
General amplifier concepts

One of the most important applications in the field of analog electronics is the process of
amplification. The primary objective of this introductory lecture is to present some of the
most general properties of amplifier circuits as well as their circuit model. The intent is to
look at the amplifier as a complete system and focus on input, output and gain
characteristics. Such properties apply to virtually all types of amplifiers.

Ideal amplifier
An ideal amplifier is characterized by the fact that the output signal is directly proportional
to the input signal. Amplifiers in system are often represented by a block diagram; for a
voltage amplifier the input voltage signal is denoted as vi(t) and the output voltage signal is
denoted as vo(t). The quantity t represents time. The functional notation will be replaced by
the simplified notation: vi and vo.
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Figure - Block diagram representation of a linear amplifier

In this case the quantity A represents the voltage gain. For an ideal amplifier, it can be
defined as:
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It should be stressed that virtually all amplifiers require a dc power supply in order to
provide amplification. It is customary to show only signal levels on many block diagrams for
signal processing analysis, and the dc power supplies (or bias supplies) are understood to
be present. Most active amplifier devices permit a small signal input to control a larger
signal output, but the extra power is furnished by the dc power supply.

Source models
All sources of electrical energy can be represented in terms of either voltage or current
sources. Practical sources may be modeled by a combination of an ideal source and one
or more passive circuit components. At relatively low frequencies, the passive component
is resistance. The two form of circuit models are:

- the Thevenin model – an ideal voltage source vs in series with a resistance Rs,
- the Norton model – an ideal current source is in parallel with a resistance Rs.
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Figure – Thevenin and Norton equivalent circuits for practical sources



The Thevenin model is more convenient when the internal resistance of the source is very
small compared to external load resistance to be connected and the Norton model is more
convenient when the internal resistance is very large compared to external load resistance.
An ideal voltage source is said to have zero internal resistance and the ideal current source
is said to have infinite internal resistance.
The source models are considered independent sources, since the value of vs or is does
not depend on some other circuit variable.

Controlled source models
For an ideal amplifier the output should be a constant times the input. The input and the
output of an amplifier may be either voltage or current. Thus, there are four possible
combinations of input-output control:

1. Voltage-controlled voltage source (VCVS),
2. Voltage-controlled current source (VCIS),
3. Current-controlled voltage source (ICVS),
4. Current-controlled current source (ICIS).

ICISICVS VCISVCVS

vigmii oviR   i.mov iv

oi

iA v.

oi

iv iibii

Figure – Four possible models of ideal controlled sources in electronic circuits

Voltage-controlled voltage source
The most common combination is a voltage-controlled voltage source (VCVS). The output
voltage is:

io Avv =
The quantity A is the voltage gain, and it is dimensionless. This model could be used to
represent the voltage amplifier.

The VCIS output is:
imo vgi =

The constant gm is the trans-conductance of the device and it has the units of siemens (S).

The value of the voltage at the ICVS is:
imo iRv =

The constant Rm is the trans-resistance of the device and it has units of ohms (W).

The value of the output current at the ICIS is:
io ii b=

The constant b is the current gain and it is dimensionless.
Bipolar junction transistors (BJT) in their ideal form may be represented as ICIS. Field
effect transistors (FET) may be represented by the VCIS model.



Complete amplifier model
The four ideal controlled-source models are used in representing various linear signal
amplifications functions. We will focus on the voltage amplifier model because of its
widespread usage and because some of its parameters are similar to those used in other
circuits as well.
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Figure – Block diagram of a linear amplifier; a signal model utilizing a VCVS

The signal model represented in figure can be used to represent a wide variety of complete
amplifier circuits. We will assume that all passive parameters are resistive in this simplified
model. The effects of reactive elements will be considered later.
It is customary in discussing complete amplifier models to use the general term impedance
for the input and output effects, even when the resistance is the only parameter assumed.

Input impedance
The input impedance is the effective impedance across the two input terminals as “seen”
by a signal source. For the resistive case:
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The input impedance is important in determining the fraction of signal voltage that actually
appears across the amplifier input terminals when the input signal source has an internal
resistance.

Output impedance
The output impedance is the impedance portion of the Thevenin (or Norton) equivalent
circuit as viewed at the output terminals.
The output impedance is important in determining the change in output signal with an
external load (connected to the output terminals).

Voltage gain
With no load connected across the output, the output voltage is A times the input voltage.
Thus, the open-circuit voltage gain is readily determined from the circuit diagram to be A.
Under loaded conditions, the voltage gain will be reduced, as will be demonstrated later.

Cascade of amplifier stages - Input and output loading effects
The voltage vi at the amplifier terminals can be expressed in terms of the open-circuit
source voltage vs and the voltage division between the source impedance Rs and the
amplifier input impedance Ri:
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The output voltage vo can be expressed in terms of VCVS Avi and the voltage division
between the amplifier output impedance Ro and the external load resistance RL:
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Figure – a) Connection of an amplifier to a signal source and load; b) the linear signal model

The net voltage gain from the source open-circuit voltage to the output load is:
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The input loading factor is the voltage divider relationship reflecting the fraction of the
source voltage appearing across the amplifier input terminal. The output loading factor is
the voltage divider relationship reflecting the fraction of the open-circuit output voltage
appearing across the load resistance. The open-circuit voltage gain in the ideal gain case
would be achieved with no loading at either input or output.

