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Abstract – Vowel recognition represents the detection of a 
vowel in a speech stream and assigning it the correct class label. 
In this paper we use the Concurrent Neural Networks (CNN) for 
the task of romanian vowel recognition. This model is a winner-
takes-all collection of individually trained neural networks. Each 
network of the system provide best results for one class of input 
partterns only. As basic components of such a system, we used 
the Kohonen Self-Organizing Map (SOM). We also performed 
similar tests training SOM as single neural network. We used a 
speech database with spoken words collected from different 
persons, males and females. They pronounced the romanian 
words representing the 10 digits, from zero to nine and each 
word was pronounced 10 times by each speaker. The 
experiments proved that our SOM-CNN neural model 
performed better than SOM for similar tasks, with an increase 
of more that 10% of correctly recognized vowels. 

 
Index Terms – Concurrent Neural Networks, Kohonen Self-

Organizing Map, vowel recognition. 
 

I. INTRODUCTION 
 

Recent work [2] proved that CNN increase speaker 
recognition accuracy comparing to the scores of the well 
known neural models like the Multi-Layer Perceptron (MLP), 
the Time Delay Neural Network (TDNN) or the Self-
Organizing Map (SOM).  

We will study in this paper the behaviour of the CNN with 
SOM as basic component in the problem of vowel 
recognition. 

In section II we will briefly present the Concurrent Neural 
Networks recognition model. In section III we will describe 
the speech database that we used during the experiments. 
Section IV will depict the tests that we performed as well as 
the results that we obtained. 

 
II. CONCURRENT NEURAL NETWORKS 

 
Let us consider the set X ⊂ ℜp which is formed by M 

feature vectors from a p-dimensional Euclidian space, that is, 
X={x1, x2 ... xM}, xi ∈ ℜp

, 1 ≤ i ≤ M. CNN are a collection of 
neural networks. They are trained individually and the 
recognition decision is based on a winner-takes-all strategy. 

We consider each of the feature vectors from the set X are 
a priori known to belong to one of the n classes, that is 

X = X1 ∪ X2 ∪ Xn 
and 

X1 ∩ X2 ∩ Xn = Φ, 
where X1, X2 ... Xn are subsets of X and can be used as 
training pattern sets for each of the n neural networks (fig. 1). 

The CNN global training technique is a supervised one, 
and for the individual networks can be used their own 
training algorithms. 

In figure 1, n is the number of parallel performing neural 
networks, that is the total number of the pattern classes. 

 
 
 
 
 
 
 
 
 
 
 

The database consists of the pre-processed speech signal, 
that is the set X. The pattern sets extracted from this database, 
that is the subsets X1, X2 ... Xn, are inputs of the n networks in 
the training phase.  

In the recall phase, each network should be activated by 
the patterns from its corresponding class only. The CNN 
performs a selection of the outputs from the individual 
networks (fig. 2). The selection means finding the strongest 
response. The selected network is declared as winner and its 
index is the class index associated to the test pattern. This 
classifying method suppose that the number of classes is 
known before the training phase and for each class is 
available a sufficiently number of patterns.  
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Fig. 2. The CNN recall model. 
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SOM use an unsupervised training algorithm. Each 
component network is trained with its dedicated pattern set. 
The classification decision is based on the minimum 
quantization error. The network which generate the minimum 
is selected as winner. 

 
III. THE SPEECH DATABASE 

 
Our approach of the problem of vowel recognition was 

based on the study of the similarities between the patterns 
obtained by cepstral analysis of the vocalized regions from 
the target words and a set of prototypes. 

The cepstrum analysis realise a separation of the signal 
components, producing a linear combination of them. 
Therefore, the inferior part of the cepstrum is the contribution 
of the periodic excitation and the superior part corresponds to 
the transfer function of the vocal tract. 

