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Abstract— Input feature ranking and selection represent a
necessary preprocessing stage in classification, especially when
one is required to manage large quantities of data. We introduce a
weighted generalized LVQ algorithm, called Energy Generalized
Relevance LVQ (EGRLVQ), based on the Onicescu’s informa-
tional energy [1]. EGRLVQ is an incremental learning algorithm
for supervised classification and feature ranking.

I. I NTRODUCTION

Kohonen introduced Learning Vector Quantization (LVQ)
[2] as a prototype based supervised clustering algorithm. This
algorithm can be used as a simple, universal and efficient
adaptive classifier. The idea of LVQ is to approximate optimal
Bayesian decision borders between different classes in ann-
dimensional feature space with a number of labeled prototypes
namedcodebook vectors. An example vectorx is classified
to the label of its closest codebook vector according to a
distance function as, for instance, the Euclidean distance.
The codebook vectors are trained iteratively, using a set of
training data. Various modifications to the basic algorithm
were proposed to ensure a faster convergence (OLVQ), a
better adaptation of the borders (LVQ2.1, LVQ3), an adequate
initialization of the codebook vectors according to the data
distribution (LVQ+SOM) [2], [3], or an adaptation for complex
data structures [4], to name just a few.

Standard LVQ does not discriminate between more or less
informative features: their influence on the distance function
is equal. On the contrary, the Distinction Sensitive Learning
Vector Quantizer (DSLVQ), introduced by Pregenzeret al. [5],
[6], holds a changeable weight value for every feature and
employs a weighted distance function for classification. An
iterative heuristic training process is used to tune the weight
values for a specific problem: the influence of features which
frequently contribute to miss classifications of the system
is reduced while the influence of very reliable features is
increased. The weighting process can be seen as a scaling
transformation from the original Euclidean distance based
feature space into a weighted distance based feature space:
it increases distances between feature values of class discrim-
inating features and decreases distances at little informative
dimensions. This facilitates class discrimination and makes the
system less sensitive to noise [6].

From Pregenzer’set al. approach we can extract the follow-
ing ideas:

• The weighted distance function used by Pregenzeret al.
is based on the weighted Euclidean approach. However,

it is stated that other weighted distances could be applied
as well.

• Weights and codebook vectors are updated in parallel
during the learning phase. The updating can be per-
formed on-line, after processing each learning sample.
The modification of the LVQ algorithm is minimal: only
the distance function has to be replaced.

• The resulted weights may be regarded as feature ranks
and used for dimensional reduction of the input space
(i.e., feature selection).

Another LVQ variation similar to DSLVQ is Relevance
LVQ (RLVQ), introduced in [7], the weights being called
relevances.

A different heuristic updating scheme of the feature weights,
used for computing a modified distance in LVQ, is described
in [8]. The weights (relevances) are computed as Ordered
Weighted Aggregation (OWA) weights.

The above approaches share the following characteristic:
they are only heuristically motivated and they do not obey a
gradient dynamic. In DSLVQ and RLVQ, the updating of the
weights is related to simple perceptron learning and difficulties
arise if provided with non separable data [7].

For these reasons, a modification of RLVQ has been
proposed by Hammeret al. [9], [10], Generalized RLVQ
(GRLVQ), which obeys a stochastic gradient descent on an
energy function. This method modifies the GLVQ algorithm
(introduced in [11]) by using an adaptive metric, and leads
to a more powerful classifier with little extra cost compared
to GLVQ. GRLVQ is a large margin method with dimension
independent mathematical generalization bounds [12] and it
can be used together with any differentiable similarity measure
[13].

