° 0 1

67.5° 135° - 2
2

2
2

If the intermediate angles are approximated by the
predefined value, three simple comparison of the

Figure 4. Result of Gabor filtering

gradients are sufficient for determining the corresponding
angle without the need of an arctangent calculation.

The sign of the x- and y-gradients has to be checked
and their absolute value to be compared. For example,
orientation is considered to be -90° (i.e. between -90° –
-67.5°), if both gradients are negative and the absolute
value of the x-gradient is lower than the absolute value of
the y-gradient. The complete comparison chart is
presented on Figure 5.

Also, it has to be noted that the gradient values can be
used to determine a region mask: if both gradients in
absolute value are below a threshold, then the image
block contains no variation and, hence, no useful ridge
information. Such blocks can be excluded for further
processing.

Another advantage of this method is that all the
gradients can be calculated and stored without loss of
precision in 32 bit integers, so there is no need for costly
floating point representation.

IV. GABOR FILTERING

Using predefined Gabor kernels for filtering reduces
the execution time because there is no need for the
exponential and cosine calculus from (10) and sine and
cosine from (11) and (12).

Also, as demonstrated in [7], fixed point computation
can be adopted instead of floating point with acceptable
errors: in case of 15.16 format fixed point representation,
the errors are below 1%, which is more than acceptable if
we consider that the output of the Gabor filtering is a
binary image (or binarized in the next step).

The main disadvantage of this approach is the use of a
single ridge frequency for filtering. Problems occur when
the filtering frequency is a harmonic of the actual ridge
frequency. In this case a ridge doubling appears
introducing 2 false minutiae (ridge bifurcation). To avoid
this, filtering kernels were designed for 4 different
frequencies (the most probable frequencies for the
specific sensor).

Calculating the frequencies for the predefined
orientations is much simplified as, for every orientation, a
separate pattern for x-signature calculation can be used.

Gabor filtering is done for every image block by
choosing the right kernel and executing the 2-D
convolution on every pixel in that block.

To further speed-up the filtering, separability of the
filtering kernel is applied.

For orientations -90° and 0°, the filter kernel is fully
separable: equations (11) and (12) become (13) for -90°,
respective (14) for 0°.

x=−x , y=−y (13)

x= y , y=−x (14)

The filter kernel will then be separable into 1-D filters
(15) and (16).

G x  x , f =exp−1
2
⋅x2

 x
2 ⋅cos2 f x (15)

G y  y , f =exp−1
2
⋅ y2

 y
2  (16)

In this case, W+W multiplications and additions are
necessary instead of W×W, meaning a 5.5 times speed-up
in case of a kernel size W=11.

The kernels for other orientations are not fully
separable, but the approach presented in [8] can be
applied simply for orientations -45° and 45°. This
approach assumes filtering with the kernels for -90° and
0°, but on an image rotated by 45°. With 45° rotation, no
interpolation is necessary, the filtering will be done on
the diagonals with a filtering kernel resampled to 2
times larger displacements.

For other orientations rotating image is not practical, as
interpolation is necessary, which introduces too much
calculations due to the trigonometric functions involved.

For these orientations singular value decomposition
(SVD) of the filter kernels can be used for reducing the
number of calculations. All of the Gabor kernels tested
proved to be of rank 2 meaning 2×(W+W) calculations
are necessary instead of W×W (64% faster filtering).

Figure 5. Comparison chart for orientation estimation

V x0

V y0 V y0

∣V x∣∣V y∣ ∣V x∣∣V y∣ ∣V x∣∣V y∣ ∣V x∣∣V y∣

F

F

F

F

FF F

Y

Y Y

Y Y Y Y

-90° 45°-67.5° 67.5° -45° -22.5° 22.5° 0°

The result of this fixed kernel filtering is presented in
Fig. 6. As it can be seen, the result is similar to the Gabor
filtered image from Fig. 4, but there are more ridges
connected instead of independent ridge portions. This is
due to the fact that larger standard deviations of the
Gaussian were used to compensate the lack of exact ridge
frequency.