The speech pattern extraction was based on the Mel-scale 
cepstral analysis [3]. The signal was first transformed using a 
Fast Fourier Transform (FFT), then was applied to a Mel-
scale filterbank. The Mel-scale is a non-linear frequency 
scale reflecting the human auditory system perception 
capabilities and is related to the normal frequency scale using 
the relation: 
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The speech signal was split into 20 ms frames using 

overlapped Hamming windows and a standard radix-2 
decimation-in-time FFT algorithm was used in order to 
compute the short-time spectrum. The spectral output from 
the filterbank was transformed to cepstral domain using a 
discrete cosine transform (DCT). The Mel-scale filterbank 
outputs Yj were computed by composing the short-time 
magnitude spectrum using triangular Mel-scale filterbank and 
the weighted filterbank components falling within each band. 
The Mel-frequency Cepstral Coefficients Ci were computed 
using the following DCT: 
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with the condition1≤ ≤i M , where N is the number of 
filters in the filterbank and M is the number of desired 
cepstral coefficients.  

As input data, we used romanian pronounciations of the 10 
digits. Each of the 4 persons pronounced these words 10 
times. Every time, we used the first 5 repetitions to train our 
system and the remaining 5 repetitions for the recognition 
tests. We used, therefore, 200 repetitions for training and 200 
repetitions for testing. Each repetition from the training set 

was manually segmented to extract the signal regions 
corresponding to the vowels and the semivowels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The compute of the feature vectors was done by mel-scale 

cepstral analysis of these vocalized regions in windows of 
256 samples, with a step of 50 samples. The feature vectors 
have 12 components,  computed as cepstral coefficients. In 
(2), we used M=12 and N=8. 

The number of windows and, therefore, the number of 
patterns extracted from the signal associated with a phoneme 
is influenced by the signal temporal length and by the 
phoneme issue frequency. The words were recorded under 
normal conditions, without any special preparation, with a 
general purpose microphone. Figure 3 presents a typical 
cepstral coefficients sequence for each of the 6 vowels to be 
recognized by our system. 

 
IV. EXPERIMENTS 

 
The analyse of a signal is done in a finite time. In order to 

achieve this goal, we need to know the signal characteristics 
on the entire time interval. The vocal signal is not stationary 
for an infinite period. The stationarity property keeps only for 
few milliseconds, this is the reason why the “long term” 
signal analyse methods can be used, for speech analysis, only 
on independent, temporal windows. The speech is a dynamic 
process, and we need more than one window for a complete 
wiew. We use the “short term” analysis to study the vocal 
signal on frames, with a sliding window. 

First of all, we need to know if a speech sequence, endig at 
the moment n = m, is vocalized or not. The vocalized signal 
is characterized by a higher energy. Let us consider we have 
two signals, s1(n) vocalized and s2(n) unvocalized, of infinite 
duration. Their energies will be in the following relation: 
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Fig 3. Typical sequences of cepstral coefficients 
determined for phonemes a, e, i, o, u, ă. 



The equivalent formula, applied to a signal frame that 
contains the points around m is: 
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and N is the number of speech samples falling in the frame. 
Based on (5), we can decide if the speech sequence is 
vocalized or not comparing the energy level with a threshold: 
if the energy value exceeds the threshold, the sequence is 
vocalized. A very important element, useful to extract any 
information about the signal based on the energy is N, the 
window width. For a large window, the energy will be 
smooth, and the decision around the threshold is not 
influenced by energy spikes. On the other side, a too large 
window can lead us to a very smooth energy and is difficult 
to determine the real width of the vocalized region or to 
determine the very short unvocalized regions. In figure 4 we 
present the energy values for the same sequence, using N=20 
and N=2000. In our experiments, we used N=300 at a sample 
frequency of 8000 Hz, that is a window selects 37.5 ms from 
the signal. We used a rectangular window, allowing us a 
recurrent computation of the energy: 

E m E m s m s m Ns s( ) ( ) ( ) ( )= − + − −1 2 2 . (7) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to take a more realistic decision about the 

vocalized or the unvocalized character of the signal, we 
established two thresholds. When the ascending energy 
exceeds the superior threshold, we consider a vocalized 
region begins. When, in a vocalized region, the energy 
becomes less that the inferior threshold, we consider an 
unvocalized region begin. The advantages of using two 
thresholds are a more accurate detection of the beginning of 
the vocalized regions and the avoid of considering 

unvocalized the lower amplitude vocalized regions from the 
end of the signal sequences.  

