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Abstract – Ordered Weighted Aggregation (OWA) operators 
represent a distinct family of aggregation operators and were 
introduced by Yager in [1]. They compute a weighted sum of a 
number of criteria that must be satisfied. The central element of 
the OWA operators is that the criteria are reordered before 
aggregation and therefore a particular weight is associated to a 
position. 

Relevance Learning Vector Quantization (RLVQ) [2] is an 
extension of the Learning Vector Quantization (LVQ) algorithm 
[3] and performs a heuristic determination of the relevance 
factors of the input dimensions. This method is based on 
Hebbian learning and associates a weight factor to each 
dimension of the input vectors.  

We present a LVQ method for on-line computing of the OWA 
weights as relevance factors. The method uses a weighted metric 
based on OWA restrictions. The principal benefit of our 
algorithm is that it connects two distinct topics: RLVQ 
algorithm and the consistent mathematical model of the OWA 
operators. 

 
Index Terms – ordered weighted aggregation operators, 

learning vector quantization, relevance factors, machine 
learning, neural networks. 

 
 
 

I. INTRODUCTION 
 

OWA operators represent a class of aggregation 
operators that provide an aggregated value based on a 
reordering of the criteria that must be satisfied. The 
weights of the OWA operator are associated to a 
position of the reordered arguments and not to a 
specific value. 

LVQ is a method of classification based on a number 
of patterns. The vector quantization defines a mapping 
from a space of n-dimensional vectors into a finite set 

of n-dimensional vectors referred to as codebook. The 
vectors from the codebook are the prototypes and each 
of them is assigned to a particular class. LVQ 
implements an algorithm that iteratively adapts the 
codebook vectors by optimizing global criteria based on 
the Euclidian distance. A number of modifications of 
standard LVQ algorithm were proposed in order to 
ensure a faster convergence (OLVQ) or for a better 
adaptation along the borders (LVQ2, LVQ3) [3]. 

The standard LVQ algorithm does not make a 
distinction between the more or less influent features of 
the input vectors. The Distinction Sensitive Learning 
Vector Quantization (DSLVQ) algorithm introduced in 
[18] employs a weight for each feature and uses a 
weighted distance for classification. It uses a 
heuristically iterative algorithm to adapt the weights to 
problems’ requirements: reduces the influence of the 
features that frequently lead to a wrong classification 
and amplify the influence of the features that have a 
large contribution to a correct classification. RLVQ is a 
variation of LVQ, similar to DSLVQ, that introduces 
the relevance factors for each feature. 

We present our OWA-RLVQ algorithm as a method 
to compute the OWA weights as relevance factors in 
parallel with defining a classification based on a 
modified LVQ algorithm. This method connects two 
different approaches: RLVQ and OWA. We have 
obtained good recognition rates on several standard 
datasets. OWA-RLVQ can also be used as a technique 
for ranking the input vector’s features. A preliminary 
version of the algorithm appeared in [10], however 
without the OWA details and without some of the 
experiments described below. 



II. OWA OPERATORS 
We aim to describe first the general aggregation 

problem. Then we will introduce the OWA operators 
and their fundamental properties.  

Let us consider that C1,...,Cn are n criteria which 
define a multicriterial problem. We denote by X the 
domain of the values of these criteria and by I the 
interval [0,1]. The aggregation problem means to 
formulate a global decision function D. It has the 
property that, for any alternative x X∈ , the value 
( )D x I∈  reflects the degree that x meets the required 

conditions in respect with the n criteria, when ( )C x Ii ∈ , 
i n= 1,...,  is the degree that x satisfies the criteria Ci. 

We can therefore write the following relation: 
( ) ( ) ( )( )D x F C x C xn= 1 ,..., . 

F represents the aggregation operator which must be 
[1]: 
a) Monoton, that is the more an individual criteria 

satisfied, the bigger the global decision function’s 
value: 
( ) ( ) ( ) ( )C x C y i n x y X D x D yi i≥ ∀ = ∈ ⇒ ≥1,..., , and  

b) Symmetric, that is the order of the criteria is not 
important for the global decision function’s value. 