V. EXPERIMENTAL RESULTS

Experiments were carried out on the MDFP200
development kit containing:
• MBF200 capacitive fingerprint sensor
• MB91F302 microcontroller
• 8MB SDRAM and 2MB Flash

The MBF200 fingerprint sensor is a 500dpi resolution
256x300 pixel capacitive sensor with integrated ADC,
offering good quality fingerprints. The captured images
have sufficient similarity (like gray level distribution and
ridge characteristics), making the use of fixed kernel
filtering easy.

The microcontroller used is a 32 bit RISC type
processor with external SDRAM interface running at 68
MHz. The 32 bit architecture offers a good precision in
15.16 format fixed point calculation and enough word
size to avoid overflow in integer additions.

The algorithms were implemented in C (for high
portability) and without extreme optimizations.

Execution times of the original Gabor filtering
algorithm and of the fixed kernel filtering are presented in
Table 2. The performance of the algorithms were also
evaluated using the Goodness Index (GI) [2], which is
basically the ratio of the difference of the correct and
false minutiae to the total number of minutiae, as
compared with the minutiae identified by a human expert.
The higher the GI the better the performance. A GI=1
means that all the minutiae in the fingerprint were
correctly extracted and no false minutiae were found.

TABLE 2.
EXECUTION TIMES OF THE DISCUSSED ALGORITHMS

Algorithm Average
execution time GI

Gabor filtering (floating point) 54.98 s 0.60
Gabor filtering (fixed point) 8.30s 0.59
Fixed kernel filtering 0.22 s 0.53

The execution times were averaged for 40 different
fingerprint impressions, but they are still highly
dependent on the contents of the image, so these values
are only estimative, giving only an idea of the speed-up
caused by the use of fixed kernel filtering.

VI. CONCLUSIONS

The execution times for image enhancement are greatly
reduced in the case of fixed kernel filtering compared to
dynamic kernel filtering. However, the reliability of the
filtering is also somewhat lowered, resulting in a higher
number of false minutiae. Some of the false minutiae can
be removed in a later step; however, this increases the
overall execution time of the fingerprint recognition.

The speedup resulted from this technique still
outweighs the loss of reliability if we consider the
intended application area: small embedded system for
fingerprint identification where almost instantaneous
response time is more important than the occasional false
reject, e.g. simple door control system.

Although serious speedup of the enhancement was
achieved, the algorithm was implemented in C, leaving
some space for instruction level optimizations for the
final product. Also, the memory consumption was not
taken into account; minimizing it involves future work.

REFERENCES

[1] Maltoni, D., Maio, D., Jain, A., Prabhakar, S., “Handbook of
Fingerprint Recognition”, 2002

[2] Hong, L., Wan, Y., Jain, A.K., “Fingerprint Image Enhancement:
Algorithm and Performance Evaluation”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, pp. 777-789,
August, 1998

[3] Greenberg, S., Aladjem, M., Kogan, D., Dimitrov, I., “Fingerprint
Image Enhancement using Filtering Techniques”, 15th
International Conference on Pattern Recognition, vol. 3, Freeman,
WT, 2000

[4] Kim, B.G., Kim, H.J., Park, D.J., “New Enhancement Algorithm
for Fingerprint Images”, 16th International Conference on Pattern
Recognition, vol. III, Washington, DC, 2002

[5] Yang, J., Liu, L. Jiang, T., Fan, J., “A modified Gabor filter design
method for fingerprint images enhancement”, Pattern Recognition
Letters, vol. 24, pp. 1805-1817, August, 2003

[6] Hong, L., Jain, A.K., Pankanti, S., Bolle, R., “Fingerprint
Enhancement”, IEEE Workshop on Applications of Computer
Vision, Sanratosa, FL, 1996

[7] Chen, J., Moon, J.S., Fong, K.F., “Efficient Fingerprint
Enhancement for Mobile Embedded Systems”, Biometric
Authentication Workshop, Prague, 2004

[8] Areekul, V. et al., “Separable Gabor Filter Realization for Fast
Fingerprint Enhancement”, International Conference on Image
Processing, vol. III, Genova, 2005

Figure 6. Result of fixed kernel filtering

