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Abstract—Recently, nonsymmetric measures of dependence
have started to attract attention, and several continuous entropy-
like nonsymmetric dependence measures have been proposed.
Based on Onicescu’s information energy, we have introduced in
previous work a nonsymmetric dependence measure between two
discrete random variables. In the present paper, we analyze the
continuous version of this measure. We deduct that there are
important differences when switching from the discrete to the
continuous measure. Then we apply this continuous unilateral
dependence measure to a real-world challenge: mortality rate
modeling for life insurance industry. We consider joint male-
female pairs (married, but not necessarily from the same family)
belonging to the same policy group, and analyze the unilateral
interactions between the male-female mortality data samples for
the purpose of stochastic model testing and validation of risk
variables in the insurance world.

I. INTRODUCTION

Measuring the statistical dependence nonparametric rela-
tionships between random variables has been a research topic
in statistics and information theory for a long time, with
applications in many fields, including data mining and machine
learning. This paper intends to broaden its application to
more data driven fields including actuarial science. There are
two strategies one can adopt when studying the relationship
between two random variables: the first is to measure their
interdependence thought as a mutual attribute and the second
is to measure how much one system depends on the other. In
the first case we have symmetric (bilateral) measures of de-
pendence, whereas in the second case we have nonsymmetric
(unilateral) measures.

A. Symmetric measures

Rényi [15] gave a set of seven postulates which a measure
of symmetric nonparametric dependence for two continuous
random variables should satisfy on a given probability space.
Rényi considered six dependence measures which satisfy some
or all seven postulates. Later, Bell [S] compared several
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dependence measures and proposed postulate modifications.
Other symmetric dependence measures were proposed in [16].

The most common symmetric dependence measure in in-
formation theory is the mutual information (MI) between two
random variables X and Y: MI(X,Y)=H(X)+ H(Y) —
H(X,Y) = MI(Y,X), which measures the dependence
using Shannon’s entropy. Since it is a symmetric function,
it measures simultaneously the dependence of one random
variable by the other and vice versa.

Sometimes, it is computationally attractive to use one of
the generalized forms of the MI. Such a form is the Rényi
divergence measure, which uses Rényi‘s quadratic entropy in-
stead of the Shannon entropy. The MI and Rényi’s divergence
measure are equivalent but only in the limit o = 1, where «
is the order of Rényi‘s divergence measure [14].

B. Nonsymmetric measures and our previous work

Recently, nonsymmetric measures of dependence have
started to attract attention, and several continuous entropy-like
nonsymmetric dependence measures have been proposed [11].
Similar to Rényi’s postulates for symmetric measures, Li has
recently introduced six postulates a nonsymmetric continuous
dependence measure should satisfy [11].

Information measures can also refer to certainty (not only
to uncertainty, like Shannon’s entropy), and probability can
be considered as a measure of certainty. More general, any
monotonically growing and continuous probability function
can be considered as a measure of certainty. Onicescu’s
information energy (IE) [13] is a special case of Van der Lubbe
et al. certainty measure [18] and was interpreted by several
authors as a measure of expected commonness, a measure of
average certainty, or as a measure of concentration, and is not
related to physical energy.

Based on the IE, we have introduced in previous work the
following nonsymmetric dependence measure [4]: o(X,Y) =



IE(X|Y) — IE(X), where IE(X) = > ,_,p} is the IE
of a discrete random variable X with probabilities py, and
IE(X|Y) is the conditional informational energy between
variables X and Y. We have applied this measure to pattern
classification and feature weighting problems [2], [1], [3], [6]
as an alternative to the ML

Later, we considered the continuous version of the o(X,Y")
measure, in the context of probability density estimation.
Density estimation is the construction of an estimate of the
density function from the observed data [17]. We refer here
only to nonparametric estimation. Although it is assumed
that the distribution has the probability density f, the data is
allowed to speak for themselves in determining the estimate
of f more than would be the case if f were constrained to
fall in a given parametric family. Our goal is to compute
the o(X,Y) measure from the available dataset, for random
variables X and Y with unknown densities. This corresponds
to a regression (function approximation) learning problem.
We showed how to estimate the o(X,Y’) measure from an
available sample set of discrete or continuous variables using
the kNN estimation and applied this to several real-world
problems [7], [8].

