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Abstract – In this work, we focus on machine learning 
methods for handling data sets containing large amounts of 
irrelevant information. We address two key issues: the 
problem of selecting relevant features, and the problem of 
weighting (ranking) these features. We describe our Energy 
Supervised Relevance Neural Gas (ESRNG) algorithm, a 
kernel method which uses the maximization of Onicescu’s 
informational energy as a criteria to compute the relevance 
of the input features for an LVQ classification system. 

I. INTRODUCTION 
Feature selection has become the focus of much 

research in areas of application for which datasets with 
tens or hundreds of thousands of variables are available. 
These areas include text processing of internet documents, 
gene expression array analysis, and combinatorial 
chemistry. The objective of feature selection is three-fold: 
improving the performance of the predictors/classifiers, 
providing faster and more cost-effective 
predictions/classifications, and providing a better 
understanding of the underlying process that generated 
the data [9]. 

A common approach, especially for embedded 
algorithms, is to apply a weighting (ranking) function to 
features, in fact assigning them degrees of perceived 
relevance. Explicit feature selection is generally most 
natural when the result is intended to be understood by 
humans, or fed into another algorithm. Weighting 
schemes tend to be easier to implement in on-line 
incremental settings, and are generally more purely 
motivated by performance considerations. Weighting 
schemes can be viewed in terms of heuristic search, as we 
viewed explicit feature selection methods. However, 
because the weight space lacks the partial ordering of 
feature sets, most approaches to feature weighting rely on 
quite different forms of search. For instance, the most 
common is some form of gradient descent, in which 
training instances lead to simultaneous changes in all 
weights [10]. 

Several approaches to the feature selection problem 
using information theoretic criteria have been proposed 

(as reviewed in the March 2003 special issue of Journal of 
Machine Learning Research). many rely on empirical 
estimates of the mutual information (MI). Mutual 
information is a good indicator of the relevance between 
variables, and has been used as a measure in several 
feature selection algorithms. In this case, the MI evaluates 
the "information content" of each individual feature with 
regard to the output class. The feature selection method is 
searching for a subset of relevant features from an initial 
set of available features. A sensible part of this approach 
is the estimation of the MI, because of the requirements 
for the conditional density functions and the high 
computational complexity. Many MI-based feature 
selection algorithms used histogram as density estimator. 
In high dimensional space, histograms are neither 
effective nor accurate. A MI estimation technique based 
on Renyi's quadratic entropy and Parzen windows was 
proposed by Principe et al. [7] and has been used in 
efficient feature selection [11]. Torkkola also used this 
estimation method for feature extraction by MI 
maximization [12].  

The neural-gas (NG) algorithm, introduced in [1], 
represents a neural model which is applied to the task of 
vector quantization by using a neighborhood cooperation 
scheme. The NG network uses a soft-max adaptation rule, 
similar to the Kohonen feature map. It replaces the 
Euclidean distance with the neighborhood ranking of the 
reference vectors for a given input vector. The advantage 
of using the NG network is avoiding the dependency on 
the initialization of reference vectors. 

The Supervised Relevance Neural Gas (SRNG) 
algorithm, combines the NG and the Generalized 
Relevance Neural Gas (GRLVQ) algorithm [3]. The idea 
was to incorporate neighborhood cooperation of NG into 
the GRLVQ to speedup the convergence and make 
initialization less crucial. 

In our previous work [8], we have estimated the MI 
using Onicescu's informational energy [4]. Our estimation 
was incorporated in two existent weighted LVQ type 
algorithms. Essentially, we have obtained incremental 



learning algorithms for supervised classification and 
feature ranking. 

In this paper we present the Energy SRNG (ESRNG) 
algorithm, which uses the maximization of the 
informational energy (IE) for computing the weights of 
input features. This adaptive relevance determination is 
used in combination with the SNG model, for feature 
ranking and selection. 

II. SUPERVISED RELEVANCE NEURAL GAS 
ALGORITHM 

Let us consider the implementation of a clustering of 
data into M classes, c1,…,cM, by using a set of training 
data defined as follows: 

( ) { }{ }NiMcX n
ii ,,1,,1, KK =×⊂= Rx . 

The n components of the training vectors are: 

[ ]inii xx ,,1 K=x . 

Each class will be described after the training by a 
subset of reference vectors from Rn. Denote the set of all 
K reference vectors by: 

{ }KW ww K,1= , 

and the components of the reference vectors by: 

[ ]jnjj ww ,,1 K=w . 

The neural gas algorithm uses the neighborhood 
ranking of the reference vectors which is determined each 
time a training vector is applied to the input of the neural 
network. For this, all Euclidean distances between the 
input sample xi and each reference vector wj, 

 are sorted in an increasing order. The rank 
of a particular reference vector w

{ Kj ,,1K∈ }
j for a given input xi 

equals to the number of reference vectors that are in the 
relation: 

{ } kjKkjjiki ≠∈−≤− ,,,1,, Kwxwx . 

