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Abstract— Input feature ranking and selection represent a it is stated that other weighted distances could be applied
necessary preprocessing stage in classification, espelgialvhen as well.

one is required to manage large quantities of data. We introdce a . ; ;
weighted generalized LVQ algorithm, called Energy Generaked Weights and codebook vectors are updated in parallel

Relevance LVQ (EGRLVQ), based on the Onicescu’s informa- during the _Iearning phase. The updating can be per-
tional energy [1]. EGRLVQ is an incremental learning algorithm formed on-line, after processing each learning sample.
for supervised classification and feature ranking. The modification of the LVQ algorithm is minimal: only

the distance function has to be replaced.
« The resulted weights may be regarded as feature ranks
Kohonen introduced Learning Vector Quantization (LVQ)  and used for dimensional reduction of the input space
[2] as a prototype based supervised clustering algorithms T (i.e., feature selection).
algorithm can be used as a simple, universal and efficientangther LVQ variation similar to DSLVQ is Relevance
adaptive classifier. The idea of LVQ is to approximate optim@VQ (RLVQ), introduced in [7], the weights being called
Bayesian decision borders between different classes in-anigjevances
dimensional feature space with a number of labeled pro&styp A different heuristic updating scheme of the feature weight
namedcodebook vectorsAn example vectoi is classified sed for computing a modified distance in LVQ, is described
to the label of its closest codebook vector according to g [8]. The weights (relevances) are computed as Ordered
distance function as, for instance, the Euclidean diStanWeighted Aggregation (OWA) weights.
The codebook vectors are trained iteratively, using a set ofthe apove approaches share the following characteristic:
training data. Various modifications to the basic algorithrfhey are only heuristically motivated and they do not obey a
were proposed to ensure a faster convergence (OLVQ)g@dient dynamic. In DSLVQ and RLVQ, the updating of the
better adaptation of the borders (LVQ2.1, LVQ3), an adegluageights is related to simple perceptron learning and ditiies:
initialization of the codebook vectors according to theadakyise if provided with non separable data [7].
distribution (LVQ+SOM) [2], [3], or an adaptation forcongX  For these reasons, a modification of RLVQ has been
data structures [4], to name just a few. proposed by Hammeet al. [9], [10], Generalized RLVQ
Standard LVQ does not discriminate between more or Ieg@RL\/Q), which obeys a stochastic gradient descent on an
informative features: their influence on the distance fiomct energy function. This method modifies the GLVQ algorithm
is equal. On the contrary, the Distinction Sensitive Leiagnl (introduced in [11]) by using an adaptive metric, and leads
Vector Quantizer (DSLVQ), introduced by Pregeneeal.[5], to a more powerful classifier with little extra cost compared
[6], holds a changeable weight value for every feature aggd GLVQ. GRLVQ is a large margin method with dimension
employs a weighted distance function for classification. ARdependent mathematical generalization bounds [12] &nd i
iterative heuristic training process is used to tune theghtei can be used together with any differentiable similarity suza
values for a specific problem: the influence of features whighg].
frequently contribute to miss classifications of the system |nput feature selection is a necessary preprocessing stage
is reduced while the influence of very reliable features jf classification especially when one is required to manage
increased. The weighting process can be seen as a scaliiie quantities of data. Recently, the mutual informagidi)
transformation from the original Euclidean distance basgghs used by feature selection methods [14], [15]. In thigcas
feature space into a weighted distance based feature sp@§€:MI evaluates the "information content” of each indivadiu
it increases distances between feature values of classnhsc feature with regard to the output class. The feature selecti

inating features and decreases distances at little infivena method is searching for a subset of relevant features from an
dimensions. This facilitates class discrimination and @sake jnitial set of available features. The subset should mazeémi

I. INTRODUCTION

system less sensitive to noise [6]. MI. A sensible part of this approach is the estimation of
~ From Pregenzer'st al. approach we can extract the follow-m|. Estimating Ml is hard because of the requirements for
ing ideas: the conditional density functions and the high computation

« The weighted distance function used by Pregemteal. complexity. Many MI-based feature selection algorithm4][1
is based on the weighted Euclidean approach. Howevgrs] used histogram as density estimator. However, in high



dimensional space, histogram is neither effective norateu A generalization of this algorithm, named Generalized LVQ
[16]. A MI estimation based on Renyi’'s quadratic entropy an@zLVQ) was proposed in [11]. A steepest descent method
Parzen windows estimation method was proposed by Princighich minimizes a cost function was used to define the
et al. [17] and has been recently used in an efficient featucedebook vectors update.

