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Abstract: Motivated by machine learning applications (e.g., classification, func-
tion approximation, feature extraction), in previous work, we have introduced a non-
parametric estimator of Onicescu’s informational energy. Our method was based on
the k-th nearest neighbor distances between the n sample points, where k is a fixed
positive integer. In the present contribution, we discuss mathematical properties of
this estimator. We show that our estimator is asymptotically unbiased and consis-
tent. We provide further experimental results which illustrate the convergence of the
estimator for standard distributions.
Keywords: machine learning, statistical inference, asymptotically unbiased estima-
tor, k-th nearest neighbor, informational energy.

1 Introduction

Inference is based on a strong assumption: using a representative training set of samples to
infer a model. In this case, we select a random sample of the population, perform a statistical
analysis on this sample, and use these results as an estimation to the desired statistical char-
acteristics of the population as a whole. The more representative the sample is, the higher our
confidence level reaches so that the statistical results obtained by using this sample are indeed
a good estimation to the desired population parameters. We gauge the representativeness of a
sample by how well its statistical characteristics reflect the probabilistic characteristics of the
entire population. Many standard techniques may be used to select a representative sample
set [15]. However, if we do not use expert knowledge, selecting the most representative training
set from a given dataset was proved to be computationally difficult (NP-hard) [10]. The problem
is actually more difficult, since in most applications the complete dataset is unknown, or too
large to be analyzed. Therefore, we have to rely on a more or less representative training set.

A critical aspect of many machine learning approaches is how well an information theory
measure is estimated from the available training set. This relates to a fundamental concept in
statistics: probability density estimation. Density estimation is the construction of an estimate
of the density function from the observed data [20]. We will refer here only to nonparametric
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estimation, where less rigid assumptions will be made about the distribution of the observed data.
Although it will be assumed that the distribution has the probability density f , the data will be
allowed to speak for themselves in determining the estimate of f more than would be the case if f
were constrained to fall in a given parametric family. A common measure used in machine leaning
is mutual information (MI). Several methods were proposed for MI estimation [18], [22], [13]:
histogram based estimators, kernel density estimators, B-spline estimators, k-th nearest neighbor
(kNN) estimators, and wavelet density estimators.

Estimating entropy and MI is known to be a non-trivial task [4]. Naïve estimations (which
attempt to construct a histogram where every point is the center of a sampling interval) are
plagued with both systematic (bias) and statistical errors. An ideal estimator does not exist,
instead the choice of the estimator depends on the structure of data to be analyzed. It is not
possible to design an estimator that minimizes both the bias and the variance to arbitrarily small
values. The existing studies have shown that there is always a delicate trade off between the two
types of errors [4].

MI is generally based on the classical Shannon type MI. However, it is computationally
attractive to use one of its generalized forms: the Rényi divergence measure, which uses Rényi‘s
quadratic entropy. The reason is that, as proved by Principe et al., Rényi‘s quadratic entropy
(and Rényi’s divergence measure) can be estimated from a set of samples using Parzen’s windows
approach [19]. The MI and Rényi’s divergence measure are equivalent, but only in the limit α = 1,
where α is the order of Rényi‘s divergence measure [19].

A unilateral dependency measure can be derived from Onicescu’s informational energy (IE).
This measure proved to be an efficient alternative to MI, and we have estimated it from sample
datasets using the Parzen windows approach. We used this approach in classification and feature
weighting [2], [5], [6], [3], [7]. An important drawback of this approach is the fact that Parzen
windows estimate cannot be applied on continuous spaces. This is also true for Shannon’s
type MI. Therefore, This means an important machine learning domain - continuous function
approximation (or prediction), is left out.

In previous work [8], we introduced a kNN IE estimator which may be used to approximate
the unilateral dependency measure both in the discrete and the continuous case. An important
theoretical aspect was not discussed yet: the asymptotic behavior of this estimator in terms of
unbiasedness and consistency. Generally, any statistic whose mathematical expectation is equal
to a parameter is called unbiased estimator of that parameter. Otherwise, the statistic is said
to be biased. Any statistic that converges asymptotically to a parameter is called consistent
estimator of that parameter [12].

