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Abstract—Motivated by the problems in machine learning,
we introduce a novel non-parametric estimator of Onicescu’s
informational energy. Our method is based on the k-th nearest
neighbor distances between the n sample points, where £ is a fixed
positive integer. For some standard distributions, we investigate
the performance of the estimator for small datasets.

I. INTRODUCTION

Machine learning techniques based on inference are very
much influenced by the size of the training set. When it comes
to small training sets, the performance may not be so good,
or the learning task can even not be accomplished. Small
dataset conditions exist in many applications, such as disease
diagnosis, fault diagnosis or deficiency detection in biology
and biotechnology, mechanics, flexible manufacturing system
scheduling, drug design, and short-term load forecasting (an
activity conducted on a daily basis by electrical utilities). Sev-
eral computational intelligence techniques have been proposed
to overcome the limits of learning from small datasets. An
overview of these techniques may be found in [1].

Before discussing the difficulties of inferring from small, or
non-representative, training sets, we need to define formally
what we understand by ”small dataset”. In many multivariable
classification or regression (e.g., estimation or forecasting)
problems we have a training set T, = (x;,t;) of p pairs
of input/output vector x € R™ and scalar target ¢, and the
unfortunate circumstance that 7, is small. The VC (Vapnik-
Chervonenkis) dimension is a measure of the capacity of a
classificator, defined as the cardinality of the largest set of
points that the algorithm can shatter. According to Vapnik:
“For estimating functions with VC dimension h, we consider
the size p of data to be small if the ratio p/h is small (say
p/h < 20)” [2].

The main reason why small datasets cannot provide enough
information is that there exist gaps between samples, even the
domain of samples cannot be ensured. For instance, in case
of a small training set, even a simple neural network can have
a complexity (e.g., number of connections/parameters) that is
comparable to, or exceeds, the training size p. In such a case,
we may expect to fit T, very well. However, we can also
expect poor generalization to new data identically distributed
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as the data in T},. In effect, the VC dimension is too large
relative to the size of the training set.

A completely different definition for “small” sets comes
from algorithmic information theory. The Kolmogorov com-
plexity of an object such as a string is a measure of the
computational resources needed to specify the object. More
formally, the complexity of a string is the length of the
string’s shortest description in some fixed universal description
language. It can be shown that the Kolmogorov complexity of
any string cannot be too much larger than the length of the
string itself. A string is considered to be “random” if the length
of the shortest problem that generates the string is the same as
that of the string itself. Strings whose Kolmogorov complexity
is small relative to the string’s size are considered to have
small information content [3]. Kolmogorov’s complexity has
been studied in the context of inductive inference [4], [5]. It is
an open problem how to relate the Kolmogorov complexity of
a training set and the generalization capability of the inferred
neural network.

We will use a simplified definition: A training set is small
if p and n are comparable.

There is no universally optimal solution to the problem
of inferring from small datasets. Several techniques have
been proposed [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15]: generate artificial training samples, feature selection,
and parameter fine-tuning of the inferred model. A special
learning method designed for small training sets is the Central
Location Tracking method [14], [15]. This algorithm attempts
to explore the predictive information through the generation of
trend value of each datum. The choice of specific technique
is domain dependent.

Inference is based on a strong assumption: using a rep-
resentative training set of samples to infer a model. In this
case, we select a subset of the population, perform a sta-
tistical analysis on this sample, and use these results as an
approximation to the desired statistical characteristics of the
population as a whole. The more representative the sample,
the larger our confidence that the statistical results obtained
by using this sample are indeed a good approximation to the
desired population statistics. We gauge the representativeness
of a sample by how well its statistical characteristics reflect
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the statistical characteristics of the entire population. Many
standard techniques may be used to select a representative
sample set [16]. However, if we do not use expert knowledge,
selecting the most representative training set from a given
dataset was proved to be computationally difficult (NP-hard)
[17]. The problem is actually more difficult, since in most
applications the complete dataset is unknown or too large to
be analyzed. Therefore, we have to rely on a more or less
representative training set.

Another problem may arise from the training process itself.
Especially in cases where learning was performed too long or
where training the training samples are rare, the inferred model
may adjust to very specific random features of the training
data, that have no causal relation to the target function. In
this process of overfitting, the performance on the training
examples still increases while the performance on unseen
data becomes worse (the generalization performance is poor).
Beside preventing overfitting, a major question is how to detect
it [1].

