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Răzvan Andonie
Computer Science Department

Central Washington University, Ellensburg, USA
Email: andonie@cwu.edu

Angel Caţaron
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Abstract— In this paper we use the maximization of Onicescu’s
informational energy as a criteria for computing the relevances
of input features. This adaptive relevance determination is
used in combination with the neural gas and the generalized
relevance LVQ algorithms. The idea of applying the neural gas
neighborhood cooperation technique to improve the generalized
relevance LVQ is due to Hammer et al. and is best described
in [1]. Our approach gives an alternative way for determining
the relevances in Hammers’s algorithm, and in our experiments
it shows at least the same performances. Our contribution is an
incremental learning algorithm for supervised classification and
feature ranking.

I. INTRODUCTION

Mutual information (MI) is a good indicator of the relevance
between variables, and has been used as a measure in several
feature selection algorithms. In this case, the MI evaluates the
”information content” of each individual feature with regard
to the output class. The feature selection method is searching
for a subset of relevant features from an initial set of available
features. A sensible part of this approach is the estimation
of the MI, because of the requirements for the conditional
density functions and the high computational complexity.
Many MI-based feature selection algorithms used histogram
as density estimator [2], [3]. However, in high dimensional
space, histograms are neither effective nor accurate [4]. A
MI estimation technique based on Renyi’s quadratic entropy
and Parzen windows was proposed by Principe et al. [5]
and has been used in an efficient feature selection algorithm
[4]. Torkkola also used this estimation method for feature
extraction by MI maximization [6]. Other MI based feature
selection methods are described in [7] and [8].

Our MI-based feature ranking approach is used in the
context of Kohonen’s supervised LVQ algorithms [9], [10].
Standard LVQ does not discriminate between more or less
informative features: their influence on the distance func-
tion is equal. On the contrary, the Relevance LVQ (RLVQ),
introduced in [11], holds a changeable relevance value for
every feature and employs a weighted distance function for
classification. An iterative heuristic training process is used to
tune the weight values for a specific problem: the influence of
features which frequently contribute to miss classifications of
the system is reduced while the influence of very reliable fea-
tures is increased. A modification of RLVQ has been proposed
by Hammer et al. [12], Generalized RLVQ (GRLVQ), which

obeys a stochastic gradient descent on an energy function. This
method modifies the GLVQ algorithm (introduced in [13])
by using an adaptive metric, and leads to a more powerful
classifier with little extra cost compared to GLVQ.

The neural-gas (NG) algorithm, introduced in [14], repre-
sents a neural model which is applied to the task of vector
quantization by using a neighborhood cooperation scheme.
The NG network uses a soft-max adaptation rule, similar to
the Kohonen feature map. It replaces the Euclidean distance
with the neighborhood ranking of the reference vectors for a
given input vector. The advantage of using the NG network
is avoiding the dependency on the initialization of reference
vectors.

The most recent proposed model in this sequence is the
Supervised Relevance Neural Gas (SRNG) algorithm, which
combines the NG and the GRLVQ [1]. The idea was to incor-
porate neighborhood cooperation of NG into the GRLVQ to
speedup the convergence and make initialization less crucial.

In our previous work [15], [16], rather than using Renyi’s
entropy, we have estimated the MI using Onicescu’s infor-
mational energy [17]. Our estimation was incorporated in
two existent weighted LVQ type algorithms: Relevance LVQ
(RLVQ) [11] and Generalized Relevance LVQ (GRLVQ) [12].
Essentially, we have obtained incremental learning algorithms
for supervised classification and feature ranking.

In this paper we introduce the Energy SRNG (ESRNG)
algorithm, which uses the maximization of the informational
energy (IE) as a criteria for computing the relevances of
input features. This adaptive relevance determination is used
in combination with the SNG model. The hierarchy of these
neural models in described in Fig. 1.

In Section II we introduce the basic notations used in the
NG, GLVQ, SNG, and SRNG algorithms. Section III describes
our IE approximation technique and Section IV the ESRNG
algorithm. In Section V we compare ESRNG to the basic
SRNG model and to other algorithms of this family. Section
VI, concludes with some closing remarks.

II. SUPERVISED RELEVANCE NEURAL GAS

Assume that a clustering of data into M classes, c1, . . . , cM ,
is to be learned and a set of training data is given:

X = {(xi, ci) ⊂ Rn × {1, . . . , M} | i = 1, . . . , N}.
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Fig. 1. Supervised Neural Gas and Relevance Learning in LVQ (adapted
from [18])

The components of a vector xi are [xi1, . . . , xin].
A subset of reference vectors from Rn are assigned

to each class. Denote the set of all reference vectors by
W = {w1, . . . ,wK}. The components of a vector wj are
[wj1, . . . , wjn].

