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Răzvan Andonie
Computer Science Department
Central Washington University

Ellensburg, USA
and

Electronics and Computers Department
Transilvania University of Braşov
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Abstract—Our research area is the unilateral dependency
(UD) analysis of non-linear relationships within pairs of simulta-
neous data. The application is in financial analysis, using the
data reported by Kodak and Apple for the period of 1999–
2014. We compute and analyze the UD between Kodak’s and
Apple’s financial time series in order to understand how they
influence each other over their company assets and liabilities.
We also analyze within each of the two companies the UD
between assets and liabilities. Our formal approach is based on
the informational energy UD measure derived by us in previous
work. This measure is estimated here from available sample data,
using a non-parametric asymptotically unbiased and consistent
kNN estimator.

I. INTRODUCTION

Most of us intuitively recognize causal relationships in
our daily lives. We make statements like “X causes Y”, “Y
depends on X”, or “X and Y are correlated”. We have to
observe from the very beginning that there are nuances in
these statements. A common error is the confusion between
statistical correlation and causation. An occurrence can cause
another occurrence (such as smoking causes lung cancer), or
it can correlate to another occurrence (such as smoking is
correlated to alcoholism). If one occurrence causes another,
then they are most certainly correlated. The converse is not
necessarily true.

Causal analysis is not merely a search for correlations, but
an investigation of cause and effect relationships. Judea Pearl
makes a harsh distinction between the causal and statistical
relationships. According to him, causal analysis goes one step
further than statistical analysis, since it aims to infer not only
the likelihood of events under static conditions, but also the
dynamics of events under changing conditions [1].

Practically, it is very difficult to establish causality between
two correlated events. In contrast, it is relatively easy to estab-
lish a statistically significant correlation. To prove causation,
a controlled experiment must be performed. The standard way
to generate causal evidence is to use randomized experiments,
but this is often not feasible in real-life applications.

The logic of causal analysis and the problems involved
in establishing causal linkages are discussed at length in [2].

These authors, continuing the work of epistemologists such
as John Stuart Mill, identify three key criteria for inferring a
cause and effect relationship: (1) the cause preceded the effect,
(2) the cause was related to the effect, and (3) we can find no
plausible alternative explanation for the effect other than the
cause.

Application areas of causal relationships include finance,
medicine, and reliability engineering. For example, in econo-
metrics, we are interested in the correlation (and beyond
that, causality as well) between two time series such as a
market/bench index and an individual stock/ETF products.
Most investors in the stock market consider various indexes
to be important sources of basic information that can be used
to analyze and predict the market perspectives.

The Granger1 causality test [3] is a statistical hypothesis
test for determining whether one time series is useful in fore-
casting another. According to Granger, causality in economics
could be reflected by measuring the ability of predicting the
future values of a time series using past values of another
time series. Some econometricians assert that the Granger
test finds only “predictive causality” [4]. The Granger test is
based on linear regression modeling of stochastic processes.
More complex extensions to nonlinear cases exist, but these
extensions are more difficult to apply in practice. A comparison
between different causality tests is provided in [5], where the
causality between Private Consumption and GDP in the USA
and Mexico during the period 1960-2002 is determined.

In contrast to causality, the statistical correlation is a well-
established concept. When studying the correlation between
two financial indexes, we may use a standard bilateral statisti-
cal measure, like the mutual information (MI). However, we
may also use a unilateral measure, like the transfer entropy,
which measures the directionality of a variable with respect to
time was introduced by Schreiber [6]. Based on the transfer
entropy concept, Kwon and Yang [7] found that the amount of
information flow from index to stock is larger than from stock
to index. It indicates that the market index plays a role of major
driving force to individual stock. Interestingly, such asymmetry

1Clive Granger, recipient of the 2003 Nobel Prize in Economics.



occurs with identical direction to every market from mature to
emerging market. However, the strength of the asymmetry in
mature market is higher than it in emerging market. Hence,
there must be asymmetric information flow between an index
and a stock.

The focus of our work is the inference of non-linear
causal relationships within pairs of simultaneous data. Here
is a simple example to demonstrate the simultaneity problem
[8]: Hiring more police-officers (X) should reduce crime (Y ).
However, it is also possible too that when crime goes up, cities
hire more police officers. The original Granger causality test
cannot be used here, since it does not capture simultaneous
causal relationships. Therefore, we have to find a different
approach. Let us also observe that we do not comply here
with the epistemologic time asynchronicity criterion “the cause
preceded the effect”.