Many machine learning algorithms are based on information
theory. A critical aspect of these approaches is how well
an information theory measure is estimated from the avail-
able training set. This relates to a fundamental concept in
statistics: probability density estimation. Density estimation is
the construction of an estimate of the density function from
the observed data [18]. We will refer here to nonparametric
estimation, where less rigid assumptions will be made about
the distribution of the observed data. Although it will be
assumed that the distribution has the probability density f, the
data will be allowed to speak for themselves in determining
the estimate of f more than would be the case if f were
constrained to fall in a given parametric family. A common
measure used in machine leaning is mutual information (MI).
Several methods were proposed for density and MI estima-
tion [19], [20], [21]. Nonparametric density estimators are
histogram based estimator, adaptive partitioning of the XY
plane, kernel density estimator (KDE), B-Spline estimator,
k-th nearest neighbor (kNN) estimator and wavelet density
estimator (WDE). Estimating MI techniques include histogram
based, adaptive partitioning, spline, kernel density and kNN
[20].

Estimating entropy and MI from small datasets is known to
be a non-trivial task [22]. Naive estimations (which attempt
to construct a histogram where every point is the center of
a sampling interval) are plagued with both systematic (bias)
and statistical errors. An ideal estimator does not exist, instead
the choice of the estimator depends on the structure of data
to be analyzed. It is not possible to design an estimator that
minimizes both the bias and the variance to arbitrarily small
values. The existing studies have shown that there is always a
delicate tradeoff between the two types of errors [22].

MI is generally based on the classical Shannon type MI.
However, it is computationally attractive to use one of its
generalized forms: the Rényi divergence measure, which uses
Rényi‘s quadratic entropy. The reason is that, as proved
by Principe et al., Rényi‘s quadratic entropy (and Rényi’s

divergence measure) can be estimated from a set of samples
using Parzen’s windows approach [23]. The MI and Rényi’s
divergence measure are equivalent, but only in the limit o = 1,
where « is the order of Rényi‘s divergence measure [23]. The
Parzen windows estimate cannot be performed on Shannon’s
type ML

In previous work, we have introduced a series of compu-
tational intelligence tools (classifiers and feature weighting
/ ranking techniques) based on an Onicescu’s informational
energy (IE) and an unilateral dependency measure [24], [25],
[26], [27], [28]. This measure proved to be an efficient
alternative to the MI and we approximated it using the Parzen
windows approach.

Our focus now is very different. The question is how to
approximate (from a small dataset) the IE. Our contribution is
a novel non-parametric biased approximation scheme, based
on the kNN approach. First, we will review (Section II-A) the
properties of IE and the kNN method. Section III introduces
our theoretical result - an approximation method for the IE.
After the experimental results exposed in Section IV, we will
conclude with final remarks and some open problems (Section
V).

II. BACKGROUND
A. Onicescu’s Informational Energy

There are two strategies one can adopt when studying the
relationship between two interacting systems: the first is to
measure their interdependence thought as a mutual attribute
and the second is to measure how much one system depends
on the other. When the two systems are random variables,
the most frequently used measures are based on information
theory.

The MI is an example of the first strategy. Since it is a sym-
metric function, it measures simultaneously the dependence of
one random variable by the other and vice versa. The second
strategy can be illustrated by a unilateral measure which is not
necessarily a symmetric function: such a measure was defined
by Andonie er al. [29]. This unilateral measure is based on
Onicescu’s IE [30]. We will introduce some of the IE basic
concepts in this section.

Generally, information measures refer to uncertainty. Since
Shannon defined his probabilistic information measure in
1948, many other authors, with Rényi, Daroczy, Bongard,
Arimoto, and Guiagu among them, have introduced new mea-
sures of information. The ML, I(Y, X) = H(Y) — H(Y|X),
measures the dependence between two random variables X and
Y using Shannon’s entropy. In feature selection algorithms,
the MI can be used for evaluating the “information content”
of each individual feature with regard to the output class. The
feature selection method is searching for a subset of relevant
features from an initial set of available features. The subset
should maximize MI.

Information measures can also refer to certainty. Probability
can be considered as a measure of certainty. More general,
any monotonically growing and continuous function of a
given probability can be considered as a measure of certainty.
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Onicescu’s IE was interpreted by several authors as a measure
of expected commonness, a measure of average certainty, or
as a measure of concentration.

For a discrete random variable X with probabilities py, the
IE was defined in [30] as:

IE(X) =) »}. ¢))
k=1

For a continuous random variable Y the IE was defined in

[31]:
+oo
IB(Y) = / FA(y)dy, )

where f(y) is the probability density function of the random
variable.