selection algorithm [16]. Torkkola also used this estimati A relative distance difference is defined by:

method for feature extraction by mutual information max-

o d: —d
imization [18]. He computed the MI between transformed w(x) = ﬁ
features and the class labels and used it as a criterion for j
learning the discriminative features transformations. This function which ranges between -1 and 1 has negative

In this paper we introduce the Energy Generalized Relealues if the input vector is classified correctly and has
vance LVQ (EGRLVQ) algorithm which uses the estimatiopositive values if the input vector is classified incorngcilhe
of the informational energy (IE) as a maximization criteridollowing cost function is minimized:
for the computing of the feature relevance. We then use a N
weighted distance based on the relevance factors instead of S — Zf(,u(xi))
the Euclidian distance to redefine the GLVQ algorithm. — ’

In Section Il we introduce the basic notations used in _ ) ) .
LVQ and GLVQ, and define the class of "weighted GLVthereN is the_ number of mput ve_ctors u;ed in th_e training
algorithms”. A brief description of the informational eggr Process andf is a monotonically increasing function. The
is given in Section IIl. The relevance factors computatisn £0d€Pook vectors are modified as follows:

developped in Section IV and the EGRLVQ algorithm is de- WD _ (0 _ a8
fined in Section V. We present in Section VI the experimental J J nawj
results and the conclusions are formulated in Section VII. (1) (1) S
VeI

k

Il. THE WEIGHTED GLVQ ALGORITHM
where we denoted the learning rate with Therefore, the

Assume that a clustering of data infd classes is to be update rule of the GLVQ algorithm is:

learned and a set of training data is given:

(t+1)_ () [ di
| Vi T g dE )
X ={(xi,yi) CR"x{1,...,M}|i=1,...,N} (t41) ® of d;
S g Ty g )
The components of a vecter; are[x;1, ..., ). w (dj + di)
LVQ chooses codebook vectors IR" for each class.  The weighted GLVQ algorithm adapts the codebooks for as
Denote the set of all codebook vectors{y,...,wk}. The |east as possible quantization error on all feature vecass

components of a vectox; are [wji, ..., w;jn]. follows:
Let us consider we have two codebook vectersandwy,

the first one in the same class with the vestpand the second

one from another class. We focus on LVQ2.1 [2] which is a

clustering algorithm that adapts better the prototypesglo 2) Updatew; andwj, according to the GLVQ algorithm.
the Bayes decision boundary. When the training procests star 3) Update tfjle relevance factors

with properly defined initial values, the two codebook vesto 4) Update the rank of each feature as an average of the
can be updated in order to converge to the solution as follows * .-\ s resulted in the previous steps

1) Find the two codebook vectors; andwy, the first one
in the same class with the vectey and the second one
from another class.

Wg.t“)zw;t) +q® (xgﬂ _ W§t)) Relevance determination can be used after LVQ learning,
(t+1) (t) () (< (®) () or simultaneously, this second version yielding an on-line
wy ' =wy =t (kg = wy)

algorithm.

wheren® ranges between 0 and 1 and may decrease monoton-
ically with time. The input vectok; must fall into a window S _ _ o
defined around the midplane of the two codebook vectors and/Ve will give in this section a brief description of the contep

IIl. | NFORMATIONAL ENERGY

the following condition must be sastisfied: of informational energy as it was presented in [1].
The discrete informational energy was defined by Onicescu
min (d_37 %) > 5 [1], and for a continuous random variabie it is defined by
di. dj [19]:

—+oo
whered; = ||x; — wj||, dx = ||x; — wi| ands is a constant E(Y) = / P2 (y)dy,
determined by the window width —o0

1-1 wherep(y) is the probability density function of the random

STIrr variable.



When we have a continuous random variableand a We obtain

discrete random variabl€’, the conditional informational M
energy is defined as following' o(Y,C) = Z /pz(y, cp)dy — /p2(y)dy. 2)
p=1 p(CP) y y
EY|C) = / ZP )P’ (ylep)dy This expression involves a considerable computationatteff

and we will aproximate the probability densities from the
In order to study the interaction between two randointegrals using the Parzen windows estimation method. The
variablesX andY, the following measure of unilateral de-multidimensional Gaussian kernel has the following form:

pendency was defined in [20]: 1 Sty
Gly,0) = ——FF € 2,
oY, X) = E(Y|X) — E(Y) ) = il
with the following properties: whered is the dimension of the definition space of the kernel