The neighborhood ranking of the reference vectors is de-
termined each time a training vector is applied to the input
of the neural network in the following way. The Euclidean
distances between input sample xi and all reference vectors
wj , j ∈ {1, . . . , K} are sorted in increasing order. Therefore,
the rank of a particular vector wj for a given input vector
xi equals to the number of reference vectors that are in the
relation ‖xi−wk‖ ≤ ‖xi−wj‖, where j, k ∈ {1, . . . , K} and
j �= k. We will denote the rank of wj by rj(xi, W ) because it
depends on both xi and the whole set W of reference vectors.

The NG algorithm optimizes the following cost function
[14], [1]:

CNG =
1

C(γ)

∑
wj∈W

∑
xi∈X

hγ(rj(xi, W ))‖xi − wj‖2,

where hγ(rj(xi, W )) = e−rj(xi,W )/γ , γ determines the neigh-
borhood range and C(γ) =

∑K−1
r=0 hγ(r). The learning rule

is [14], [1]:

∆wj = ηhγ(rj(xi, W ))(xi − wj),

where η is a positive learning rate. By incorporating the
neighborhood range, this learning rule not only adapts the
winner, but all reference vectors, with a degree given by hγ .

Two reference vectors, wj and wk are considered. They
are the closest to the input vector xi, the first one from the
same class with xi and the second one from another class.
A relative distance difference is defined by µ(x) = dj−dk

dj+dk
,

where dj = ‖xi − wj‖, dk = ‖xi − wk‖. This function,
which ranges between -1 and 1, has negative values if the
input vector is classified correctly and has positive values if
the input vector is classified incorrectly. The following cost
function is minimized: S =

∑N
i=1 f(µ(xi)), where N is the

number of input vectors used in the training process and f
is a monotonically increasing function. The codebook vectors

are modified as follows:

w(t+1)
j =w(t)

j − η
∂S

∂wj

w(t+1)
k =w(t)

k − η
∂S

∂wk
,

where η is the learning rate. Hence, the update rule of the
GLVQ algorithm is:

w(t+1)
j =w(t)

j + η
∂f

∂µ

dk

(dj + dk)2
(xi − wj)

w(t+1)
k =w(t)

k − η
∂f

∂µ

dj

(dj + dk)2
(xi − wk).

By incorporating the NG rule into the GLVQ algorithm, the
objective function of NG can be reformulated as follows [1]:

CSNG =
∑
xi∈X

∑
wj∈Wxi

hγ(rj(xi, W
xi))f(µ(xi,wj))

C(γ, Kxi)
,

where Wxi is a subset of W which contains the reference
vectors from the same class with xi, Kxi is the cardinality
of Wxi , d µ(xi,wj) = ‖xi−wj‖−dk

‖xi−wj‖+dk
and C(γ, Kxi) =∑Kxi−1

r=0 hγ(r).
The Generalized Relevance LVQ (GRLVQ) algorithm [12]

associates a relevance factor to each input component. We
define the relevance vector by λ = [λ1, . . . , λn],

∑n
k=1 λk =

1, where n is the dimension of the input vectors xi, i =
1, . . . , N . The GRLVQ algorithm uses a weighted distance
between an input vector xi and a reference vector wj :

Dij =

√√√√ n∑
k=1

λk(xik − wjk)2,

where
∑n

k=1 λk = 1.
The GLVQ algorithm can be reformulated to minimize an

objective function based on this modified distance, yielding
the GRLVQ. In order to update the reference vectors, the
following criteria is maximized: S =

∑N
i=1 f(µλ(xi)). In

this formula, the relative distance µλ(xi) = Dij−Dik

Dij+Dik
has

values between −1 and 1, negative for correct classification
and positive if the classification is not correct, according to
the weighted distance.

The Supervised Relevance NG (SRNG) was obtained by
including the NG idea in the GRLVQ algorithm [1]. The cost
function optimized by this algorithm is:

CSRNG =
∑
xi∈X

∑
wj∈Wxi

hγ(rj(xi, W
xi))f(µλ(xi,wj))

C(γ, Kxi)
,

with µλ(xi,wj) = |xi−wj |2λ−Dik

|xi−wj |2λ+Dik
, where Dik is the weighted

distance between xi and the closest reference vector that
does not belong to Wxi . According to this cost function, all
reference vectors from Wxi and the closest reference vector
that does not belong to this set are updated by [1]:

∆wj=ηλI
∂f

∂µ

Dik

(|xi − wj |2λ + Dik)2
·

·(xi − wj)
rj(xi, W

xi)
C(γ, Kxi)

(1)
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where wj is the closest reference vector from xi that does not
belong to Wxi , and

∆wk=−
∑

wj∈Wxi

η1λI
∂f

∂µ

|xi − wj |2λ
(|xi − wj |2λ + Dik)2

·

·(xi − wk)
rj(xi, W

xi)
C(γ, Kxi)

(2)

for all reference vectors from Wxi . η and η1 are two positive
constants.