Our attempt is to not only to calculate unilateral dependen-
cies between the analyzed time-series, but to go beyond this
and create the premises for a causal interpretation. Although,
in general, statistical analysis cannot distinguish genuine cau-
sation from spurious covariation in every conceivable case,
this is still possible in many cases [1]. Actually, according
to the results of the ChaLearn cause-effect pair challenge [9],
causal inference can be successfully addressed as a supervised
machine learning approach. Recently, causal relationships were
inferred using the Markov Blankets of two variables causally
connected, in the context of supervised learning [10].

We present a machine learning application in financial data
analysis, where we attempt an inference of causal relationships.
We analyze the UD between Kodak’s and Apple’s assets and
liabilities, reported by the two companies for the period of
1999–2014, in order to understand how they would influence
each other. We use a UD measure based on Onicescu’s
information energy (IE) [11]. The IE can be interpreted
as a measure of average certainty. In previous work, we
have introduced a non-parametric asymptotically unbiased and
consistent estimator of the IE. Our method can be applied to
both continuous and discrete data, meaning that we can use
it both in classification and regression algorithms. Based on
the IE, we have introduced [12], [13] a UD measure between
random variables and we showed how to estimate this UD
measure from an available sample set, using the kNN estimator.

The paper is organized as follows. First, we will review
(Section II) the properties of IE and the kNN method. Section
III describes the approximation method for our unilateral
information measure. The financial application is presented in
Section IV. Section V has the final remarks.

II. BACKGROUND AND PREVIOUS WORK

A. Onicescu’s Informational Energy and The Unilateral De-
pendency Measure

Generally, information measures refer to uncertainty. How-
ever, information measures can also refer to certainty, and
probability can be considered as a measure of certainty. More
general, any monotonically growing and continuous probabil-
ity function can be considered as a measure of certainty. For
instance, Onicescu’s IE was interpreted by several authors
as a measure of expected commonness, a measure of average
certainty, or as a measure of concentration.

For a continuous random variable X with probability
density function f(x), the IE is [14], [15]:

IE(X) =

+∞∫
−∞

f2(x)dx (1)

A UD measure between random variables X and Y was
defined in [11]:

o(X,Y ) = IE(X|Y )− IE(X) (2)

where:

IE(X|Y ) =

+∞∫
−∞

f(y)IE(X|y)dy

=

+∞∫
−∞

f(y)

+∞∫
−∞

f(x|y)2dx dy.

The conditional probability density function can be written
as the ratio between the joint density function and the marginal
density function: f(x|y) = f(x, y)/f(y). Then:

IE(X|Y ) =

+∞∫
−∞

+∞∫
−∞

f(x, y)f(x|y)dy dx

and

o(X,Y ) =

+∞∫
−∞

+∞∫
−∞

f(x, y)f(x|y)dy dx−
+∞∫
−∞

f2(x)dx.

The measure o(X,Y ) quantifies the UD characterizing
X with respect to Y and corresponds to the amount of
information detained by Y about X . There is an obvious
analogy between o(X,Y ) and MI(X,Y ), since both measure
the same phenomenon. However, the MI is a symmetric, not
a unilateral measure: MI(X,Y ) = MI(Y,X).

Our goal is to approximate o(X,Y ) from the available data
samples, using the kNN method. As a a first step, we will
approximate the IE.

B. The nearest neighbor method

The kNN estimators represent an attempt to adapt the
amount of smoothing to the “local” density of data. The degree
of smoothing is controlled by an integer k, chosen to be con-
siderably smaller than the sample size. We define the distance
dj(xi) between two points on the line as |xi−xj |, and for each
xi we define the distances d1(xi) ≤ d2(xi) ≤ . . . ≤ dn(xi),
arranged in ascending order, from xi to the points of the
sample.