In order to study the interaction between two random
variables X and Y, the following measure of unilateral de-
pendency was defined by Andonie et al. [29]:

o(Y,X)=IE(Y|X) - IE(Y)

This measure quantifies the unilateral dependence charac-
terizing Y with respect to X and corresponds to the amount
of information detained by X about Y. There is an obvious
analogy between o(Y, X) and the MI, since both measure the
same phenomenon. However, the MI is a symmetric, not a
unilateral measure.

Rather than approximating o(Y, X) as we did in our previ-
ous studies, we will approximate now directly the IE from the
available dataset.

B. The nearest neighbor method

The nearest neighbour class of estimators represents an
attempt to adapt the amount of smoothing to the “local”
density of data. The degree of smoothing is controlled by an
integer k, chosen to be considerably smaller than the sample
size; typically k ~ n'/2. Define the distance d(x,y) between
two points on the line to be | — y| in the usual way, and for
each ¢ define d;(t) < da(t) < ... <d,(t) to be the distances,
arranged in ascending order, from ¢ to the points of the sample.

The kNN density estimate f(¢) is then defined by [18]:

. k
10 =5 (t)

The kNN was used for non-parametrical estimate of the
entropy based on the k-th nearest neighbor distance between
n points in a sample, where k is a fixed parameter and
k < n — 1. Based on the first nearest neighbor distances,
Leonenko et al. [32] introduced an asymptotic unbiased and
consistent estimator H,, of the entropy H(f) in a multidimen-
sional space. When the sample points are very close one to
each other, small fluctuations in their distances produce high
fluctuations of H,,. In order to overcome this problem, Singh et
al. [33] defined an entropy estimator based on the k-th nearest
neighbor distances. A kNN estimate of the Kullback-Leibler
divergence was obtained by Wang et al. in [34]. A mean
of several kNN estimators corresponding to different values

3)

of k was used by Faivishevsky et al. in [35] for developing
the smooth estimator MeanNN of differential entropy, mutual
information and divergence.

We are ready now to introduce our kNN method for IE
approximation.

III. ESTIMATION OF THE INFORMATIONAL ENERGY

Our goal is to estimate (2) from a random sample X7, X5,
..., X, of n d-dimensional realizations of a distribution with
the unknown probability density f(z). The IE is the average of
f(z), therefore we have to estimate f(z). The n realizations
from our samples have the same probability % A convenient
estimator of the IE is:

18" (f) =

S|

> (X )
1=1

We will determine first the probability density P (€) of the
distance R; i, between a fixed point X; and its k-th nearest
neighbor from the remaining n—1 points. Probability P (e)de
of the k-th nearest neighbor to be within distance R; , €
[e,€ + de] from X;, k — 1 points at a smaller distance and
n—k—1 at a larger distance can be expressed in terms of the
trinomial formula [35]:

(n—1)!
Mk—-1Dln—-k-1)
where pi(e) = [, x . f(z)dz is the mass of the e-ball
centered at X; and [ P (e)de = 1.

We can express the expected value of the p;(¢) using the
probability mass function of the trinomial distribution:

&WJMWZAW&ﬁM@ﬁz

-1 1
= k(” ) / PP =) pdp =
k 0

n—1 ! _ v
:k,( . )/ pEFD=L( =)=,
0

This equality can be reformulated using the Beta function:
1
I'(m)T
B(m,n) :/ Im71(1 o x)nfl — (m) (TL)
0

T(m+n)
We obtain:

Pi(e)de =

,dpi(f)Pffl(l —pi)" T,

(n—=1! kln-—k-1)!
(n—k—1)k! n! ’
which can be rewritten as:

Ep,.(o)(pi(e)) =

On the other hand, assuming that f(x) is almost constant
in the entire e-ball around X; [35], we have:

pi(e) = VlRZ'i,k,nf(Xi),

®)

3|

—
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Fig. 1. The informational energy of an uni-dimensional sample with values
obtained from a discrete uniform distribution.

where we denote the volume of the ball of radius r in a d-
dimensional space by:

ad/2pd
T(d/2+1)

V1 is the volume of the unit ball and R, , is the Euclidean
distance between the reference point X; and its k-th nearest
neighbor. Thus, VlRl k.n 18 the volume of the ball of radius
R; k,n- We obtain the expected value of p;(e):

E(pi(€)) = ViR f(X0). (©)
Both equations (5) and (6) estimate E(p;(e)). We have:

A k
Vle k, nf(Xz) = ﬁv

Vr = = Vlrdv

E(ViR,  f(Xi)) =

2 k
X)=———,i=1.n.
f&) nird, "
This is the estimate of the probability density function. By
substituting f(X;) in (4), we finally obtain the IE approxima-
tion:

n

1 ’L k n
IV. EXPERIMENTS

The IE can be easily computed if the data sample is
extracted from known distributions. When the underlying
distribution of data sample is unknown, the IE has to be
estimated. The problem is even more difficult if the number
of available points is small.