The rank of wj will be denoted by: 

( )Wr ij ,x  

and this is a function yielding the dependence both on xi 
and the entire set of reference vectors W. 

The cost function optimized by the NG algorithm is [1], 
[2]: 
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and the neighborhood range is determined by γ. 
The LVQ learning rule that uses the neighborhood 

range for updating the reference vector is [1], [2]: 

( )( )( )jiijj Wrh wxxw −=∆ ,γη , 

where η is a positive learning rate. Not only the winner is 
updated, but all reference vector with a degree given by 
hγ. 

The GLVQ algorithm [1] updates two reference 
vectors, wj and wk, the closest to the input vector xi, the 
first one from the same class with xi and the second one 
from a different class. A relative distance which ranges 
between -1 and 1 is defined by: 
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where jijd wx −=  and kikd wx −= . The 

relative distance has negative values if the input vector is 
classified correctly only. The GLVQ algorithm minimizes 
the following cost function: 
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with N the number of training input vectors and f is a 
monotonically increasing function. The GLVQ updating 
rule is: 
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By incorporating the neural gas rule into the GLVQ 
algorithm, the objective function of neural gas can be 
reformulated as [2]: 
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Where  is a subset of W  which contains the 
reference vectors from the same class with x
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The GRLVQ algorithm [3] is an extension of GLVQ 
and associates a relevance factor to each input component 
of the classification system. We denote the relevance 
vectors by: 

[ ]nλλλ K,1=  

where n is the dimension of the input vectors xi, i=1,…,N. 
The relevance factors have the following property: 

∑
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Instead of the Euclidean distance, the GRLVQ 
algorithm uses a weighted distance between an input 
vector xi and a reference vector wj: 
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By using this distance, one can reformulate the relative 
distance defined by the GLVQ algorithm as follows: 
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The SRNG algorithm was obtained by including the 
NG idea in the GRLVQ algorithm [2] and the cost 
function optimized by this algorithm is: 
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weighted distance between xi and the closest reference 
vector that does not belong to . The SRNG update 
rule [2] applies to all reference vectors from : 
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and to the closest reference vector that does not belong to 
this set: 
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with η  and 1η  two positive constants. In our tests we 
used the sigmoid function: 
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where ε is a positive constant, for which:  
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III. COMPUTATION OF THE RELEVANCE FACTORS 
WITH INFORMATIONAL ENERGY 

The relevance factors are a set of coefficients 
associated to the input features. We will describe a 
method to obtain them by using an informational energy 
approach. 

The discrete informational energy of a random variable 
X with probabilities pk, k=1,…,n was defined by Onicescu 
in [4]: 
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and the continuous informational energy of the 
continuous random variable Y was defined by [5]: 

( ) ( )∫
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where p(y) is the probability density of the random 
variable. 

We will determine the relevance factors by maximizing 
the following measure of unilateral dependency between 
two random variables X and Y [6]: 

( ) ( ) (YEXYEXYo −= |, )  

where E(Y | X) is the conditional informational energy. 
For two random variables Y continuous and C discrete, we 
can write: 
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The dependence measure ( )XYo ,  is not symmetrical 
with respect to its arguments, is positive if and only if Y 
and X are independent and is upper limited by 1-E(Y) if 
and only if Y is completely dependent on X. 

We consider M classes labels c1,…,cM as samples of a 
discrete random variable denoted by C. The reference 
vectors wj, j=1,…,P are the prototypes of the classes and 
are determined by training with an algorithm from the 
LVQ category. The training vectors xi, i=1,…,N belong to 
one of the M classes. Then, we can introduce a continuous 
variable Y with its samples yi, i=1,…,N defined by the 
following transform that relates an input vector xi and 
their corresponding class j by the means of the reference 
vector wj and the relevance vector λ: 

( )jii wxIy −= λ . 

Therefore, the relevance factors can be updated using 
an ascending gradient procedure that maximizes the 
dependence measure : ( )CYo ,
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To compute this expression, we need to evaluate the 
partial derivative. By rewriting the definition of the 
dependence measure, we obtain: 
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The two integrals involve a considerable computational 
effort and we will choose to approximate them with the 
Parzen windows estimation method with the Gaussian 

kernel ( ) σ

πσ
σ 2
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density p(y) can be expressed as [7]: 
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We can then write [8]: 
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where ypk, ypl are two training samples from class p, yk, yl 
are two training samples from any class and Np is the 
number of the training samples from the class p. 

Using these two expressions, we obtain [8]: 
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To evaluate this expression, we use two consecutive 
samples y1 and y2 as classes representatives. In the case 
when the two training vectors are from different classes, 
we obtain: 

( ) ( ) ( )2
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2
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If the samples belong to the same class,  cannot 
be evaluated. 