The analysis of an aggregation operator means to 
study the relations between the criteria that describe the 
problem. An extreme is when x must satisfy all the 
C1,...,Cn criteria and we have an anding applied to the n 
values. An obvious example of such an operator is 
( ) ( ) ( )( )D x Min C x C xn= 1 ,..., . Another extreme is when at 

least a criterion must be satisfied and this is an oring of 
the n values. An operator who belongs to this category 
is ( ) ( ) ( )( )D x Max C x C xn= 1 ,..., . The usual aggregation 
operators are between these two extreme cases. 

Special categories of aggregation operators are the 
Ordered Weighted Aggregation (OWA) operators. An 
OWA operator is an n-dimensional function:  
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The central element in using the OWA operators is 
the reordering step. A particular argument ai  will no 
longer be associated to a particular wi , but to the value 
from the position i resulted after reordering. 

It can be shown that an OWA operator is 
commutative, monotone and idempotent [1]. It also has 
the bounding property: 

( ) ( ) ( )Min a a F a a Max a an n n1 1 1,..., ,..., , ...,≤ ≤ . 
Based on this property, Yager [1] introduced a measure 
called orness which is close to 1 if the operator has an 
or character: 
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A number of methods were proposed to choose the 
OWA operator’s weights. O’Hagan [4] introduced a 
technique based on a given orness value. Torra [5], [6] 
used a particular aggregation operator named Weighted 
OWA and determined its parameters by using a 
procedure that computes an ideal output for each 
training pattern. Karayiannis [7] used two OWA 
weights families containing a set of equal weights and a 
set of linear descending values. Beliakov [8] 
approximated the OWA operators by solving a problem 
named Least Squares with Equality and Inequality 
(LSEI). Filev and Yager [4], [9] computed the OWA 
operator’s weights by using a descending gradient 
method. 

We will present a method to determinate the OWA 
weights by considering them as relevance factors. 

 
III. RELEVANCE LVQ 

 
It is known that sometimes not all features of the 

input vector have the same influence in the decision of a 
classification or a recognition system. The Relevance 
Learning Vector Quantization (RLVQ) algorithm 
computes a set of relevances associated to each feature 
of the input vector. This is an iterative method based on 
Hebbian learning. It is a heuristically algorithm and a 
number of improvements were proposed in order to 
avoid unstable behavior in some particular situations. 

The RLVQ algorithm reinforces the relevance factors 
of the features that have the highest influence for the 
correct classification. This algorithm decreases the 
weights of the features that have a negative influence 
over the recognition process. The clustering is realized 
by a set of prototypes that are tuned by the incoming 
feature vector and a standard LVQ algorithm. 



Assume that a clustering of data into C classes is to 
be learned and a set of training data is given: 

( ) { }{ }X R C i Mi i
n= ⊂ × =x y, ,..., , ...,1 1 . 

The components of a vector xi are [ ]x xi in
t

1,..., . LVQ 
chooses prototype vectors in Rn for each class, so called 
codebook vectors. Denote the set of all codebook 
vectors by { }w w1,..., K . The components of a vector wj 

are [ ]w wj jn
t

1,..., . The training algorithm adapts the 

codebook vectors for as least as possible quantization 
error on all feature vectors, as follows [3]: 
1. For a given input xi, find the closest codebook 

vector wj, the winner, which provides the least 
value of the distance x wi j− . If xi and wj have the 

same class label, the feature vector is correctly 
classified. 

2. Update the winner codebook: 
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where η > 0  is the learning rate. 
 

RLVQ uses a modified weighted metric in this 
algorithm: 
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where [ ]λ λ λ= 1 ,..., n
t  is the relevance vector and 

λ k
k
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=
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1. Following a similar rule, the weighting 

factors are iteratively adapted [2]: 
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for k n= 1,..., . α > 0  is the learning rate for the 
weighting factors. 

2. Normalize the weight vectors. 
 

Relevance determination can be used after LVQ 
learning or simultaneously, this second version is 
yielding an on-line algorithm. Reported results [2] 
proved a better recognition accuracy of RLVQ 
compared to the standard LVQ. 

 
 
 

IV. OWA – RELEVANCE LVQ ALGORITHM 
 

We present now the OWA-RLVQ algorithm for 
computing the OWA weights as relevance factors 
simultaneously with the update of the codebook 
vectors.  