In our experiments, we have used the sigmoid function
f(µ) = 1

1+e−µε , for which ∂f
∂µ = f(µ) (1 − f(µ)), with ε

a positive constant.

III. INFORMATIONAL ENERGY FOR FEATURE RANKING

For a discrete random variable X with probabilities pk, k =
1, . . . , n, the discrete informational energy was introduced by
Onicescu [17] as E(X) =

∑n
k=1 p2

k. For a continuous random
variable Y , the informational energy is defined by [19]:

E(Y ) =
∫ +∞

−∞
p2(y)dy,

where p(y) is the probability density function of the random
variable.

The conditional informational energy for a continuous ran-
dom variable Y and a discrete random variable C is defined
as

E(Y |C) =
∫
y

M∑
p=1

p(cp)p2(y|cp)dy.

The following measure of unilateral dependency between
two random variables X and Y was defined in [20]:

o(Y, X) = E(Y |X) − E(Y )

with the following properties:

• o is not symmetrical with respect to its arguments;
• o(Y, X) ≥ 0 and the equality holds iff Y and X are

independent;
• o(Y, X) ≤ 1 − E(Y ) and the equality holds iff Y is

completely dependent on X .

This measure can be regarded as an indicator of the uni-
lateral dependence characterizing Y with respect to X and
corresponds to the amount of information that X has about
Y .

The mutual information I(Y, X) = H(Y ) − H(Y |X) and
the value o(Y, X) = E(Y |X) − E(Y ) actually measure the
same phenomenon and there is an obvious similarity between
them. The measure o is unilateral and not mutual, but this does
not influence our approximation procedure.

We will briefly describe a method to obtain the relevance
values by maximizing o(Y, C). Details can be found in [16].
Let us consider a continuous random variable Y with its
samples yi, i = 1, . . . , N :

yi = λI(xi − wj),

where λ is the relevance vector, xi, i = 1, . . . , N , is the
set of training vectors each of them belonging to one of
the c1, c2, . . . , cM classes and wj , j = 1, . . . , P , are the
prototypes of the classes and are determined with a LVQ-type
algorithm. The reason behind the choice of this transform is
the connection it makes between the input vector and the class,
represented by prototype wj , that it is assigned to. We consider
the M classes labels are samples of a discrete random variable
denoted by C.

The update of the relevance values can be written as:

λ(t+1) = λ(t) + α

N∑
i=1

∂o(Y, C)
∂yi

I (xi − wj) . (3)

From the definition, we have:

o(Y, C) = E(Y |C) − E(Y )

and we obtain:

o(Y, C) =
M∑

p=1

1
p(cp)

∫
y

p2(y, cp)dy −
∫
y

p2(y)dy. (4)

This expression involves a considerable computational ef-
fort and the probability densities from the integrals can be
approximated by the Parzen windows estimation method. The
multidimensional Gaussian kernel is [5]:

G(y, σ2I) =
1

(2π)
d
2 σd

· e−yty

2σ2 ,

where d is the dimension of the definition space of the kernel
and σ2I is the covariance matrix. The probability density p(y)
is:

p(y) =
1
N

N∑
i=1

G(y − yi, σ
2I),

where I is the identity matrix.
We will denote by Mp the number of training samples from

class cp. Using the Parzen windows approximations, we have:

∫
y

p2(y, cp)dy =
1

N2

Mp∑
k=1

Mp∑
l=1

G(ypk − ypl, 2σ2I)

and
∫
y

p2(y)dy =
1

N2

N∑
k=1

N∑
l=1

G(yk − yl, 2σ2I),

where ypk, ypl are two training samples from class p. yk, yl

represent two training samples from any class.
With these relations, equation (4) can be rewritten and we

finally obtain the following update formula of the relevance
factors:

λ(t+1) = λ(t) − α
1

4σ2
G(y1 − y2, 2σ2I) · (y2 − y1)I·

·(x1 − wj(1) − x2 + wj(2)), (5)

where wj(1) and wj(2) are the closest prototypes to x1 and
x2, respectively.
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It is perhaps of interest to mention why we became in-
terested in using a relatively old and simple information
measure like the informational energy at all. As always with
L2 type methods, quadratic optimization functions lead to
linear gradients and thus simpler computations. This was the
first reason why we choosed the informational energy and not
another type of informational measure in our approach. The
second reason was the fact that we have previously introduced
and studied the measure o [20].