( CYo , )

The rule to update the relevance factors will finally 
become: 
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It is straightforward to proof that  is a positive 
defined kernel. When the two samples are different, we 
have 

( CYo ,

02
21 >− yy  and ( ) ( )2

21
2 2,2,0 σσ yy −> GG , 

meaning that . The weighted Euclidean 
metric we use allows for a direct interpretation as 
kernelized NG if the relevances are fixed [2]. Therefore, 
the relevances should remain unchanged after processing 
each input pattern. This may be achieved if we allow a 
preprocessing of the patterns with the relevances 
computed first. 

( ) 0, >CYo

IV. THE ESRNG ALGORITHM AND EXPERIMENTS 
This algorithm adapts the reference vectors for as least 

as possible quantization error on all feature vectors. After 
initializing the relevance vector with the values 

nk 1=λ , k=1,…,n, the reference vectors and the 
parameters η, α and σ, we apply the following steps to 
incrementally update the relevances, the reference vectors 
and the feature ranks for a given input xi: 

 
1. Update the codebook vectors using the SRNG 

relations. 
2. Update the relevances according to our formula and 

apply a transform on the new values. 
3. Update the overall rank of each feature as an 

average over all previous steps. 
 
The transform applied to relevances in the step 2 is an 

operation that keeps the relevance values in a reasonable 
domain. The squared weighted distance between an input 
vector xi and a reference vector wj, 

, requires that all relevances 

to be positive. If at least one relevance is negative, this 
condition can be realized by transforming all relevances 
with: 
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or by scaling: 

ελλλ ++=
= inikk ,...,1
min  

where ε  is a positive constant. 

We tested ESRNG on three well known databases 
[13]: Iris, Ionosphere and Vowel recognition. The 
experimental results describe the behavior of different 
systems in similar conditions. In Table I we present the 
comparative recognition rates obtained with ESRNG 
versus RLVQ, GRLVQ, SRNG, ERLVQ and EGRLVQ  
on the three datasets. Tables II, III and IV show the 
ranking of the input features generated by the same 
algorithms, while the Figure 1 offers a visual image of the 
average values of the feature relevances obtained with 
ESRNG. 

TABLE I.   
THE COMPARATIVE RECOGNITION RATES 

 Iris  Vowel Ionosphere 
RLVQ 95.33% 46.32% 92.71% 
GRLVQ 96.66% 46.96% 93.37% 
SRNG 96.66% 47.61% 94.03% 
ERLVQ 97.33% 47.18% 94.03% 
EGRLVQ 97.33% 47.18% 94.40% 
ESRNG 97.33% 47.61% 94.03% 

TABLE II.   
THE RANKING OF THE FEATURES FROM THE IRIS DATABASE 

Rank 1 2 3 4 
RLVQ 4 2 3 1 
GRLVQ 4 3 2 1 
SRNG 3 4 2 1 
ERLVQ 1 2 3 4 
EGRLVQ 1 3 4 2 
ESRNG 3 1 4 2 

TABLE III.   
THE RANKING OF THE FEATURES FROM THE VOWEL RECOGNITION 

DATABASE 

Rank 1 2 3 4 5 6 7 8 9 10 
RLVQ 2 5 1 9 6 3 4 8 7 10 
GRLVQ 2 5 4 6 3 1 9 7 8 10 
SRNG 1 4 6 2 3 9 8 5 7 10 
ERLVQ 2 1 3 4 6 8 9 5 10 7 
EGRLVQ 3 1 2 6 5 4 9 8 7 10 
ESRNG 2 1 3 8 9 4 5 10 8 7 

TABLE IV.   
THE RANKING OF THE FEATURES FROM THE IONOSPHERE DATASET 

Rank 1 2 3 4 5 
RLVQ 20 28 26 12 6 
GRLVQ 12 4 22 8 6 
SRNG 24 15 12 10 21 
ERLVQ 8 24 16 12 6 
EGRLVQ 4 5 12 8 27 
ESRNG 14 8 5 16 3 

 
The Iris database consists of 150 vectors from 3 

classes. We used 6 reference vectors and the values of the 
training parameters were η = 1 and η1 = 0.5. The third 
component was ranked as most important, while the least 
important was the second component. 

The Vowel recognition tests were performed by using 
59 reference vectors with the training parameters having 



the values η = 0.7 and η1 = 0.5. The second feature was 
considered as most important and the features from 
positions 10 and 7 were ranked between the least 
important. 

Finally, for the Ionosphere dataset tests we used 8 
reference vectors trained with 200 instances and tested 
with the remaining 151 instances, as specified in [13]. 
The training parameters were η = 0.04 and η1 = 0.03. 

 

Figure 1.  The average values of the feature relevances 

V. CONCLUSIONS 
Our ESRNG algorithm is an incremental learning 

algorithm for feature ranking and supervised 
classification. It was successfully tested on different 
standard datasets. In our future work, we plan to use this 
method for backward feature selection. In backward 
feature selection [9,10], we start with the maximum 
number of input features and decrement at each iteration, 
if necessary, the number of features. This approach 
modifies on-line the structure of the LVQ network and 
this may create a problem. 
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