The kNN density estimate f(xi) is defined by [16]:

f̂(xi) =
k

2ndk(xi)

Leonenko et al. [17] introduced an asymptotic unbiased
and consistent estimator of the entropy in a multidimensional
space. When the sample points are very close one to each other,
small fluctuations in their distances produce high fluctuations
of the entropy estimator. To overcome this problem, Singh
et al. [18] defined a kNN non-parametrical estimator of the
entropy, based on the k-th nearest neighbor distance between
n points in a sample, where k is a fixed parameter and k ≤
n − 1. Later, other authors have applied kNN estimators to
approximate the MI from data samples [19], [20].

According to [21], the kNN MI estimation outperforms
histogram methods. kNN works well if the value of k is
optimally chosen. However, there is no model selection method
for determining the number of nearest neighbors k. This is a
limitation of the kNN estimation.

We are now ready to introduce our kNN method for the
IE approximation.

C. Estimation of the Informational Energy

The IE can be easily computed if the data sample is
extracted from known distributions. When the underlying
distribution of data sample is unknown, the IE has to be
estimated. More formally, our goal is to estimate formula (1)
from a random sample x1, x2, ..., xn of n d-dimensional
observations from a distribution with the unknown probability
density f(x). This problem is even more difficult if the number
of available points is small.

The IE is the average of f(x), therefore we have to
estimate f(x). The n observations from our samples have the
same probability 1

n . A convenient estimator of the IE is:

ˆIE
(n)

k (X) =
1

n

n∑
i=1

f̂(xi). (3)

We will determine first the probability density Pik(ε) of
the random distance Ri,k,n between a fixed point xi and its
kth nearest neighbor from the remaining n − 1 points. The
probability Pik(ε)dε of the kth nearest neighbor to be within
distance Ri,k,n ∈ [ε, ε+ dε] from xi, k− 1 points at a smaller
distance, and n− k − 1 at a larger distance, can be expressed
in terms of the trinomial formula [20]:

Pik(ε)dε =
(n− 1)!

1!(k − 1)!(n− k − 1)!
dpi(ε)p

k−1
i (1− pi)n−k−1,

where pi(ε) =
∫
‖x−xi‖<ε f(x)dx is the mass of the ε-ball

centered at xi and
∫
Pik(ε)dε = 1.

We can express the expected value of pi(ε) using the
probability mass function of the trinomial distribution:

EPik(ε)(pi(ε)) =

∞∫
0

Pik(ε)pi(ε)dε

= k

(
n− 1

k

) 1∫
0

pk−1(1− p)n−k−1pdp

= k

(
n− 1

k

) 1∫
0

p(k+1)−1(1− p)(n−k)−1dp.

This equality can be reformulated using the Beta function:

B(m,n) =

1∫
0

xm−1(1− x)n−1 =
Γ(m)Γ(n)

Γ(m+ n)
.

We obtain:

EPik(ε)(pi(ε)) = k

(
n− 1

k

)
Γ(k + 1)Γ(n− k)

Γ(n+ 1)

= k
(n− 1)!

(n− k − 1)!k!

k!(n− k − 1)!

n!
,

which can be rewritten as:

EPik(ε)(pi(ε)) =
k

n
. (4)

On the other hand, assuming that f(x) is almost constant
in the entire ε-ball around xi, we have:

pi(ε) ≈ V1Rdi,k,nf(xi),

where we denote the volume of the ball of radius ρr,n in a
d-dimensional space by:

Vρr,n = V1ρ
d
r,n =

π
p
2 ρdr,n

Γ(p2 + 1)
.

V1 is the volume of the unit ball and Ri,k,n is the Euclidean
distance between the reference point xi and its kth nearest
neighbor. This means that V1Rdi,k,n is the volume of the d-
dimensional ball of radius Ri,k,n.

We obtain the expected value of pi(ε):

E(pi(ε)) = E(V1R
d
i,k,nf(xi)) = V1R

d
i,k,nf̂(xi). (5)

Equations (4) and (5) both estimate E(pi(ε)). Their results
are approximately equal:

V1R
d
i,k,nf̂(xi) =

k

n
,

That is:

f̂(xi) =
k

nV1Rdi,k,n
, i = 1...n.

This is the estimate of the probability density function.
By substituting f̂(xi) in formula (3), we finally obtain the
following IE approximation:

ˆIE
(n)

k (f) =
1

n

n∑
i=1

k

nV1Rdi,k,n
. (6)



Consistency of an estimator means that as the sample size
gets large the estimate gets closer and closer to the true value of
the parameter. Unbiasedness is a statement about the expected
value of the sampling distribution of the estimator. The ideal
situation, of course, is to have an unbiased consistent estimator.
This may be very difficult to achieve.