Compared to the Renyi’s quadratic entropy based estimation
procedure [5], our method leads to a similar MI approximation
formula, but in a more simple way. It is also interesting to note
that only o(Y, C) can be maximized like this. The similar
procedure for maximizing o(C, Y ) does not work. This is
because the measure o is not symmetrical.

IV. THE ESRNG ALGORITHM

The algorithm adapts the reference vectors for as least
as possible quantization error on all feature vectors. After
initializing the relevance vector λk = 1/n, k = 1, . . . , n,
the codebook vectors, η, α, and σ, the following procedure
updates incrementally the codebook vectors, the relevances
and the feature ranks, for a given input xi:

1) Update the codebook vectors using the SRNG relations
(1) and (2).

2) Update the relevances according to our formula (5) and
normalize them.

3) Normalize the relevances.
4) Update the overall rank of each feature as an average

over all previous steps.

Relevance determination can be used after LVQ learning,
or simultaneously, this second version yielding an on-line
algorithm.

V. EXPERIMENTS AND RESULTS

We tested the ESRNG algorithm on three standard databases
selected from [21]: Iris, Vowel Recognition, and Ionosphere.
We compared our experimental results with experiments per-
formed under similar conditions.

Tables I, II and III present the ranking of the input features
obtained by our algorithm for Iris, Vowel and Ionosphere
databases. In Table IV we list the recognition rates obtained
by ESRNG compared to RLVQ, GRLVQ, SRNG, ERLVQ and
EGRLVQ.

The problem of detecting the classes of the 150 vectors
from the Iris database was tested on 6 reference vectors. The
third component was ranked as most important, while the least
important was the second component. We used η = 1, η1 =
0.5, and the recognition rate was 97.33%.

For the Vowel recognition database (Deterding data) we
trained 59 reference vectors and we obtained a recognition
accuracy of 47.61%, with η = 0.7 and η1 = 0.5. The second
feature was considered as most important and the features from
positions 10 and 7 were ranked between the least important,
as we reported in [16]. We have obtained the relevance vector

TABLE I

FEATURE RANKING FOR THE IRIS DATABASE.

Rank 1 2 3 4

RLVQ 4 2 3 1
GRLVQ 4 3 2 1
SRNG 3 4 2 1
ERLVQ 1 2 3 4
EGRLVQ 1 3 4 2
ESRNG 3 1 4 2

TABLE II

FEATURE RANKING FOR THE VOWEL RECOGNITION DATASET.

Rank 1 2 3 4 5

RLVQ 2 5 1 9 6
GRLVQ 2 5 4 6 3
SRNG 1 4 6 2 3
ERLVQ 2 1 3 4 6
EGRLVQ 3 1 2 6 5
ESRNG 2 1 3 8 9

Rank 6 7 8 9 10

RLVQ 3 4 8 7 10
GRLVQ 1 9 7 8 10
SRNG 9 8 5 7 10
ERLVQ 8 9 5 10 7
EGRLVQ 4 9 8 7 10
ESRNG 4 5 10 8 7

[0.369 0.390 0.364 0.322 0.290 0.220 0.218 0.338 0.337
0.254].

In the Ionosphere dataset test we used 8 reference vectors
trained with 200 instances out of 351. The remaining 151
instances where used for testing phase, as specified in [21].
The recognition rate was 94.03%, with η = 0.04 and η1 =
0.03.

VI. CONCLUSIONS

ESRNG is an incremental learning algorithm for feature
ranking and supervised classification. It is computationally
attractive for large datasets, where dimensionality reduction
is required. The ESRNG algorithm was tested on different
standard datasets. Further experiments are necessary especially
for comparing ESRNG and SRNG. Our present assumption is
that using an informational theory approach for approximating
the input feature relevances is especially profitable for feature
ranking and selection.

TABLE III

FEATURE RANKING FOR THE IONOSPHERE DATABASE. ONLY THE FIVE

MOST IMPORTANT FEATURES ARE REPRESENTED.

Rank 1 2 3 4 5

RLVQ 20 28 26 12 6
GRLVQ 12 4 22 8 6
SRNG 24 15 12 10 21
ERLVQ 8 24 16 12 6
EGRLVQ 4 5 12 8 27
ESRNG 14 8 5 16 3
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TABLE IV

COMPARATIVE RECOGNITION RATES FOR THE TEST DATA.

Iris Vowel Ionosphere
LVQ 91.33% 44.80% 90.06%
RLVQ 95.33% 46.32% 92.71%
GRLVQ 96.66% 46.96% 93.37%
SRNG 96.66% 47.61% 94.03%
ERLVQ 97.33% 47.18% 94.03%
EGRLVQ 97.33% 47.18% 94.40%
ESRNG 97.33% 47.61% 94.03%
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