Decibel gain computation
The basis for the decibel measurement is that of a power comparison. The input signal
deliver a power Pi to the amplifier and the amplifier delivers an output power Po to the
external load. The power gain is defined as:
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The decibel power gain GdB in decibels is defined by:
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If one assumes that the input impedance of the amplifier and the load resistance has the
same value:
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Thus, a factor of 10 appears in decibel computations involving power gain and a factor of
20 appears when voltage and current gains are used. It is a common practice in electronics
industry to define decibel gain even when the impedances are not equal; in this case the
decibel ratio reflects not a power gain, but rather a voltage (or current) gain converted to a
logarithmic basis. In this case a quantity AdB will be defined as follows:
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The conversion from decibel levels back to actual gain level:
2010 dBAA =

Some useful values are given in the next table:

Positive dB values Negative dB values
A AdB A AdB

2 = 1.4142 3 dB 21 = 0.7071 – 3 dB
2 6 dB 1/2 = 0.5 – 6 dB

10 20 dB 1/10 = 0.1 – 20 dB
20 26 dB 1/20 = 0.01 – 26 dB

100 40 dB 1/100 = 0.01 – 40 dB
1000 60 dB 1/1000 – 60 dB

2n 6n dB 2-n – 6n dB
10n 20n dB 10-n – 20n dB

Frequency response considerations
All linear circuits have frequency-limiting characteristics and it is necessary to apply
frequency response analysis before a full treatment is possible.

Impedance
The complex impedance is defined as
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where R is the resistance and X is the reactance.
The three basic circuit parameters are resistance, capacitance and inductance. In steady-
state ac circuit analysis, these parameters can be represented as function of radian
frequency w.
The radian frequency w in radian/seconds (rad/s) is related to cyclic frequency f in hertz
(Hz) by:

fpw 2=
Capacitance and inductance are represented by complex impedances:
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The capacitive reactance is negative and the inductive reactance is positive as follows:
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In steady-state frequency response analysis w (or f) is considered to represent any
arbitrary frequency at which the response is desired and is treated as a variable. In this
manner, the gain variations of an amplifier as a function of frequency can be investigated.



Transfer function
A linear circuit converted to steady-state form with the input and output represented as
phasors can be used to define the steady-state transfer function H(jw):
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Figure – A linear circuit: a) in the time domain, b) in the frequency domain.

The steady-state transfer function (or simply “transfer function”) is a generalization of the
gain to the case where frequency-dependent elements are present.
Since H(jw) is a complex function, it can be expressed in polar form. The amplitude (or
magnitude) response ( ) ( )ww jHM =  is the amplitude of the complex function and the
phase response: ( )wj  is the phase shift of the complex function.

One-pole low pass model
A general method known as Bode plot analysis permits determination of amplitude and
phase responses for rather complex circuits by some simplified graphical procedures.
The most common frequency response form arising in linear integrated circuits is a function
that could be labeled in Bode plot analysis as the one-pole low-pass model.

RC low-pass circuit
To develop an intuitive feeling of the type of physical parameters that produce the one-pole
response, the passive low-pass filter will be used.
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Figure – RC circuit used to develop the form of a one-pole response

Based on the voltage divider rule, the transfer function of the circuit can be computed:
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An important parameter of the circuit is its time constant RC=t .

Bode Plot
The amplitude and phase response can be derived from the transfer function:
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The point where wRC = 1 corresponds to the point where Mdb(w) = –3 dB. This frequency
is called the break frequency or corner frequency:
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The transfer function can be expressed in either of the forms:
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The magnitude and phase response will be:
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The amplitude response for different frequencies can be computed with the previous
function:

- f << fb, M(f ) = 1 = 0 dB;
- f >> fb, M(f ) = f / fb = –20dB/dec;
- f = fb, M(fb) = 1/√2̄ = –3 dB.

The amplitude and phase response are usually represented on semilog scales: the
amplitude in dB (and phase in degree) on the linear scale as function of frequency on the
logarithmic scale.
Such an example is presented in the next figure for a break frequency of 1 MHz (with both
amplitude and phase response on the same graph – as provided by LTSpice simulator).

Figure – Amplitude (plain pink line) and phase (dotted pink line) response of an RC low-pass circuit

With Bode plot analysis the magnitude response is often approximated by the break-point
approximation (the orange broken lines on the previous figures); it represents the first and
second case previously computed (linear functions), extended to the break point. The
bigger error is at the breaking point: M(fb) = –3 dB.
A similar approximation procedure is used for the phase response (the green broken line),
it is considered the following approximate function:

- f < fb/10, j(f) = 0 degree;
- fb/10< f< 10fb, j(f ) = –45 degree/decade;



- f >10fb, j(f) = –90 degree.
The biggest error is at the breaking points: j(fb/10) = 90 – j(10fb) = 5.7 degree.

Extension to amplifiers
Many complex linear integrated circuits have frequency response functions of the general
form of the RC circuit, at least over a major frequency range of interest. In such cases, the
break frequency can be identified from appropriate measurements or specifications.
For an amplifier whose frequency response is dominated by a one-pole low-pass model the
general form of the transfer function is:
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except that the numerator is now A0 instead of unity, a result of the amplification.
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