Yet unbiasedness is desirable but just a little bias is
permitted, as long as the estimator converges to unbiased.
Therefore, an asymptotically unbiased consistent estimator
may be acceptable. Our estimator has the following important
property, given here without proof.

Theorem 1. The informational energy estimator ˆIE
(n)

k (f) is
asymptotically unbiased and consistent.

Therefore, the probability of the estimator being arbitrarily
close to its true value converges to one, as the sample size
increases. The ˆIE

(n)

k (f) estimator is computationally inten-
sive, but it is a “good” estimator because it is asymptotically
unbiased and consistent. These are nice properties that other
approximation methods (for instance, the histogram method)
do not share.

III. THE KNN o(X,Y ) ESTIMATOR

Our goal is to infer o(X,Y ) from the random sample x1,
x2, ..., xn. We will deduct the kNN estimator for o(X,Y ).

First, we substitute ÎE
(n)

k (X) from eq. (6) in eq. (2):

ô(X,Y ) = ÎE
(n)

k (X|Y )− ÎE
(n)

k (X)

where:

ÎE
(n)

k (X|Y ) =

m∑
j=1

f̂(yj)ÎE
(n)

k (X|yj) (7)

and

ÎE
(n)

k (X) =
1

n

n∑
i=1

k1

nV1(X)R
d1
i

is an adaptation of eq. (6).

We have:

ÎE
(n)

k (X|yj) =
1

n

n∑
i=1

f̂(xi|yj) =
1

n

n∑
i=1

f̂(xi, yj)

f̂(yj)
(8)

and from (7) and (8) we can write:

ÎE
(n)

k (X|Y ) =

m∑
j=1

f̂(yj)
1

n

n∑
i=1

f̂(xi, yj)

f̂(yj)

=
1

n

m∑
j=1

n∑
i=1

f̂(xi, yj).

The estimate of f(xi, yj) can be obtained as

f̂(xi, yj) =
k2

pV1(X,Y )R
d2
i,j

,

where p is the number of (xi, yj) pairs.

Now we can re-write eq. (7):

ÎE
(n)

k (X|Y ) =
k2

npV1(X,Y )

m∑
j=1

n∑
i=1

1

Rd2i,j
.

where Ri is the Euclidean distance between the refer-
ence point xi and its kth

1 nearest neighbor, when the points
are drawn from the one-dimensional probability distribution
f(x): Ri = ‖xi − xi,k1‖. Similarly, Rj is the Euclidean
distance between the reference point yj and its kth

1 nearest
neighbor, when the points are drawn from the one-dimensional
probability distribution f(Y ): Rj = ‖yj − yj,k1‖. Then,
Rij is the Euclidean distance between the reference point
(xi, yj) and its kth

2 nearest neighbor, when the points are
drawn from the joint probability distribution f(X,Y ): Rij =√

(xij − xij,k2)2 + (yij − yij,k2)2.

The estimate of o(X,Y ) is:

ô(X,Y ) =
k2

npV1(X,Y )

m∑
j=1

n∑
i=1

1

Rd2i,j

− k1
n2V1(X)

n∑
i=1

1

Rd1i
.

(9)

Although we do not have a general method to set the
nearest neighbor parameter, Silverman [16] suggests that an
optimal choice of k is proportional to n4/(d+4). In our case,
the optimal values of k1 and k2 may not be equal, because the
these two parameters refer to different samples.

IV. AN APPLICATION IN FINANCIAL DATA ANALYSIS

In the following, we will apply these general concepts to a
real-world financial analysis. We choose assets and liabilities
for their intricate interaction and fundamental importance.

A. The financial data

Apple2 is the largest publicly traded corporation in the
world by market capitalization, with an estimated market
capitalization of $446 billion by January 2014. As of June
2014, Apple maintains 425 retail stores in fourteen countries
as well as the online Apple Store and iTunes Store, the latter
of which is the world’s largest music retailer.