The tests presented below use data points generated with
normal and uniform distribution, enabling us to find the real
value of the IE. For normal distributions, we use uni and bi-
dimensional data. In case of uniform distributions, we perform
the tests on one and ten-dimensional data.

real IE - kNN IE

error

points no.

[Wl=1 #|=2 4 |=3 +|=q =|=5]

Fig. 2. The informational energy of an uni-dimensional sample with values
obtained from a continuous normal distribution with mean 0 and variance 1.

A. A simple uni-dimensional example

To illustrate why the approximation of information mea-
sures from a limited number of data samples is non-
trivial, we will start with a very simple example. Let
us consider the following uni-dimensional data samples:
{3,4,1,2,8,10,1, 3,4,9} obtained from the discrete uniform
distribution {1,2,3,4,5,6,7,8,9,10}. The “true” IE value can
be directly obtained from definition (1):

S () =on

i=1

IEtrue

Assuming that the real distribution is unknown, which is the
interesting case, we can use the relative frequencies in formula
(1) to obtain the ‘empirical” IE. The relative frequencies are

2
{2,8,9,10} : 15 and {1,3,4} : 5. We obtain:

1)° 2)°
IEem irical =4 | — = 0.16.

The IE ¢y pirical 18 DOt a good estimate especially when the
relative frequencies are far from the true probabilities. This is
generally the case for small datasets and, in accordance to the
central limit theorem, for an increasing number of samples,
IE crpirical converges probabilistically to I E,.qe.

The kNN estimator of the IE defined by (7) uses a fixed k for
finding the k-order statistics of Euclidean distances between
the fixed point X; and all other n — 1 points. To avoid the
division by 0, we ignore the cases when R; ., = 0. The kNN
estimation of the information energy of our sample is depicted
in Figure 1 for k£ = 1...5. The estimation error is high when
k =1, i.e. the nearest neighbor estimation, but the 1 E is close
to I Eypye for k> 1.

B. Uni-dimensional normal distribution

Let us consider the continuous uni-dimensional normal
distribution with the mean 0 and variance 1. Figure 2 illustrates
the difference between I E,..,; and [ E in five experiments on
small datasets with samples of 2 to 10 points (k = 1,2,...,5).
We omit the case when k is greater than the number of
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Fig. 4. The informational energy of a ten-dimensional sample with values

obtained from a discrete uniform distribution.

samples. The I-nearest neighbor estimator is unstable, show-
ing large variations around IFE,.,;. Increasing the value of
k results in an approximation with a slight biasing tendency.
This bias becomes more visible with an increasing number
of samples. For small datasets, this approximation bias is less
relevant.

C. Bi-dimensional normal distribution

We consider now the bi-dimensional normal distribution

with mean:
0
0

and covariance matrix:

The conditions of this experiment are similar to the bi-
dimensional normal distribution. On the small datasets of
2,...,10 points we applied the kNN estimation with £k =
1,2,...,5. The error between [F,., and IE stabilizes for
larger values of k, as presented in Figure 3.

D. Ten-dimensional uniform distribution

Finally, we will use the kNN IE estimator for a case when
dimensionality equals the number of data samples. We use the
discrete uniform distribution with ten values per dimension.
Fjgure 4 depicts the obtained approximation ([ E, ., versus
1FE).

V. CONCLUSION AND OPEN PROBLEMS

We have introduced a novel non-parametric kNN approx-
imation method for computing the IE from data samples.
According to our experiments, the method proves to be more
accurate for small datasets because the approximation bias is
less influential in this case.

It is possible to use this kNN approach to approximate
the dependency measure o(Y,X). In this case, it would
be interesting to compare this approximation with the one
obtained by Parzen windows in our previous work.

We are are presently studying the asymptotic behaviour of
the mean and variance of this approximator in order to prove
its consistency. In the second stage, we plan to obtain an
unbiased version of it. We also plan to apply our IE estimator
to several machine learning techniques were the IE and the
unilateral dependency can be used, especially whenever only
small datasets are available: feature extraction and ranking,
classification, prediction.
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