In figure 5 we present the detection of the vocalized and 
unvocalized regions when we use one threshold and two 
thresholds for a pronounciation of the romanian equivalent of 
‘nine’. This word, phonetically transcripted as nou≠, contains 
three vowels: o, u and ≠. For the last vowel, we used as 
simbol the romanian letter ă. We set the amplitude thresholds 
as percents of the highest amplitude of the signal. We can see 
that using two thresholds we obtain best discrimination 
betweend the two types of regions. We also avoid the short 
oscillations that could occur at the beginning and at the end 
of the vocalized regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The signal analyse based on the short-time energy gives us 

an idea about the regions where we could find the vowels,  
significantly decreasing the search domain. 

The next step is an exact find of a vowel and determining 
their identity. We used an individual SOM to recognize all 
the six vowels from our words and we compared then these 
results with the performances of the SOM-CNN. 

We first trained a 10x15 nodes Kohonen self-organizing 
map in 10000 training steps. After the calibration, we 
obtained the prototypes set as presented in table I. We had 
only 2 prototypes representing the vowel ă because the 
available training data for this vowel was reduced, 
determined by its low frequency issue in our words 
collection.  

The training of SOM-CNN was done after a prevoius, 
supervised separation of the patterns in the six classes. Each 
component neural network became specialized to recognize 
the patterns from one class only. We placed in the same class 
both the vowels and the semivowels realisations of the 
phonemes. We used six 5x5 SOM and the global number of 
nodes was the same as used for the individual SOM: 150.  

Fig. 4. The energy function of the voice signal 
corresponding to the romanian pronounciation of the word 

zero for N=20 and N=2000. 

Fig. 5. Finding the vocalized and unvocalized regions of a 
romanian pronounciation of the word nine, phonetically 

transcripted as nou≠. The threshold are computed according 
to the maximum energy level. 



 
TABLE I 

THE TRAINING PATTERNS NUMBER OF SOM AND SOM-CNN AND THE 
PROTOTYPES NUMBER OBTAINED AFTER TRAINING SOM AND SOM-CNN. 

 A E I O U Ă 
Training 372 516 339 525 453 52 

SOM 42 37 16 21 21 2 

SOM-CNN 25 25 25 25 25 25 

 
 

TABLE II 
THE RESULTS OF THE EXPERIMENTS OF VOWEL AND SEMIVOWEL 

RECOGNITION USING SOM AND SOM-CNN. 

 SOM SOM-CNN 
E1 73.68% 84.21% 

E2 62.47% 73.93% 

E3 50% 56.25% 

E4 5.88% 5.48% 

E5 13.07% 8.61% 

 
The recognition was done as following. The vocalized 

sequences from the test signal were preprocessed using the 
mel-scale cepstral analysis, as prevoiusly described. The 
resulting vectors were compared to the prototypes and we 
selected the prototype that generated the minimum 
quantization error, but not exceeding an acceptable limit. We 
obtained sequences of class labels, as depicted in figure 6 
using as well the romanian equivalent of the word ‘nine’. The 
SOM does not recognize the final ă. Both models find an o 
after u because in the current speech, a short o is inserted on 
this position, though this vowel does not appear in the 
phonetical transcription. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compare the performances of SOM and SOM-CNN we 

presented in table II the results of the following experiments: 
the percent of the vowels and semivowels correctly 
recognized by the two models (E1), the proportion that the 
real dimension of the vowel or semivowel was detected (E2), 
the number of sequences vowel-semivowel correctly 

recognized (E3), the percent of false alarms, meaning the 
detection of a vowel or semivowel instead of a consonant 
(E4) and the percent of confusions between vowels (E5). 

 
V. CONCLUSIONS 

 
We presented in this paper the experiments of behaviour of 

the SOM-CNN for a problem of vowel recognition. We used 
as database the romanian pronounciations of the 10 digits. 
Each of them was repeated 10 times by 4 persons, males and 
females. We used half of the repetitions for training and the 
remaining of them for testing. The training data set was 
created by manually segmentation of the words by extracting 
the regions corresponding to the vowels. These segments 
were processed by Mel-scale based cepstral analysis. The 
resulting vectors were used as input patterns for the maps 
training algorithm. 

We tested SOM and SOM-CNN and the rate of the 
correctly recognized vowels and semivowels of CNN was 
superior with more than 10% than the individual SOM. 
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Fig. 6. The way that was interpreted the romanian 
pronounciation of the word nine by SOM and SOM-CNN. 

We used ~ as symbol of the phoneme ≠. 


