Linear Op Amp Circuits

Circuits presented here have frequency-dependence properties incorporated in the
design. Such circuits usually employ capacitors: differentiator, integrator, all phase shift
circuits and op-amp amplifiers with single power supply.

Integrator Circuits

RC Integrator

The simpler integrator circuit is the low-pass RC network presented in next figure;

the circuit (a) and the operational form (b).
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Figure — the RC integrator (RC low-pass filter) — a) actual circuit, b) operational form

The voltage divider rule gives the transfer function of the circuit:
= 1 = Vo 1
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I+ jw-RC Vi 1+jw-RC
Since H(jw) is a complex function, it can be expressed in polar form. The amplitude
(or magnitude) response M(w)=|H(jw) is the amplitude of the complex function and the
phase response: G(a)) is the phase shift of the complex function. The amplitude response is
usually expressed in decibels (dB): M ;z(w)=20-1gM(w).
Based on this example it will be recalled the circuit analysis method known as Bode

plot (that method permits determination of amplitude and phase responses for rather
complex circuits by some simplified graphical procedures).

Amplitude and phase response

The point where wRC =1 corresponds to the point where Mgp(w) = -3 dB. This

frequency is called the break frequency or corner frequency:
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The transfer function can be rewritten:
H(jo)=—— or H(jw)=——.
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The amplitude and phase response (numerator minus denominator angles) are:

m and e(w)=_tan—1[ﬁj.

M (a)) = o



These results can be simplified in different frequency domains as follows:
for o << wp: M(w)=1(=0dB), 6(w)=0;
for w>> wp: M(w)=2L (=-20dB/ decade), 6(w) = —90 degree, and
w

for w = wp: M(w) -3dB), 0(w) = —45 degree;

1
2
The first two cases give asymptotic lines used in the simplified Bode plot.
With Bode plot analysis the actual curve is often approximated by the break-point approximation.
With this simplified curve, the amplitude response is assumed to be constant at 0-dB level at all frequencies
in the range f < fp. At f=fp the curve “breaks” at a slope of — 20 dB/decade.
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Figure — the Bode plot for the RC low-pass filter (magnitude, phase response)

Such a simple circuit is used as a rectifier filter. If the time constant of this circuit (RC product) is
much greater than the period of the input signal, the output voltage is approximately constant at the dc (or
medium) value of the input voltage.

True Integrator Circuit

The output voltage v( for an ideal integrator circuit is:
t
volt)= J.vl(t)dt +v0(0)
0
The voltage across a capacitor is proportional to the time integral of the capacitor current:

t
.
VC(t):EIlC(t)dt+VC(0)'
0
If the capacitor is placed as a feedback element in an op—amp circuit as shown in the next
figure, the resistance R converts the input voltage in the capacitor current:
. vt
el)="21)
Since the positive reference terminal of the capacitor voltage v¢ is on the left, the output

voltage is v, (t)=—v.(¢) and the net result for the output voltage is then:

o)== vy ) +v0(0)
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Figure — The integrator circuit: a) true integrator, b) ac integrator.

This result can be transformed to the ideal integrator equation with an additional inversion
and gain (or by selecting R and C such that RC product to b 1). The circuit that results is
called a true integrator circuit.

The dc non-idealities of a real op-amp (dc offset voltage and bias currents) are equivalent
to a small dc source at the input. The integration of a (small) dc input voltage will produce a
(slow) move of the output towards saturation.

ac Integrator Circuit

The true integrator does not operate satisfactory with general purpose op-amp due to the
integration effect of the dc offset voltage and bias currents.
This problem can be investigated utilizing the frequency response function of the integrator.
The transfer function of the true integrator is:
—72 _—l/ja)-C_ 1

Z R jo-RC’
The gain magnitude is very large at low frequencies:

, 1

The theoretical value of the amplitude response of the true integrator is infinite at dc.
The gain can be dropped at dc by placing a resistor R; in parallel with the capacitor as
shown in the next figure. This circuit is the ac integrator. Since the capacitor is an open
circuit at dc, the circuit reduces to a simple inverting amplifier with the gain —R,/R at dc.
The operation of this circuit should eventually approach that of a true integrator as the
frequency increases.
The frequency response of an ac integrator can be found with the impedance

H(jo)=

Zy=R, || L _ RjoC K and it is an one pole low-pass filter response:
jo-C Ry+l/jo-C 1+ jo-R,C
H(ja))=__Zz _ —Ry/R _ -Ry/R

Z, 1+jo-RC 1+ jorg’
where 75 = R,C is the time constant of the feedback circuit.

The amplitude response corresponding to the transfer function is:
(o) RyJ/R  _  RJR

:\/1+(a)~R2C)2 1+(a)r3)2 .