C. Our contribution

Using both the discrete and the continuous versions of the
o(X,Y) measure made us reflect on the differences between
their mathematical properties. We noticed that there are impor-
tant differences when switching from discrete to continuous.
It is usually more convenient to use continuous mathematics
but, in practice, we often have to go back to the discrete
case because we work with discrete data samples drawn
from unknown distributions. Nevertheless, when our discrete
data fits well with a known probability density function, the
continuous approach can be considered. This gave us the
motivation for the present work.

We derive properties of the continuous o(X,Y) measure
and relate them to Li’s postulates. We discuss case studies
and examples showing how this measure can be applied. We
compare the properties of the discrete and continuous versions
of o(X,Y).

Finally, we apply the continuous o(X,Y’) measure to risk
modeling for joint lives and survivor insurance and annu-
ity contracts using a real-world dataset extracted from the
database of the Society of Actuaries!, with the contract data
from major insurance companies in the USA. We aim to
use our results for screening and selecting essential mortality
model predictors.

The structure of the paper is the following. Section II is an
overview of the properties of the discrete IE and the discrete
o(X,Y) measure, with results taken from previous papers. In
addition, we discuss here how the Li’s postulates are satisfied.
Section III introduces the properties of the continuous IE.
In Section IV we derive the properties of the continuous
0(X,Y") measure and relate them to Li’s postulates. In Section
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V we apply the continuous dependence on life expectancy
and mortality data which is sometimes used to assess the risk
in insurance industry. Section VI concludes with some final
remarks.

II. PROPERTIES OF THE DISCRETE 0(X,Y) MEASURE

In this section we review the properties of the discrete IE
and the o(X,Y’) measure.

The discrete IE has the following properties (see [13]):

a) The value range for the discrete TE(X) is between 1/n
and 1. The value is 1/n iff all probabilities are equal and 1
iff one probability is 1.

b) The IE is invariant with respect to any bijective function
g applied to X: IFE(g(X)) = [E(X). Therefore, the discrete
IE is also invariant to shifting and scaling.

c) IE(X) decreases when H(X) increases.

The IE decreases in direct proportion with the raising of
uniformity, disorder, or indetermination.

The o(X,Y) measures the “additional” average certainty
(or information) of X occurring under the condition that Y
has already or simultaneously occurred (or is certain) “over”
the average certainty of X when the certainty (or information)
of Y is not available. Thus, o(X,Y’) can be regarded as an
indicator of the unilateral dependence of X upon Y.

Based on the previous properties, we proved in [4] the
following properties for the discrete o(X,Y’) measure:

i) o is not symmetrical with respect to its arguments.

ii) o(X,Y) > 0 and equality holds iff X and Y are inde-
pendent. This results from the property: [E(X|Y) > IE(X)
with equality iff X and Y are independent.

iii) o(X,Y) < 1 — IE(X) and equality holds iff X is
completely dependent on Y.

Since IFE(X) is invariant with respect to any bijective
function g applied to X, we also have: 0o(g(X),Y) = o(X,Y).

According to Li, a nonsymmetric continuous dependence
measure R(X,Y") should satisfy [11] the following postulates:

P1: R(X,Y) is defined for all non-constant continuous
random variables X, Y;

P2: R(X,Y) may be not equal to R(Y, X);

P3: 0 < R(X,Y) <1

P4: R(X,Y) =0 iff X, Y are independent;

P5: R(X,Y) =1iff Y = f(X) almost surely for a Borel-
measurable function f;

P6: If g is a Borel-measurable bijection on R, then
R(g(X),Y) = R(X,Y).

The o(X,Y) measure, defined for all discrete random
variables X and Y, satisfies postulates P1, P2, P4, and P6.
PS5 is not satisfied.