We redefine first the LVQ algorithm by replacing the 
Euclidian distance with a weighted distance: 

D x wij k ik jk
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The relevances vector, λ , has the properties of the 
OWA operator’s weights: 

[ ]λ λ λk
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n

n
=
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By the expression: 

x wik jk−
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we denoted the kth largest difference between 
corresponding components of the input vector xi and the 
codebook vector wj. 

The distance Dij
*  is a particular case of the ordered 

weighted generalized mean [7]: 
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where p is a real, positive number. By replacing p = 2  

we obtain our modified distance where ak
*  corresponds 

to the difference x wik jk−
*

 and: 

x w x w x wx j i j in jn1 1 2 2− ≥ − ≥ ≥ −
* * *

... . 

We can reformulate the LVQ algorithm by 
minimizing an objective function based on the modified 
distance. The codebook vectors can be updated by 
computing  

( )∆w I x wj i j
* *
= −ηλ  

if xi was correctly classified according to the Dij
*  

distance and I is the unit diagonal matrix. In the case 
when the input vector xi was not correctly classified, 
according to the same distance we use the following 
update formula: 

( )∆w I x wj i j
* *
= − −ηλ . 

In these update relations we denoted with ( )x wi j−
*

 a 

vector obtained by reordering of its components. The 



relevances are used after the reordering step. As OWA 
operator’s properties suggest, the components of the 
vectors w j

*  will correspond to the resulting positional 
weight components. 

We established the method to adapt the prototype 
vectors considering the modified distance Dij

* . We will 
see now how we can update the relevance factors. 

The modified distance Dij
*  is a criterion to decide the 

correct classification of the input vectors. We consider 
that xi is correctly classified if our modified distance to 
the codebook wj is minim and the two vectors belong to 
the same class: 

D D l jij il
* * ,< ∀ ≠ . 

Denote 
[ ]d = d dn

t
1,...,  

where  
d x w k nk ik jk= − =, ,...,1 . 

In the case when xi is correctly classified according to 
the modified distance Dij

* , a small value of dk
*  should 

lead us to a large value of ∆λ k . On the other hand, a 

large value of the distance dk
*  should have a small 

influence for the relevance values and the magnitude 
∆λ k  is minimal. Therefore,  

d dk k k k
*

'
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'< ⇔ >∆ ∆λ λ  
that is 

− > − ⇔ >d dk k k k
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'
*

'∆ ∆λ λ . 
If we consider: 

∆λ αk kd= − *  
then we can write: 

∆λ αk ik jkx w= − −
*

. 

When the classification of the input vector xi is not 
correct according to the modified distance Dij

* , the 
update formula can be developed with a similar method. 
A small value of dk

*  induces a small value of ∆λ k  

and a large value of dk
*  corresponds to a large value 

of ∆λ k . This means that 

d dk k k k
*

'
*

'> ⇔ >∆ ∆λ λ  
and 

∆λ αk kd= *  
or 

∆λ αk ik jkx w= −
*

. 

Because the relevance factors are weights of an OWA 
operator, we finally use the following transform: 
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1 and [ ]λ k ∈ 0 1, . 

We are ready now to write the procedure that 
simultaneously adapts the codebook vectors and the 
relevance factors. 
1. Initialize the learning rates η  and α . Assigning the 

initial values to the relevance vector: 

λ k n
k n= =

1 1, ,..., . 

2. Initialize the codebook vectors. 
3. Update the codebook vectors using the modified 

LVQ algorithm which uses the distance Dij
* : 

( )
( )

w
w I x w x

w I x w
j

j i j i

j i j

*
* *

* *
,

,
=

+ −

− −

⎧

⎨
⎪

⎩⎪

ηλ

ηλ

if  was correctly classified

otherwise
. 

4. Update the relevance factors: 
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for all k n= 1,..., . 
5. Normalize relevances: 

λ
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λ
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6. Compute the weight of each feature as an average 
of its before ordering position index in the input 
vector, for all previous steps. 

7. Repeat steps 3-6 for each training pattern. 
 

This algorithm computes the relevance factors that 
are attached to a specific position in the ordered vector 
of distances to the codebook vectors. It also computes 
the rank of each feature and theses values have a 
different meaning. It is attached to a specific feature and 
this explains the step 6. 

 
 
 



V. EXPERIMENTS 
 

We used standard benchmarks [13] to test the OWA-
RLVQ algorithm: Iris database, Vowel Recognition 
database (Deterding data) and Ionosphere dataset. We 
studied the recognition rates and the resulted relevance 
vectors that can also be interpreted as OWA operator’s 
weights. 