Input feature selection is a necessary preprocessing stage
in classification especially when one is required to manage
large quantities of data. Recently, the mutual information(MI)
was used by feature selection methods [14], [15]. In this case,
the MI evaluates the ”information content” of each individual
feature with regard to the output class. The feature selection
method is searching for a subset of relevant features from an
initial set of available features. The subset should maximize
MI. A sensible part of this approach is the estimation of
MI. Estimating MI is hard because of the requirements for
the conditional density functions and the high computational
complexity. Many MI-based feature selection algorithms [14],
[15] used histogram as density estimator. However, in high



dimensional space, histogram is neither effective nor accurate
[16]. A MI estimation based on Renyi’s quadratic entropy and
Parzen windows estimation method was proposed by Principe
et al. [17] and has been recently used in an efficient feature
selection algorithm [16]. Torkkola also used this estimation
method for feature extraction by mutual information max-
imization [18]. He computed the MI between transformed
features and the class labels and used it as a criterion for
learning the discriminative features transformations.

In this paper we introduce the Energy Generalized Rele-
vance LVQ (EGRLVQ) algorithm which uses the estimation
of the informational energy (IE) as a maximization criteria
for the computing of the feature relevance. We then use a
weighted distance based on the relevance factors instead of
the Euclidian distance to redefine the GLVQ algorithm.

In Section II we introduce the basic notations used in
LVQ and GLVQ, and define the class of ”weighted GLVQ
algorithms”. A brief description of the informational energy
is given in Section III. The relevance factors computation is
developped in Section IV and the EGRLVQ algorithm is de-
fined in Section V. We present in Section VI the experimental
results and the conclusions are formulated in Section VII.

II. T HE WEIGHTED GLVQ ALGORITHM

Assume that a clustering of data intoM classes is to be
learned and a set of training data is given:

X = {(xi,yi) ⊂ Rn × {1, . . . , M} | i = 1, . . . , N}.

The components of a vectorxi are [xi1, . . . , xin].
LVQ chooses codebook vectors inRn for each class.

Denote the set of all codebook vectors by{w1, . . . ,wK}. The
components of a vectorwj are [wj1, . . . , wjn].

Let us consider we have two codebook vectorswj andwk,
the first one in the same class with the vectorxi and the second
one from another class. We focus on LVQ2.1 [2] which is a
clustering algorithm that adapts better the prototypes along
the Bayes decision boundary. When the training process starts
with properly defined initial values, the two codebook vectors
can be updated in order to converge to the solution as follows:
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whereη(t) ranges between 0 and 1 and may decrease monoton-
ically with time. The input vectorxi must fall into a window
defined around the midplane of the two codebook vectors and
the following condition must be sastisfied:
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wheredj = ‖xi − wj‖, dk = ‖xi − wk‖ ands is a constant
determined by the window widthl:

s =
1 − l

1 + l
.

A generalization of this algorithm, named Generalized LVQ
(GLVQ) was proposed in [11]. A steepest descent method
which minimizes a cost function was used to define the
codebook vectors update.

A relative distance difference is defined by:

µ(x) =
dj − dk

dj + dk

.

This function which ranges between -1 and 1 has negative
values if the input vector is classified correctly and has
positive values if the input vector is classified incorrectly. The
following cost function is minimized:

S =

N
∑

i=1

f(µ(xi)),

whereN is the number of input vectors used in the training
process andf is a monotonically increasing function. The
codebook vectors are modified as follows:
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where we denoted the learning rate withη. Therefore, the
update rule of the GLVQ algorithm is:
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The weighted GLVQ algorithm adapts the codebooks for as
least as possible quantization error on all feature vectors, as
follows:

1) Find the two codebook vectorswj andwk, the first one
in the same class with the vectorxi and the second one
from another class.

2) Updatewj andwk according to the GLVQ algorithm.
3) Update the relevance factors.
4) Update the rank of each feature as an average of the

ranks resulted in the previous steps.

Relevance determination can be used after LVQ learning,
or simultaneously, this second version yielding an on-line
algorithm.

III. I NFORMATIONAL ENERGY

We will give in this section a brief description of the concept
of informational energy as it was presented in [1].

The discrete informational energy was defined by Onicescu
[1], and for a continuous random variableY it is defined by
[19]:

E(Y ) =

∫ +∞

−∞

p2(y)dy,

wherep(y) is the probability density function of the random
variable.



When we have a continuous random variableY and a
discrete random variableC, the conditional informational
energy is defined as following:

E(Y |C) =

∫

y

M
∑

p=1

p(cp)p
2(y|cp)dy.