Consistent and unbiased are not equivalent. A simple example of a biased consistent esti-
mator is if the mean of samples x1, x2, . . . , xn is estimated by 1/n

∑
xi+1/n. This estimate is

biased but consistent, since it approaches asymptotically the correct value. An asymptotically
unbiased estimator is an estimator that is unbiased as the sample size tends to infinity. Some
biased estimators are asymptotically unbiased but all unbiased estimators are asymptotically
unbiased. The previous estimator is biased but asymptotically unbiased. One way to prove that
an estimator is consistent is to prove that it is asymptotically unbiased and the variance goes to
zero.

This gives the motivation for the present work. We show that our IE estimator is asymptot-
ically unbiased and consistent. This will imply that the estimator is “good”.

First, we summarize (Section 2) the IE and the kNN method. Section 3 describes our IE
approximation method, including the novel theoretical results. After the experimental results,
exposed in Section 4, we conclude with final remarks and a description of future work (Section
5).
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2 Background

2.1 Onicescu’s Informational Energy

Generally, information measures refer to uncertainty. Since Shannon defined his probabilistic
information measure in 1948, many other authors, with Rényi, Daroczy, Bongard, Arimoto, and
Guiaşu among them, have introduced new measures of information. However, information mea-
sures can also refer to certainty, and probability can be considered as a measure of certainty. More
general, any monotonically growing and continuous probability function can be considered as a
measure of certainty. For instance, Onicescu’s IE was interpreted by several authors as a measure
of expected commonness, a measure of average certainty, or as a measure of concentration.

For a continuous random variable X with probability density function f(x), the IE is [11,17]:

IE(X) =

∫ +∞

−∞
f2(x)dx (1)

2.2 The nearest neighbor method

Although classification remains the primary application of kNN, we can use it to do density
estimation also. Since kNN is non parametric, it can do estimation for arbitrary distributions.
The idea is very similar to use of Parzen window. Instead of using hypercube and kernel functions,
here we do the estimation as follows.

The kNN estimators represent an attempt to adapt the amount of smoothing to the “local”
density of data. The degree of smoothing is controlled by an integer k, chosen to be considerably
smaller than the sample size; typically k ≈ n1/2. Define the distance d(x, y) between two points
on the line to be |x× y| in the usual way, and for each t define d1(t) ≤ d2(t) ≤ . . . ≤ dn(t) to be
the distances, arranged in ascending order, from t to the points of the sample.

The kNN density estimate f(t) is defined by [20]:

f̂(t) =
k

2ndk(t)
(2)

The kNN was used for non-parametrical estimate of the entropy based on the k-th nearest
neighbor distance between n points in a sample, where k is a fixed parameter and k ≤ n − 1.
Based on the first nearest neighbor distances, Leonenko et al. [14] introduced an asymptotic
unbiased and consistent estimator Hn of the entropy H(f) in a multidimensional space. When
the sample points are very close one to each other, small fluctuations in their distances produce
high fluctuations of Hn. In order to overcome this problem, Singh et al. [21] defined an entropy
estimator based on the k-th nearest neighbor distances. A kNN estimate of the Kullback-Leibler
divergence was obtained by Wang et al. in [23]. A mean of several kNN estimators corresponding
to different values of k was used by Faivishevsky et al. in [9] for developing a smooth estimator
of differential entropy, mutual information, and divergence.

According to [22], kNN MI estimation outperforms histogram methods. kNN works well if
the value of k is optimally chosen. However, there is no model selection method for determining
the number of neighrest neighbors k. This is a limitation of the kNN estimation.