The Iris database contains 3 classes of patterns with 
50 vectors each. Two classes are not linearly separable. 
The problem is to detect the classes considering the 4 
features of each vector. We used in our training 
procedure 6 codebook vectors and we finally obtained a 
recognition rate of 96.60% and the following relevance 
vector: [0.15 0.21 0.23 0.38]t. For the learning constants 
we used the values η = 0 3.  and α = 2 . The feature 
ranking, depicted in Table 1, reflected the same results 
as obtained in [1] for RLVQ, with the last feature 
considered as the most important. 

 
Table 1. Feature ranking for the Iris database. 

Rank 1 2 3 4 
RLVQ Feature 4 2 3 1 
OWA-RLVQ 
Feature 

4 3 2 1 

OWA-RLVQ 
Feature Weight 

1.86 1.44 1.24 1.17 

 
The Vowel Recognition database contains vectors 

extracted from 15 individual speakers pronouncing 
vowels in 11 contexts, 6 times each. The problem is to 
use the pronunciations of the first 8 speakers for 
training and the pronunciations of the last 7 speakers for 
recognition tests. We used 59 codebook vectors and the 
accuracy rate that we obtained in this experiment was 
46.75% comparing to 46.32% obtained with RLVQ and 
44.8% with LVQ. The values of the learning rates were 
η = 17.  and α = 19. . We obtained the following 
relevance vector: [0.032 0.039 0.043 0.044 0.077 .0136 
.0137 0.150 .0163 .0.173]t. The feature number 2 was 
ranked as the second most important by OWA-RLVQ 
and as most important by RLVQ, as described in Table 
2. 

The Ionosphere dataset consists of 351 instances of 
radar collected data, with 34 continuous features each. 
The vectors, balanced between positive and negative 
examples, are labeled with “bad” or “good”, this 
yielding a binary classification task. The first 200 
patterns were used for training and the remaining 151 
we used for the recognition tests. By training 8 

codebook vectors, we obtained a recognition rate of 
93.37% with OWA-RLVQ, of 92.71% with RLVQ and 
of 90.06% with LVQ. In Table 3 we present the ranking 
of the most important 5 features as resulted from our 
experiments. We used the values η = 33.  and α = 35.  for 
the learning parameters.  

 
Table 2. Feature ranking for the Vowel Recognition database. 

Rank 1 2 3 4 5 
RLVQ Feature 2 5 1 9 6 
OWA-RLVQ 
Feature 

8 2 4 5 6 

OWA-RLVQ 
Feature Weight 

5.20 5.20 5.20 5.17 5.16 

RLVQ Feature 6 7 8 9 10 
OWA-RLVQ 
Feature 

3 4 8 7 10 

OWA-RLVQ 
Feature Weight 

5.15 5.15 5.14 5.14 5.13 

 
Table 3. Feature ranking for the Ionosphere database. Only 
the five most important features were represented. 

Rank 1 2 3 4 5 
RLVQ Feature 20 28 26 12 6 
OWA-RLVQ 
Feature 

14 12 1 3 28 

OWA-RLVQ 
Feature Weight 

19.2 19.1 19.1 19 19 

 
A comparison of the recognition rates between LVQ, 

RLVQ and OWA-RLVQ is provided in Table 4, 
reflecting that our algorithm performed better in all 
experiments reported here. 

 
Table 4. Comparative recognition rates obtained with LVQ, 
RLVQ and OWA-RLVQ. 

Database LVQ RLVQ OWA-RLVQ 
Iris 91.33% 95.33% 96.60% 
Vowel 44.80% 46.32% 46.75% 
Ionosphere 90.06% 92.71% 93.37% 

 
VI. CONCLUSIONS 

 
We have presented a method to compute the OWA 

operator’s weights as relevance factors of the input 
features. The OWA-RLVQ algorithm uses a modified 
weighted metric. The relevance vector is updated on-



line, giving the possibility of dynamical adaptation to 
the incoming data. 

We have obtained good recognition rates when 
applying our algorithm on standard benchmarks. 

The relevance factors can be used as OWA weights. 
They can also be used for on-line feature ranking and 
for feature selection.  
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