Postulate P3 is satisfied only in a more relaxed form:
The o(X,Y’) dependence measure has the value range 0 <
o(X,Y) <1-IE(X), from independence of X and Y, to
complete dependence of X on Y.

III. PROPERTIES OF THE CONTINUOUS IE

We introduce now the main properties of the continuous
IE, omitting the proofs. We will use these results in the next
sections.



For a continuous random variable X with probability den-
sity function f(x), the IE is [13], [10]:
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With respect of shifting and scaling, we have the following
results.

Theorem 1. I[E(X +¢) = [E(X).
This means that the IE is invariant to translations.

Theorem 2. [E(cX) = HTE(X).

el
Scaling X changes I E(X): The energy is reduced if |a| >
1; otherwise, the energy is increased. The effect of scaling is
illustrated in Fig. 2.
For two continuous random variables X and Y, with their
joint probability density function f(z,y) we have:
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Similar to the discrete case, we have the following property
(given here without our proof):

Theorem 3. [E(X|Y) > IE(X) with equality iff X and Y
are independent.

As a special important case, the IE of a multi-variate normal
continuous distribution can be computed according to the
following

Theorem 4. [E(Xy,Xs,...,X,) = IEWN,(u,K)) =

1
Va(var) K|}

The range of values for the continuous IE(X) is different
than for the discrete case: We have TE(X) > 0, but it is
possible, as we will see in an example, that TE(X) > 1. Also,
using normal distribution examples, it can be shown that there
are no theoretical uniform bound for the /F(X) in continuous
density models. This can be extended to joint and conditional
probability density functions, resulting that TE(X|Y") is also
not bounded by a constant. All we can say is that the upper
bounds happen at the mode where the PDFs have their peak
values.

Let us highlight the differences between the IE and Shan-
non’s entropy when applied to a uniform distribution on the
interval (0,a):

1E(X) /O (i)Qdaz <i)2a %

where a is the volume of the support and is always non-
negative. We know [9] that the entropy of the continuous
uniform distribution defined on the interval (0, a) is H(X) =
log a. Hence, we remark that the continuous entropy moves
into the opposite direction to the corresponding IE as the dis-
tribution parameter changes its value: While H(X) increases
when a or ¢ increase, I F(X) decreases when a or ¢ increase.

Example of IE for a scaled random variable

Given the following Pareto probability density function
function of X:
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where X follows a Pareto distribution with parameters o = 3
and 6 = 11.

Given a scaled random variable Y and Y = 2X, the
probability density function of Y is given as follows:
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By the property of Pareto distribution, when a Pareto vari-
able is scaled by a constant, the resulting distribution’s scale
parameter will be scaled by the same constant accordingly,
since 6 is a scale parameter. Thus, Y = 2X must follow the
Pareto distribution with the parameters o = 3 and 26 = 22.
We obtain:

/ f3(z)dz = — ~0.11688
9
IE(YY)=1E(2X) = / gQ(y)dy Tep = 0-05442.

Using Monte Carlo simulation, we generated 120 data points
from a Pareto population with the same parameter values, and
them based on the same sample data we fit the data to a
Pareto density curve using the maximum likelihood estimation
(MLE) for the parameter estimates: & = 3.950149718 and
6 = 11.89175072. We obtain TE(X) = 0.147439115 and
1IE(X) = 0.073719557. We then scale the sample data by a
constant ¢ = 2. We fit the scaled data to another Pareto density
curve using the MLE parameter estimates & = 3.950303111
and 0 = 23.78465538 to compute the density function values
and the IE, which is IE(Y) = IE(2X) = 0.073719354. As
expected, we obtained a ratio of approximately % between
IE(X) and IE(Y).

The above example validates the relation of a scale random
variable and its resulting discrete and continuous random
variables, as realized by our numerical example.