The Bode plot approximation of this is shown in the next figure together with the amplitude

response of the true integrator.
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Figure — Bode break-point approx. for amplitude response of true and ac integrators

The break frequency corresponding to time constant of the feedback circuit is:
1 1
fB = = .
2rry  2m-R,C
The amplitude response of ac integrator can be simplified in low and high frequency
domains:

- for  f<<fp: M(w)= % the circuit is acting as a constant gain amplifier,
_ Ry/R 1 o .
- for  f>>fp: M(o)= = , the circuit is acting as a true integrator.
- RC w-RC

The ac integrator circuit performs the signal-processing operation:

vo(t):—ég[vl(t)dt.

Waveshaping Applications

One useful application of the integrator circuit is in waveshaping circuits for periodic
waveforms. For example, square wave can be converted to a triangular waveform.
Assume the input signal is periodic and it can be represented as:

v ()=, (e)+77,
where v; (7) is the ac (time-varying) portion of the input and ¥} is the dc value of the input.
Assuming that all frequency components of v; (¢) are well above /3, the ac portion of signal
is integrated according to the integrator signal-processing operation. The dc component V;
is simply multiply by the gain constant —R2/R The output voltage can be expressed as:

Some care must be exercised with this cwcwt when a dc component is present in order to

remain in the linear region (the dc output level plus the peak level of the output time-
varying component should not reach saturation).



Differentiator Circuits

RC Differentiator

The simpler differentiator circuit is a high-pass RC network (as the one presented in the
next figure, time response of RC differentiator...).

True Differentiator
The output voltage v for an ideal differentiator circuit is:

_dv(t)
VO(t) dl‘ .
The current flow into the capacitor is proportional tg))the derivative of the capacitor voltage:
. _ dVC t
lc(t) C i .
The op-amp differentiator circuit is presented in the next figure.
The capacitor is placed as an input element, and since the inverting terminal is virtually
grounded, v¢ = v; and the capacitive current is:

The current flows through R and the output voltage is:

volt)=—Ric(t)= —RCd%p :
This result can be transformed to the ideal differentiator equation with an additional
inversion and gain (or by selecting R and C such that RC product to b 1). The circuit that
results is called a true differentiator circuit.
The noise, which is always present in the electronic circuits, is accentuated strongly by the
differentiation process. Noise tends to have abrupt changes, called spikes. Since the
output of a true differentiator is proportional to the rate of change of the input, these sudden
changes in noise results in pronounced output noise. This problem can be solved by the
low-frequency differentiator.
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Figure — The differentiator circuit: a) true differentiator, b) low-frequency differentiator.



Low-Frequency Differentiator

The noise problem can be investigated utilizing the frequency response function of the true

differentiator:

-Z,  -R
Z, ljo-C

The gain magnitude increase with frequency and it is very large at high frequencies:

M(w)=|H(jo)=oRC.

The gain can be dropped at high frequencies by placing a resistor R in series with the

capacitor as shown in the next figure. This circuit is the low-frequency differentiator.

Since the capacitor is a short circuit at very high frequencies, the circuit reduces to a

simple inverting amplifier with the gain —R/ R; (at very high frequencies). The operation of

this circuit should eventually approach that of a true differentiator as the frequency

decreases.

H(jo)= =—jw-RC.

1 1+jo-RC
jo-C - jo-C
frequency differentiator is a one-pole high-pass form:
Z, l+jo-RC 1+ jort;
where z; = R|C is the time constant of the input circuit.

The amplitude response corresponding to this transfer function is:

) \/l+(a)-R1C)2 ) \/1+(a)rl-)2 '

The Bode plot approximation of this is shown in the next figure together with the amplitude
response of the true differentiator.

The input impedance is:  Z; = R| + and the transfer function of the low-
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Figure — Bode break-point approx. for amplitude response of true and ac integrators

The break frequency corresponding to time constant of the input circuit is:

1 1
U 2r-1; - 27-RC
The amplitude response of low-frequency differentiator can be simplified in low and high
frequency domains:




- for  f>>f: M(a)); g the circuit is acting as a constant gain amplifier,
1
- for  f<<fy M(w)= wRC, the circuit is acting as a true differentiator.
When the finite open-loop bandwidth of the op-amp is considered, an additional
alteration in frequency response occurs illustrated by the dashed line in the previous figure.
The frequency introduced by the finite bandwidth f7 (transition frequency) is:

__Jr
f2 1+R/R,
If f<<fp the low-frequency differentiator circuit performs the signal-processing operation:
dv,(¢)
t)=—RC—L .
Vo( ) dt
Waveshaping Applications

The low-frequency differentiator circuit can be used in waveshaping circuits for periodic
waveforms. For example a triangular waveform can be converted to a square wave and a
square wave can be converted to a periodic train of narrow “spikes”.
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