3 Estimation of the Informational Energy

We are ready now to introduce our kNN method for IE approximation, using results from our
previous work [8]. The described theoretical properties are however novel. Mathematical proofs
are omitted, since they would not fit into the page limit of this paper.
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The IE can be easily computed if the data sample is extracted from known distributions.
When the underlying distribution of data sample is unknown, the IE has to be estimated. More
formally, our goal is to estimate (1) from a random sample X1, X2, ..., Xn of n d-dimensional
observations from a distribution with the unknown probability density f(x). This problem is
even more difficult if the number of available points is small.

The IEempirical is not a good estimate especially when the relative frequencies are far from
the true probabilities. This is generally the case for small datasets and, in accordance to the
central limit theorem, for an increasing number of samples, IEempirical converges probabilistically
to IE.

The IE is the average of f(x), therefore we have to estimate f(x). The n observations from
our samples have the same probability 1

n . A convenient estimator of the IE is:

ˆIE
(n)
k (f) =

1

n

n∑
i=1

f̂(Xi). (3)

We will determine first the probability density Pik(ϵ) of the random distance Ri,k,n between
a fixed point Xi and its k-th nearest neighbor from the remaining n − 1 points. Probability
Pik(ϵ)dϵ of the k-th nearest neighbor to be within distance Ri,k,n ∈ [ϵ, ϵ + dϵ] from Xi, k − 1
points at a smaller distance and n− k − 1 at a larger distance can be expressed in terms of the
trinomial formula [9]:

Pik(ϵ)dϵ =
(n− 1)!

1!(k − 1)!(n− k − 1)!
dpi(ϵ)p

k−1
i (1− pi)

n−k−1,

where pi(ϵ) =
∫
∥x−Xi∥<ϵ f(x)dx is the mass of the ϵ-ball centered at Xi and

∫
Pik(ϵ)dϵ = 1.

We can express the expected value of the pi(ϵ) using the probability mass function of the
trinomial distribution:

EPik(ϵ)(pi(ϵ)) =

∫ ∞

0
Pik(ϵ)pi(ϵ)dϵ =

= k

(
n− 1

k

)∫ 1

0
pk−1(1− p)n−k−1pdp =

= k

(
n− 1

k

)∫ 1

0
p(k+1)−1(1− p)(n−k)−1dp.

This equality can be reformulated using the Beta function:

B(m,n) =

∫ 1

0
xm−1(1− x)n−1 =

Γ(m)Γ(n)

Γ(m+ n)
.

We obtain:
EPik(ϵ)(pi(ϵ)) = k

(
n− 1

k

)
Γ(k + 1)Γ(n− k)

Γ(n+ 1)
=

= k
(n− 1)!

(n− k − 1)!k!

k!(n− k − 1)!

n!
,

which can be rewritten as:
EPik(ϵ)(pi(ϵ)) =

k

n
. (4)

On the other hand, assuming that f(x) is almost constant in the entire ϵ-ball around Xi [9],
we have:

pi(ϵ) ≈ V1R
d
i,k,nf(Xi),
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where we denote the volume of the ball of radius ρr,n in a d-dimensional space by:

Vρr,n = V1ρ
d
r,n =

π
p
2 ρdr,n

Γ(p2 + 1)
.

V1 is the volume of the unit ball and Ri,k,n is the Euclidean distance between the reference point
Xi and its k-th nearest neighbor. This means that V1Rd

i,k,n is the volume of the d-dimensional
ball of radius Ri,k,n.

We obtain the expected value of pi(ϵ):

E(pi(ϵ)) = E(V1R
d
i,k,nf(Xi)) = V1R

d
i,k,nf̂(Xi). (5)

Equations (4) and (5) both estimate E(pi(ϵ)). Their results are approximatively equal:

V1R
d
i,k,nf̂(Xi) =

k

n
,

That is:

f̂(Xi) =
k

nV1Rd
i,k,n

, i = 1...n. (6)

This is the estimate of the probability density function. By substituting f̂(Xi) in (3), we
finally obtain the following IE approximation:

ˆIE
(n)
k (f) =

1

n

n∑
i=1

k

nV1Rd
i,k,n

. (7)

We have introduced this result in [8]. Our main question now is to analyze its asymptotic
behavior.