In order to study the interaction between two random
variablesX and Y , the following measure of unilateral de-
pendency was defined in [20]:

o(Y, X) = E(Y |X) − E(Y )

with the following properties:
• o is not symmetrical with respect to its arguments;
• o(Y, X) ≥ 0 and the equality holds iffY and X are

independent;
• o(Y, X) ≤ 1 − E(Y ) and the equality holds iffY is

completely dependent onX .
This measure can be regarded as an indicator of the uni-

lateral dependence characterizingY with respect toX and
corresponds to the amount of information detained byX about
Y .

IV. I NFORMATIONAL ENERGY FOR FEATURE RANKING

The mutual informationI(Y, X) = H(Y ) − H(Y |X) and
the valueo(Y, X) = E(Y |X) − E(Y ) actually measure the
same phenomenon and there is an obvious similarity between
them.

Let us consideryi, i = 1, . . . , N the samples ofY and

yi = λI(xi − wj)

where λ is the relevance vector,xi, i = 1, . . . , N is the
set of training vectors each of them belonging to one of
the c1, c2, . . . , cM classes andwj , j = 1, . . . , P are the
prototypes of the classes and are determined with a LVQ-type
algorithm. The reason behind the choice of this transform is
the connection that it makes between the input vector and the
class, represented by prototypewj , that it is assigned to. We
consider theM classes labels are samples of a discrete random
variable denoted byC.

We intend to obtain the relevance values by maximizing
o(Y, C):

λ(t+1) = λ(t) + α

N
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∂yi

I (xi − wj) . (1)

We will denote byMp the number of training samples from
classcp.

From the definition, we can write:

o(Y, C) = E(Y |C) − E(Y ),

where
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We obtain
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y

p2(y)dy. (2)

This expression involves a considerable computational effort
and we will aproximate the probability densities from the
integrals using the Parzen windows estimation method. The
multidimensional Gaussian kernel has the following form:

G(y, σ) =
1
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d
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t
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whered is the dimension of the definition space of the kernel
andσ2I is the covariance matrix. The probability densityp(y)
is [17]:

p(y) =
1

N

N
∑

i=1

G(y − yi, σ
2I),

whereI is the unity matrix.
Using the Parzen windows approximations, we have:
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whereypk, ypl are two training samples from classp, andyk,
yl represent two training samples from any class. With these
relations, equation (2) can be rewritten and we finally obtain
the following update formula of the relevance factors, as we
explain in the Appendix:

λ(t+1) = λ(t) − α
1

4σ2
G(y1 − y2, 2σ2I) · (y2 − y1)I·

·(x1 − wj(1) − x2 + wj(2)), (3)

where wj(1) and wj(2) are the closest prototypes from the
input vectorsx1 andx2, respectively.

We have obtained this formula using a gradient ascent
method similar to the technique described by Torkkola in
[18], but using informational energy instead of the mutual
information.

V. EGRLVQ - ENERGY GRLVQ

We use the weighted distance between an input vectorxi

and a codebook vectorwj :

Dij =

√

√

√

√

n
∑

k=1

λk(xik − wjk)2,

where
∑n

k=1 λk = 1.
The GLVQ algorithm must be reformulated to minimize an

objective function based on this modified distance.
Let us consider the feature vectorxi and wj to be its

nearest codebook vector that belongs to the same class. We
also considerwk which is its nearest codebook vector that



belongs to a different class. We define the following relative
distance:

µλ(xi) =
Dij − Dik

Dij + Dik

which has values betwen−1 and 1, negative for correct
classification and positive if the classification is not correct,
according to weighted distance. Consideringf as a non-linear,
monotonically increasing function, the codebook vectors could
be updated by a relation that minimizes the following criteria:

S =

N
∑

i=1

f(µλ(xi)).

In this paper we used the sigmoid function

f(µ, γ) =
1

1 + e−µγ

for which
∂f

∂µ
= f(µ, γ) (1 − f(µ, γ)) .