Eastman Kodak Company3, commonly known as Kodak,
is a company focused on imaging solutions and services
for businesses. In January 2012, Kodak filed for Chapter 11
bankruptcy protection in the United States District Court.
In August 2012, Kodak announced the intention to sell its
photographic film (excluding motion picture film), commercial
scanners and kiosk operations as a measure to emerge from
bankruptcy. In January 2013, the Court approved financing for
the company to emerge from bankruptcy by mid-2013. On
September 3, 2013, Kodak emerged from bankruptcy having
shed its large legacy liabilities and exited several businesses.

2http://en.m.wikipedia.org/wiki/Apple Computer
3http://en.m.wikipedia.org/wiki/Eastman Kodak



(a) (b)

Fig. 1. (a) Synchronous values from two time series denoted by X and Y produce a joint observation (xi, yi). On the horizontal axis we represented the
indexes of data points, while the vertical axis displays the scale of the time series values; (b) The evolution over time of the dependency measure shows how the
graphs of o(X,Y ) and o(Y,X) progress when the sample size increases. Apple current assets are represented by X and Kodak current assets are represented
by Y . The horizontal axis denotes the sample size and the vertical axis of the series X and Y correspond to the value of Apple and Kodak current assets in
US dollars.

Fig. 2. Apple and Kodak assets and liabilities. Time series plot shows the data points indexes on the horizontal axis and the value in US dollars on the vertical
axis. Rising company shows rising assets and liabilities as well. Falling company demonstrates the falling trend of assets and liabilities.

Personalized Imaging and Document Imaging are now part of
Kodak Alaris, a separate company owned by the U.K.-based
Kodak Pension Plan.

Our application interest lies on the financial insight behind
these two rising and ever-falling legacy companies in the US.
Before looking into their financial analytics, we aim to com-
pute and analyze the dynamics of their unilateral dependencies
with respect to liabilities and assets. This way, we may discover
some similarities and differences.

We first define the basic terms (i.e., assets and liabilities)
for the non-financial readers, using standard definitions from
Investopedia4.

Assets are defined as:

4http://www.investopedia.com/

1) A resource with economic value that an individual, cor-
poration or country owns or controls with the expectation
that it will provide future benefit.

2) A balance sheet item representing what a firm owns.

To help understand assets, they can be explained further
as:

1) Assets are bought to increase the value of a firm or
benefit the firm’s operations. You can think of an asset
as something that can generate cash flow, regardless of
whether it’s a company’s manufacturing equipment or an
individual’s rental apartment.

2) In the context of accounting, assets are either current or
fixed (non-current). Current means that the asset will be
consumed within one year. Generally, this includes things
like cash, accounts receivable and inventory. Fixed assets



(a) Apple assets and liabilities.

(b) Kodak assets and liabilities.

Fig. 3. Unilateral dependency computed from the financial data of Apple and Kodak. The graphs represent the value of o(X,Y ), where X and Y were
specified above each graph. The horizontal axis display the number of historical sample points used to obtain the corresponding value of o(X,Y ). (a) Apple
assets and liabilities showed strong dependence and increasing coordination in management. (b) In contrast, it seems like Kodak’s assets and liabilities diverge;
they do not depend on each other proven by the values which decrease over time.

are those that are expected to keep providing benefit for
more than one year, such as equipment, buildings and real
estate.

As an important counter part of assets, liabilities are
defined as “A company’s legal debts or obligations that arise
during the course of business operations. Liabilities are settled
over time through the transfer of economic benefits including
money, goods or services”, and explained further as follows:
“Recorded on the balance sheet (right side), liabilities include
loans, accounts’ payable, mortgages, deferred revenues and
accrued expenses. Liabilities are a vital aspect of a company’s
operations because they are used to finance operations and pay
for large expansions. They can also make transactions between
businesses more efficient. For example, the outstanding money
that a company owes to its suppliers would be considered a
liability”.

Outside of accounting and finance this term simply refers
to any money or service that is currently owed to another party.
One form of liability, for example, would be the property taxes
that a homeowner owes to the municipal government.

Current liabilities are debts payable within one year, while
long-term liabilities are debts payable over a longer period.

Asset/Liability Management, as known as surplus man-
agement, is a technique companies employ in coordinating
the management of assets and liabilities so that an adequate
return may be earned. By managing a company’s assets and
liabilities, executives are able to influence net earnings, which
may translate into increased stock prices.