Consistency of an estimator means that as the sample size gets large, the estimate gets closer
and closer to the true value of the parameter. Unbiasedness is a statement about the expected
value of the sampling distribution of the estimator. The ideal situation, of course, is to have an
unbiased consistent estimator. This may be very difficult to achieve.

Yet unbiasedness is not essential, and just a little bias is permitted as long as the estimator
is consistent. Therefore, an asymptotically unbiased consistent estimator may be acceptable. In
the following, we will use the following mathematical property (from [16]): An asymptotically
unbiased estimator with asymptotic zero variance is consistent.

We are ready now to state our theoretical results:

1. The informational energy estimator ˆIE
(n)
k (f) is asymptotically unbiased.

2. limn→∞ V ar
[
Ĥ

(n)
k (f)

]
= 0.

Therefore, we can conclude that the ˆIE
(n)
k (f) estimator is consistent.

4 Experiments

When the distribution of a sample is unknown, the statistical measures cannot be calculated
directly, and we have to use an estimate. The quality of an estimator can be determined by
studying its asymptotic behavior. We proved that the informational energy estimator ÎE is
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asymptotically unbiased and consistent. It provides an approximation of the informational energy
regardless of the distribution where the sample was drawn from. It is interesting to compare the
estimated value of the IE with its real value. For an unidimensional distribution, we can achieve
this goal by generating a random sample from a known distribution f(x), with xmin and xmax

being the minimum / maximum values. Then, the informational energy of the distribution f(x)
on the subdomain Dsample = {x|x ∈ [xmin, xmax]} is

IEDsample
=

∫ xmax

xmin

f2(x)dx =

∫
Dsample

f2(x)dx, (8)

while the estimated informational energy ÎE is given by the formula (7). The information energy
of the same distribution has a fixed value when it is computed on its entire definition domain D:

IED =

∫
D
f2(x)dx. (9)

Our experiments focus on the following distributions: Exponential, unidimensional Gaussian,
Beta, Cauchy, Gamma, and Weibull. We use the R programming language and environment
functions to generate the random samples from each distribution, with the parameters listed
in Tables 1–6. The first line in each table contains: the probability density function of the
distribution, the support of this function (which is the domain D), the values of the parameters,
and the IE computed with formula (9).

Sample size is the number of values from the random sample, and Range is the interval limited
by the minimum / maximum values from the sample used to compute the IE with formula (8). In
order to study the asymptotically unbiasedness and consistency of the estimator, we determine
the value of ˆIE for samples with 10, 100, 1000 values, and with increasing values of k, from 1 to
the squared root of the sample size [20].

Table 1: Exponential distribution
f(x) = θe−θx, x ≥ 0, θ = 3, IED = 1.5

Sample size: 10; Range: [0.022, 0.777]; IEDsample
= 1.3

k 1 2 3
ˆIE 8.133 2.464 1.023

Sample size: 100; Range: [0.0007, 2.599]; IEDsample
= 1.493

k 1 2 3 5 7 9
ˆIE 4.953 2.312 2.289 2.167 1.854 1.743

Sample size: 1000; Range: [0.0001, 2.237]; IEDsample
= 1.499

k 1 2 3 10 20 30
ˆIE 6.829 3.093 2.269 1.605 1.527 1.507

In general, the expected behavior was confirmed by experiments: the larger the sample size
n, the more accurate estimation of the informational energy.
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Table 2: Unidimensional Gaussian distribution

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , µ = 0, σ = 1, IED = 0.282

Sample size: 10, Range: [−1.018, 1.395], IEDsample
= 0.254

k 1 2 3
ˆIE 2.559 0.444 0.402

Sample size: 100, Range: [−2.263, 2.484], IEDsample
= 0.281

k 1 2 3 5 7 9
ˆIE 0.998 0.462 0.333 0.286 0.275 0.271

Sample size: 1000, Range: [−3.596, 2.781], IEDsample
= 0.282

k 1 2 3 10 20 30
ˆIE 1.419 0.526 0.421 0.315 0.296 0.293

Table 3: Beta distribution
f(x) = Γ(α+β)