We obtain a modified GLVQ rule, which is just the GRLVQ
rule [10]:

∆wj = ηλI
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Dik

(Dij + Dikj)2
(xi − wj) (4)

if xi andwj are in the same class, and

∆wk = −ηλI
∂f

∂µ

Dij

(Dij + Dik)2
(xi − wk) (5)

if xi andwk are in different classes.
The following procedure updates on-line both the relevances

and the feature ranks.

1) Initialize η andα. Initialize the relevance vector:λk =
1
n

, k = 1, . . . , n.
2) Initialize the codebook vectors.
3) Update the codebook vectors using the relations (4) and

(5).
4) Update the relevances using formula (3).
5) Normalize the relevances.
6) Compute the weight of each feature as an average of its

before ordering position index in the input vector, for
all previous steps.

7) Repeat steps 3-6 for each training pattern.

LVQ2.1 is an enhanced version of the LVQ1 algorithm. In
a previous paper [21], we have introduced a LVQ1 version of
the above algorithm, called ERLVQ.

VI. EXPERIMENTS AND RESULTS

We have used the following datasets on tests of EGRLVQ
algorithm: Iris, Vowel Recognition, and Ionosphere.

The Iris database [22] consists of 3 classes, 50 vectors
each. Two of them are not linearly separable. The problem
is to detect the classes based on 4 features. While training 6
codebooks with EGRLVQ, we obtained a recognition rate of
97.33%. The relevance vector that resulted after the experiment
presented here was [0.81 0.18 0.47 0.28]. We usedη = 0.3
andα = 20. In Table I we present the ranking resulted after

TABLE I

FEATURE RANKING FOR THEIRIS DATABASE.

Rank 1 2 3 4

RLVQ 4 2 3 1
GRLVQ 4 3 2 1
OWA-RLVQ 4 3 2 1
ERLVQ 1 2 3 4
EGRLVQ 1 3 4 2

the RLVQ, GRLVQ, OWA-RLVQ, ERLVQ, and EGRLVQ
training, obtained for the test data, using the same initial
set of codebook vectors. The results obtained with ERLVQ
and EGRLVQ are different from RLVQ and OWA-RLVQ due
to the different approach involved in the developing of our
new algorithm. When we use Iris database, the last feature
is the most important for algorithms which find well defined
classes’ centroids, such as RLVQ and OWA-RLVQ. When our
goal is to define as much as possible class discrimination to
the neighbourhood of the borders with an algorithm such as
ERLVQ and EGRLVQ, the first feature is the most important.
Our ranking is similar to the results reported in [23] where
the bidimensional projection of patterns from classes ”1” and
”2” including the first feature leads us to two well delimited
clusters, but the centroids are relatively close one to the other.
On the other hand, the bidimensional projection of the same
patterns based on the last two features creates two clusters
with quite distanced centroids, but the classes delimitation is
not very clear.

The second dataset that we used in our tests was the
Vowel Recognition database (Deterding data) [22]. It contains
vectors extracted from 15 individual speakers pronouncing
vowels in 11 contexts, 6 times each. The problem is to use
the pronunciations of the first 8 speakers for training and
the pronunciations of the remaining 7 speakers for tests. We
trained 59 codebooks and the recognition score was 47.18%.
In the EGRLVQ experiments we setη = 0.7 andα = 200. The
ranking that we obtained for the 10 features of the test vectors
from this dataset is presented in Table II. The most important
resulted to be the feature number 3. The second feature was
selected as one of the most important, as resulted when we
used other algorithms. The features from the positions 7 and
10 are the least important for EGRLVQ, also confirming the
previous results. The relevance vector that we obtained in the
experiment presented here is [0.354 0.349 0.439 0.287 0.299
0.310 0.268 0.271 0.284 0.253].

The last set of tests was performed in the Ionosphere dataset
[22]. It consists of 351 instances of radar collected data, with
34 continuous attributes each. The vectors are labelled with
”bad” or ”good”, being a binary classification task. The first
200 instances that are balanced between positive and negative
examples were used for the training of 8 codebook vectors.
The remaining 151 patterns were used for tests. The values
of the EGRLVQ training parameters wereη = 0.9 and α =
0.9 · 1013. We obtained a recognition rate of 94.40% that was
better than the rates obtained with GRLVQ and ERLVQ. Table



TABLE II

FEATURE RANKING FOR THEVOWEL RECOGNITION DATASET.