« o is not symmetrical with respect to its arguments;  ando?I is the covariance matrix. The probability dengify)
« o(Y,X) > 0 and the equality holds if” and X are is [17]:
independent; 1
« oY, X) < 1— E(Y) and the equality holds it is p(y) = NZG(Y —yi,0°I),
completely dependent oX. =l
This measure can be regarded as an indicator of the ufifere! is the unity matrix. o
lateral dependence characteriziligwith respect toX and  Using the Parzen windows approximations, we have:

corresponds to the amount of information detainedsbgbout 1 M, M,

Y. /P2(Ya cp)dy = 5 DD Glypk = yp,20°T)
IV. INFORMATIONAL ENERGY FOR FEATURE RANKING Y h=11=1
The mutual information/ (Y, X) = H(Y) — H(Y|X) and and

N

the valueo(Y, X) = E(Y|X) — E(Y) actually measure the 1 &
o a1 bivioLs cimhan 25y = 3 3 > G~ y1.20°0)
same phenomenon and there is an obvious similarity between p N2 Ye =Y J
them. y k=1 1=1
Let us considey;,i = 1,..., N the samples ot” and wherey ., y, are two training samples from clagsandysy,

y; represent two training samples from any class. With these

yi = Al(x; — w;) relations, equation (2) can be rewritten and we finally abtai

where \ is the relevance vectors;,7 = 1,...,N is the the following update formula of the relevance factors, as we
set of training vectors each of them belonging to one ekplain in the Appendix:
the ¢i,co,...,cm classes andw;,j = 1,...,P are the

prototypes of the classes and are determined with a LVQ-type AT = A®) — OZLG(}H y2,20°1) - (y2 — y1)I-
algorithm. The reason behind the choice of this transform is
the connection that it makes between the input vector and the
class, represented by prototype, that it is assigned to. We Where w;(;) and w; ;) are the closest prototypes from the
consider theV! classes labels are samples of a discrete randd@mput vectorsx; andx,, respectively.

(%1 — Wi(1) — X2 + Wg(z))v (3

variable denoted by. We have obtained this formula using a gradient ascent
We intend to obtain the relevance values by maximizingethod similar to the technique described by Torkkola in
o(Y,C): [18], but using informational energy instead of the mutual
9o C) information.
o(Y,
A =20 +a Z oy, Txi—w). (@) V. EGRLVQ - ENERGY GRLVQ

=l We use the weighted distance between an input vector

We will denote byM,, the number of training samples fromand a codebook vectaw;:

classc,.
From the definition, we can write:
o(Y,C) = E(Y|C) — E(Y), Dij = | > (i — wjr)?
where

whered "), A\ = 1.
E(Y|C) = Zp cp / ylep)dy = '_I'he_GLVQ a_lgorlthm must b_e reformulatgd to minimize an
objective function based on this modified distance.
Let us consider the feature vecta and w; to be its
= /p2(y,cp)dy. nearest codebook vector that belongs to the same class. We
pzlp(cp) y also considew;, which is its nearest codebook vector that




TABLE |

belongs to a different class. We define the following rekativ
FEATURE RANKING FOR THEIRIS DATABASE.

distance:
Ja (i) = Dij — Dy, Rank 1 2 3 4
Dij + Dy RLVQ 4 2 3 1
which has values betwern-1 and 1, negative for correct SQ;YSLVQ 2 2 § i
classification and positive if the classification is not eetr ERLVQ 1 2 3 4
according to weighted distance. Considerjhgs a non-linear, EGRLVQ 1 3 4 2
monotonically increasing function, the codebook vectangad
be updated by a relation that minimizes the following ciiter
N the RLVQ, GRLVQ, OWA-RLVQ, ERLVQ, and EGRLVQ
§= Zf(“k(xi))' training, obtained for the test data, using the same initial
=1 set of codebook vectors. The results obtained with ERLVQ
In this paper we used the sigmoid function and EGRLVQ are different from RLVQ and OWA-RLVQ due
1 to the different approach involved in the developing of our
fusy) = 1+ emv new algorithm. When we use Iris database, the last feature
for which is the most important for algorithms which find well defined
of classes’ centroids, such as RLVQ and OWA-RLVQ. When our
o Fus) (U= f(p,7)) - goal is to define as much as possible class discrimination to

. o S the neighbourhood of the borders with an algorithm such as
\rﬁllee?%?_m a modified GLVQ rule, which is just the GRI‘VQERLVQ and EGRLVQ, the first feature is the most important.
' Our ranking is similar to the results reported in [23] where