B. Unilateral interaction between financial data series

When studying the interaction between two financial ran-
dom variables, why is a UD measure useful? Let us consider
two experiments characterized respectively by the random
variables X and Y . The experiments run simultaneously and
interact probabilistically. Our question lies on whether X
variable influences Y probabilistically more than the vice
versa. Thus, we would like to examine the difference in the
dependence of X|Y (i.e., X depends on Y ) and Y |X (i.e.,
Y depends on X). While the correlation quantifies linear
dependency and MI describes the degree of interdependence
between two random variables, the UD measure o(X,Y ) helps
us understand which random variable, either X or Y , has a
stronger influence on the other one.

When the data is acquired from the real-world, our kNN
estimator of o(X,Y ) adapts incrementally to the incoming X
and Y values, which are considered here as data streams or
time-series. We are interested in the evolution of the o(X,Y )
over time because this may tell us how the influence of X over
Y and vice versa changes when the amount of historical data is
higher. In this case, we consider the interaction between X and
Y as a dynamic process described by unilateral dependencies.

In our application, we compute the UD of assets and liabil-
ities for the Apple Computers and Eastman Kodak Company,
respectively, using all their company’s officially filed data
in 10Q, in order to find the quantitative evidence of assets
drive/influence company liabilities, or vice versa. We hope to
determine whether a financial quantify influence another, and
to what extent using the UD measure.

The IE and UD measures both help understand the two



random variables. The estimation becomes more precise when
the number of observations continue to increase. When we
analyze two time series, we consider each of them as sets of
n observations xi and yi, i = 1...n, of the random variables X
and Y . Our goal is to find synchronous relationships between
the two time series which have been considered as two samples
of the two random values X and Y . A point xi from the first
series is paired with a point yi from the second one, producing
a joint observation (Fig. 1a). Therefore, from two time series
with n points each, we obtain n pairs (xi, yi), i = 1...n. The
o(X,Y ) measure between X and Y can be estimated with
formula (9), based on X and (X,Y ), while o(Y,X) can be
estimated with the same formula based on Y and (Y,X). In
general, the accuracy of the o(X,Y ) estimator increases when
more values of X|Y are available for each value of Y . We
note that in our experiment this condition cannot be fulfilled.
Each observation xi corresponds to exactly one observation
yi, and the set of pairs (X,Y ) corresponds to the set of pairs
(Y,X), since for each observation xi exactly one observation
yi is used.

We study the evolution in time of the UD measures. The
values o(X,Y ) and o(Y,X) can be estimated at the moment
tm using the entire history of the past m observations of xi
and yi between the initial moment t0 and tm. A new set of
observations xm+1 and ym+1 allows us to re-estimate o(X,Y )
and o(Y,X), as illustrated by Fig. 1b. In the three columns of
this figure, we present the raw signals X and Y after reading
20, 50 and 80 data points, as well as the evolution of o(X,Y )
and o(Y,X) as it is computed from the history.

C. Experiments and results

We conduct two series of analyses. First, we analyze the
UD between each company’s assets and liabilities. Second, we
look at the unilateral dependencies between the two companies
in terms of assets and liabilities.

1) Unilateral dependencies between assets and liabilities:
The series of Apple and Kodak assets and liabilities (Fig. 2)
were used to study the evolution over time of the unilateral
dependencies (Figs. 3a and 3b).

We can observe a slightly higher influence of liabilities over
assets than vice versa. This is in accordance to the liability-
driven investment strategy (LDI), which is based on the cash
flows needed to fund future liabilities. LDI differs from a
benchmark-driven strategy, which is based on achieving better
returns than an external index such as the S&P 500 or a
combination of indices that invest in the same types of asset
classes. LDI is designed for situations where future liabilities
can be predicted with some degree of accuracy [22].

2) Unilateral dependencies between Kodak’s and Apple’s
financial reports: Having the series Current assets and Total
assets from Apple and Kodak at hand, we analyze how they
influence each other by taking all possible pairs, as represented
in Fig. 4. Comparing o(X,Y ) with o(Y,X), we could find an
interesting evolution of the dependency measure when the two
time series are represented by Kodak current assets and Apple
total assets. Although, in general, for the studied four series,
the graphs representing the dependency measure are almost
similar, when we look at o(X,Y ) versus o(Y,X), Kodak
current assets seems to be strongly depending on Apple total

assets when recent data is taken into consideration, while the
reverse dependency is weak. When looking at Kodak current
assets and Apple current assets, one can deduce that the trend
is that Kodak increases its dependency on Apple.