Γ(α)Γ(β)(1− x)β−1xα−1, 0 ≤ x ≤ 1, α = 2, β = 3, IED = 1.371

Sample size: 10, Range: [0.194, 0.773], IEDsample
= 1.170

k 1 2 3
ˆIE 4.873 2.452 2.083

Sample size: 100, Range: [0.010, 0.842], IEDsample
= 1.369

k 1 2 3 5 7 9
ˆIE 5.084 2.588 2.167 1.899 1.522 1.523

Sample size: 1000, Range: [0.010, 0.930], IEDsample
= 1.371

k 1 2 3 10 20 30
ˆIE 101.969 2.617 2.103 1.516 1.450 1.430

Table 4: Cauchy distribution
f(x) = b

π[(x−m)2+b2]
, x ∈ R, m = 0, b = 1, IED = 0.159

Sample size: 10, Range: [−29.068, 61.499], IEDsample
= 0.159

k 1 2 3
ˆIE 1.342 0.253 0.193

Sample size: 100, Range: [−19.543, 17.052], IEDsample
= 0.159

k 1 2 3 5 7 9
ˆIE 37.599 0.204 0.188 0.154 0.158 0.158

Sample size: 1000, Range: [−232.181, 165.562], IEDsample
= 0.159

k 1 2 3 10 20 30
ˆIE 0.859 0.343 0.284 0.170 0.164 0.161
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Table 5: Gamma distribution

f(x) = xα−1e−
x
θ

Γ(α)θα , x ≥ 0, θ = 1, α = 3, IED = 0.187

Sample size: 10, Range: [1.381, 5.340], IEDsample
= 0.156

k 1 2 3
ˆIE 0.204 0.232 0.240

Sample size: 100, Range: [0.556, 9.053], IEDsample
= 0.186

k 1 2 3 5 7 9
ˆIE 0.624 0.318 0.285 0.264 0.233 0.232

Sample size: 1000, Range: [0.092, 11.866], IEDsample
= 0.187

k 1 2 3 10 20 30
ˆIE 1.768 0.344 0.280 0.210 0.201 0.196

Table 6: Weibull distribution
f(x) = αxα−1

βαe(
x
β )

α , x ≥ 0, α = 3, β = 4, IED = 0.213

Sample size: 10, Range: [2.040, 5.202], IEDsample
= 0.191

k 1 2 3
ˆIE 1.315 0.583 0.523

Sample size: 100, Range: [0.899, 7.295], IEDsample
= 0.212

k 1 2 3 5 7 9
ˆIE 0.551 0.368 0.296 0.227 0.209 0.215

Sample size: 1000, Range: [0.393, 7.438], IEDsample
= 0.213

k 1 2 3 10 20 30
ˆIE 1.416 0.379 0.287 0.234 0.226 0.223
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5 Conclusions and Future Work

We have introduced a novel non-parametric kNN approximation method for computing the
IE from data samples. In accordance to our results, the ˆIE

(n)
k (f) estimator is consistent.

In order to study the interaction between two random variables X and Y , the following
measure of unilateral dependency was defined by Andonie et al. [1]:

o(Y,X) = IE(Y |X)− IE(Y )

This measure quantifies the unilateral dependence characterizing Y with respect to X and
corresponds to the amount of information detained by X about Y . There is an obvious analogy
between o(Y,X) and the MI, since both measure the same phenomenon. However, the MI is a
symmetric, not a unilateral measure.

Rather than approximating o(Y,X) as we did in our previous studies, in our future work we
will approximate directly the IE from the available dataset, using the ˆIE

(n)
k (f) estimator. We

also plan to apply our IE estimator to machine learning techniques.
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