Rank 1 2 3 4 5

RLVQ 2 5 1 9 6
GRLVQ 2 5 4 6 3
OWA-RLVQ 8 2 4 5 6
ERLVQ 2 1 3 4 6
EGRLVQ 3 1 2 6 5

Rank 6 7 8 9 10

RLVQ 3 4 8 7 10
GRLVQ 1 9 7 8 10
OWA-RLVQ 9 3 7 1 10
ERLVQ 8 9 5 10 7
EGRLVQ 4 9 8 7 10

TABLE III

FEATURE RANKING FOR THEIONOSPHERE DATABASE. ONLY THE FIVE

MOST IMPORTANT FEATURES ARE REPRESENTED.

Rank 1 2 3 4 5

RLVQ 20 28 26 12 6
GRLVQ 12 4 22 8 6
OWA-RLVQ 14 12 1 3 28
ERLVQ 8 24 16 12 6
EGRLVQ 4 5 12 8 27

III contains the ranking of the most important 5 features of
the test vectors.

We finally listed in Table IV a comparative set of recogni-
tion rates that we obtained with LVQ, RLVQ, GRLVQ, OWA-
RLVQ, ERLVQ and EGRLVQ in similar conditions, for the
test data.

VII. C ONCLUSIONS

EGRLVQ is an incremental learning algorithm for feature
ranking and supervised classification. It is computationalat-
tractive for large datasets, where dimensionality reduction is
required. The EGRLVQ algorithm was sucessfully tested on
different standard datasets and, compared to RLVQ, GRLVQ,
OWA-RLVQ, and ERLVQ, provided better recognition rates.

The behaviour of EGRLVQ around the boundaries of the
receptive fields is an interesting future research direction.

APPENDIX

The relevance updating formula.The equation (2) can be

TABLE IV

COMPARATIVE RECOGNITION RATES FOR THE TEST DATA.

Iris Vowel Ionosphere
LVQ 91.33% 44.80% 90.06%
RLVQ 95.33% 46.32% 92.71%
GRLVQ 96.66% 46.96% 93.37%
OWA-RLVQ 96.66% 46.75% 93.37%
ERLVQ 97.33% 47.18% 94.03%
EGRLVQ 97.33% 47.18% 94.40%
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To find the relevance update formula, we will use two con-
secutive samples as classes representativesy1 andy2, as was
suggested in [24]:

1) When the two samples belong to the same class,N = 2,
M = 2, M1 = 2 and M2 = 0, and the first term
of relation (6) cannot be calculated due to the non-
determination introduced by the value ofM2 from the
denominator. Therefore, this case will be ignored.

2) When the two samples belong to different classes,N =
2, M = 2, M1 = 1 andM2 = 1. Equation (6) becomes:
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Finally, the relation will be:

o(Y, C) = G(0, 2σ2I) −
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G(y1 − y2, 2σ2I).

According to (2), we must calculate the partial deriva-
tives of o(Y, C) with respect toy1 and then toy2. For
this purpose, we use the following relation:
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Then:

∂o(Y, C)

∂y1
=

=
∂

∂y1
(G(0, 2σ2I) −

1

2
G(y1 − y2, 2σ2I)) =

=
∂G(0, 2σ2I)

∂y1
−

1

2

∂G(y1 − y2, 2σ2I)

∂y1
.

Because

G(0, 2σ2I) =
1

(2π)
d
2 |σ|

1

2

is a constant value, we have:

∂o(Y, C)

∂y1
= −

1

2

∂G(y1 − y2, 2σ2I)

∂y1
=

= −
1

2
G(y1 − y2, 2σ2I) ·

y2 − y1

2σ2
.

Using a similar method, we can write:
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Replacing these results in (1), we obtain:
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Hence,
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