Kodak sold many of its patents for approximately
$525,000,000 to a group of companies (including Apple,
Google, Facebook, Amazon, Microsoft, Samsung, Adobe Sys-
tems and HTC) under the name Intellectual Ventures and RPX
Corporation5. This sale announced in the end of 2012 was a
step toward emerging from bankruptcy. Looking at the Kodak
financial data we notice a decrease of the amount of total
liabilities during 2013 and 2014, while Apple’s figures show an
increase. This divergent evolution was captured in the graphs
representing the dependency measure over time (Fig. 4) by
the change of the trend from increase to decrease around data
point 75 on the horizontal axes.

V. CONCLUSION AND OPEN PROBLEMS

In our study, we find it evident that a growing company like
Apple rides on consistent rising o(X,Y ) measures both from
assets to liabilities and vice versa. Also, during the period a
company is falling, as in Kodak’s case, the o(X,Y ) measures
are declining or flattened curves. It requires further research
to determine if the trend of the o(X,Y ) measures can be used
to predict a company’s financial strength or the effectiveness
of the assets and liabilities management.

In general, it is very tempting to search for causality
relationships and explanations. But without clear reasons or
logic to accept causality, we should only accept correlation.
We tried to find causal relationships and explanations which
go beyond simple statistical correlations. Having the evidence
of an event, we may try to find its cause. The UD gives us a
hint in explaining the influence of a time series over another
one and furthermore finding the possible reason of the event.
In our method, the o(X,Y ) is a time dependent UD measure,
able to adjust incrementally to the incoming data streams. We
have traced evident historical events of Apple and Kodak.

We are aware that this paper is far from being able to
establish rigorous causal relationships. However, the time dia-
gram of o(X,Y ) seems to be a great diagnostics tool, backed
by rigorous probability theory. We consider our approach
and experiments as a first step and we plan to continue this
research.
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[12] A. Caţaron, R. Andonie, and Y. Chueh, “Asymptotically unbiased
estimator of the informational energy with kNN,” International Journal
of Computers, Communications and Control, vol. 8, pp. 689–698, 2013.

[13] ——, “knn estimation of the unilateral dependency measure between
random variables,” in Proceedings of the 2014 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2014), IEEE
Symposium Series on Computational Intelligence (SSCI), December
2014, pp. 471–478.

[14] O. Onicescu, “Theorie de l’information. energie informationelle,” C. R.
Acad. Sci. Paris, Ser. A–B, vol. 263, pp. 841–842, 1966.

[15] S. Guiasu, Information theory with applications. McGraw Hill New
York, 1977.

[16] B. Silverman, Density Estimation for Statistics and Data Analysis
(Chapman & Hall/CRC Monographs on Statistics & Applied Proba-
bility). Chapman and Hall/CRC, 1986.

[17] L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy
of a random vector,” Probl. Peredachi Inf., vol. 23, no. 2, pp. 9–16,
1987.

[18] H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk, “Near-
est neightboor estimates of entropy,” American Journal of Mathematical
and Management Sciences, vol. 23, pp. 301–321, 2003.

[19] Q. Wang, S. R. Kulkarni, and S. Verdu, “A nearest-neighbor approach
to estimating divergence between continuous random vectors,” in Proc.
of the IEEE International Symposium on Information Theory, Seattle,
WA, 2006.

[20] L. Faivishevsky and J. Goldberger, “Ica based on a smooth
estimation of the differential entropy,” in Advances in Neural
Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds. Curran Associates, Inc.,
2009, pp. 433–440. [Online]. Available: http://papers.nips.cc/paper/
3500-ica-based-on-a-smooth-estimation-of-the-differential-entropy.
pdf

[21] J. Walters-Williams and Y. Li, “Estimation of mutual information: A
survey,” in Proceedings of the 4th International Conference on Rough
Sets and Knowledge Technology. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 389–396.

[22] T. Lemke and G. Lins, ERISA for Money Managers. Thomson Reuters,
2014.