(xi — w;) (4) the bidimensional projection of patterns from classes Md a
"2" including the first feature leads us to two well delimited

clusters, but the centroids are relatively close one to thero

On the other hand, the bidimensional projection of the same

wy = Dk
3= O (Dyj + Dy )?
if x; andw; are in the same class, and

A

Awy, = —n/\IﬁL(xi - W) (5) Patterns based on the last two features creates two clusters
op (Dij + Diy)? with quite distanced centroids, but the classes deliroitais
if x; andw,, are in different classes. not very clear.
The following procedure updates on-line both the relevance The second dataset that we used in our tests was the
and the feature ranks. Vowel Recognition database (Deterding data) [22]. It cmista
1) Initialize n and a. Initialize the relevance vectok;, = Vvectors extracted from 15 individual speakers pronouncing
Lk=1,...,n. vowels in 11 contexts, 6 times each. The problem is to use
2) Initialize the codebook vectors. the pronunciations of the first 8 speakers for training and
3) Update the codebook vectors using the relations (4) ait¢ pronunciations of the remaining 7 speakers for tests. We
(5). trained 59 codebooks and the recognition score was 47.18%.
4) Update the relevances using formula (3). In the EGRLVQ experiments we sgt= 0.7 anda: = 200. The
5) Normalize the relevances. ranking that we obtained for the 10 features of the test vecto

6) Compute the Weight of each feature as an average Offn@,m this dataset is presented in Table Il. The most impd)rtan
before ordering position index in the input vector, fofGSU'tEd to be the feature number 3. The second feature was
all previous steps. selected as one of the most important, as resulted when we

7) Repeat steps 3-6 for each training pattern. used other algorithms. The features from the positions 7 and

LVQ2.1 is an enhanced version of the LVQ1 algorithm. 140 are the least important for EGRLVQ, also confirming the

a previous paper [21], we have introduced a LVQ1 version Bfevious results. The relevance vector that we obtainetan t
the above algorithm ;:alled ERLVQ. experiment presented here is [0.354 0.349 0.439 0.287 0.299

0.310 0.268 0.271 0.284 0.253].

VI. EXPERIMENTS AND RESULTS The last set of tests was performed in the lonosphere dataset
We have used the following datasets on tests of EGRLVIRQ2]. It consists of 351 instances of radar collected daith w
algorithm: Iris, Vowel Recognition, and lonosphere. 34 continuous attributes each. The vectors are labelled wit

The Iris database [22] consists of 3 classes, 50 vectdbad” or "good”, being a binary classification task. The first
each. Two of them are not linearly separable. The proble2d0 instances that are balanced between positive and wegati
is to detect the classes based on 4 features. While trainingamples were used for the training of 8 codebook vectors.
codebooks with EGRLVQ, we obtained a recognition rate dthe remaining 151 patterns were used for tests. The values
97.33%. The relevance vector that resulted after the exygeri  of the EGRLVQ training parameters were= 0.9 anda =
presented here was [0.81 0.18 0.47 0.28]. We used 0.3 0.9-10'3. We obtained a recognition rate of 94.40% that was
and «a = 20. In Table | we present the ranking resulted aftdvetter than the rates obtained with GRLVQ and ERLVQ. Table



TABLE Il

FEATURE RANKING FOR THEVOWEL RECOGNITION DATASET.

Rank 1 2 3 4 5
RLVQ 2 5 1 9 6
GRLVQ 2 5 4 6 3
OWA-RLVQ 8 2 14 5 6
ERLVQ 2 1 3 4 6
EGRLVQ 3 1 2 6 5
Rank 6 7 8 9 10
RLVQ 3 4 8 7 10
GRLVQ 1 9 7 8 10
OWA-RLVQ 9 3 7 1 10
ERLVQ 8 9 5 10 7
EGRLVQ 4 9 8 7 10
TABLE Il

FEATURE RANKING FOR THEIONOSPHERE DATABASE ONLY THE FIVE
MOST IMPORTANT FEATURES ARE REPRESENTED

Rank 1 2 3 4 5
RLVQ 20 28 26 12 6
GRLVQ 12 4 22 8 6
OWA-RLVQ 14 12 1 3 28
ERLVQ 8 24 16 12 6
EGRLVQ 4 5 12 8 27

[ll contains the ranking of the most important 5 features of

the test vectors.

rewritten as following:

1 M My, M,
oY.C) = 3 <Z )ZZG (Ypk — Yp1,20°T)—
p= IT k=11=1
1 N N
_WZZG(W—W’?U I)

k=11=1

1 M 1 M, M,
o(Y,C) = ( ﬁ) > Gk — v, 20°T)—
P
G

(yr — y1,20°1). (6)

To find the relevance update formula, we will use two con-
secutive samples as classes representagivesdy., as was
suggested in [24]:
1) When the two samples belong to the same class; 2,
M = 2, My = 2 and My = 0, and the first term
of relation (6) cannot be calculated due to the non-
determination introduced by the value df; from the
denominator. Therefore, this case will be ignored.
2) When the two samples belong to different clasgés:
2, M =2, M; =1 andM, = 1. Equation (6) becomes:

We finally listed in Table IV a comparative set of recogni-

tion rates that we obtained with LVQ, RLVQ, GRLVQ, OWA-
RLVQ, ERLVQ and EGRLVQ in similar conditions, for the

test data.

VII. CONCLUSIONS

EGRLVQ is an incremental learning algorithm for feature
ranking and supervised classification. It is computatiatal
tractive for large datasets, where dimensionality reducts
required. The EGRLVQ algorithm was sucessfully tested on
different standard datasets and, compared to RLVQ, GRLVQ,
OWA-RLVQ, and ERLVQ, provided better recognition rates.

The behaviour of EGRLVQ around the boundaries of the
receptive fields is an interesting future research diractio

APPENDIX

The relevance updating formuld@he equation (2) can be

TABLE IV
COMPARATIVE RECOGNITION RATES FOR THE TEST DATA

Iris Vowel lonosphere
LVQ 91.33% 44.80% 90.06%
RLVQ 95.33%  46.32% 92.71%
GRLVQ 96.66%  46.96% 93.37%
OWA-RLVQ 96.66%  46.75% 93.37%
ERLVQ 97.33% 47.18% 94.03%
EGRLVQ 97.33% 47.18% 94.40%

ofY,C) =

2\ My M
Z ) ZZG(ka _ypl72021)—
My

p=1 k=1 1=1

> Glyr —y1,20°T) =

1i=1

[G(y11 — y11,20%T) + G(y=n

1
2

A>I>—‘
Mw/\Q

>
Il

— Yo, 20’21)}

—¥ya, 2021)—1-

[G(y1 — y1,20°T) + G(y1
(y2 — y1,20°I) + G(y2 — y2,20°1)] =

_|_

1
= G(0,20°T) — 5 [G(0,20°T) + G(y1 — y2,20°T)] .
Finally, the relation will be:
o(Y,C) = G(0,20°T) — %G(yl — y2,20°0).

According to (2), we must calculate the partial deriva-
tives of o(Y, C) with respect toy; and then toy,. For
this purpose, we use the following relation:

0
y;
=Gy -

0

=——0_
0y v -

G(yi —-Y; 20’21) =

)YJ Y’L

202

Yi 20°1
o

Y 20’21).



Then:

do(Y,C) B
Oy1 N
= i(G(o 20°1) — 1G( —y2,20%1)) =
- 8y1 , 40 2 Y1 Y2, <20 -
- 6G(0, 2021) _ laG(yl —Yo, 2021)
oy1 2 Oy1 '
Because
9 1
(2m)2 o]z
is a constant value, we have:
do(Y,C) _ 10G(y1 —y2,20°T)

8y1 2 3}’1
1 y2—Yy1
== —y9,20°0) 2222
2G(Y1 y2,20°1) 202
Using a similar method, we can write:
do(Y,C) 0 9
— 7 =~ (G(0,20°T
Jy2 3}’2( ( )
1
—gG(Y1 —y2,20°T)) =
~19G(y1 — y2,20°T _
2 Jy2 B
1 Y2 — Y1
== —y9,20°0) - 2222
2G(Y1 y2,20°1) 202
Replacing these results in (1), we obtain:

1
P a(—gG(yl — y2,20°T)-

A+ —

Y2—

202
1 Y2 —y1
SG(yr — y2,20%T) Y21

+2 (y1 —y2,20°0) 952

I(Xl — Wj(l))+

I(x2 — Wj(2)))-
Hence,
1
AHD — A0 _ a(5Gy1 — 2, 2021)-

Y2 — Y1
e |
202

1
_QG(yl —Y2, 20’21) .

(x1 — wj())—

Y2 — Y1
g 1x2 = W),

or
AFD = 2O — aéG(}ﬁ — Y2, 2021) (y2 —y)L-
(%1 — W) — X2 + Wj2)).
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