IV. PROPERTIES OF THE UNILATERAL DEPENDENCE
MEASURE

For two continuous random variables X and Y with their
joint probability density function f(z,y) we have:

o(X,Y) =IE(X|Y) - IE(X)

= f(x,y)f (xly)dy do — f*(@)da
[o] [

3)
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Fig. 1. The effect of shifting a normal distribution. The IE of the distribution N'(10, 2) is approximately 0.141, and the IE of its shifted version N (5, 2)

has the same value.
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Fig. 2. The effect of scaling a normal distribution. The IE of the distribution N (10, 2) is approximately 0.141, and the IE of its pair A'(5,1) scaled by

factor 0.5 is approximately 0.282.

We will introduce the properties of this measure, omitting
the proofs. We discuss how the continuous o(X,Y") verifies
Li’s postulates.

The measure o(X,Y’) quantifies the unilateral dependence
characterizing X with respect to Y and corresponds to the
amount of information contained in Y about X. The infor-
mation is measured by using probability density. Intuitively,
o(X,Y) measures the expected conditional probability den-
sity deducting the expected marginal probability density. The
difference, o(X,Y"), gives the expected additional conditional
density due to the information of Y.

Theorem 5. o(X,Y) # o(Y, X) unless f(z) = f(y) almost
everywhere, which means X =Y.

Theorem 6. o(X,Y) > 0 with equality iff X and Y are
independent.

With respect to scaling and shifting, we have the following
properties:

Theorem 7. o(X,Y) =o(X +¢,Y).
Theorem 8. o(cX,Y) = 5o(X,Y).
In particular, we have:

Theorem 9. o(X + ¢, X) = o(X, X +¢) =
o(X,cX) =1

o(eX, X) =

This means that X, cX, and X + ¢ are completely depen-
dent, which is exactly what we expect.

Consequently, the continuous o(X,Y") measure satisfies the
following postulates: P1, P2 (this results from Theorem 5),

and P4 (this results from Theorem 6). P5 is not satisfied. P6
is also not satisfied (for instance, for scaling - see Theorem
8).

Postulate P3 is partially satisfied: We only have: o(X,Y") >
0 with equality iff X and Y are independent.

As an example, let us compute the unilateral dependence
measure between X and Y, two Gaussian random variables
with correlation o.

We may conclude that the bivariate (X,Y") follows a bivari-
ate Gaussian distribution and it implies by shifting the mean to
zero, (X,Y) ~ N(0,K), (X,Y) follows a bivariate normal

N . 0 . .
distribution with the mean 0 and the covariance matrix
2 2
K = Ox O0XYy _ Ox o0oxOoy
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The conditional random variable X|Y ~ N (uxy,ox|y).-
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o(X,Y)=IE(X|Y) - IE(X)

oY, X)=IE(Y|X) - IE(Y)

If 0 =0, then o(X,Y) = o(Y,X) = 0. If 0 = £1, then
o(X,Y) =0(Y,X) =400, when —1 <o < 1.

If ox > oy, then o(X,Y) < o(Y, X).

If ox < oy, then o(X,Y) > o(Y, X).

If ox = oy, then o(X,Y) = o(Y, X).

In a multi-variate Gaussian, o = 0 implies independence:
the unilateral dependence measure is 0. 0 = =1 indicates
that X and Y are perfectly linearly correlated: the unilateral
dependence measure is infinite.

The standard deviation of the marginal X, ox relative to
oy, determines the unilateral dependence measure.

‘;;( = 1, X and Y are equally dependent on the other.
2X < 1, X is more dependent on Y than Y dependent on X.

gy

2X > 1, X is less dependent on Y than Y dependent on X.

oy

V. APPLICATION OF 0(X,Y’) TO INSURANCE RISK
MODELING

We will apply the continuous o(X,Y) measure to risk
modeling for joint lives and survivor insurance and annuity
contracts. The life expectancy of pairs of groups of insured
persons is a pricing and reserving factor which must be
considered when we want to assess the risks. Our general
approach consists of the following steps:

1) Obtain by regression (optimization) the probability den-

sity functions from the available data samples;

2) Compute o(X,Y") and o(Y, X) using these density func-

tions that passed the significance tests;

3) Analyze the unilateral interactions between variables X

and Y.

If the regression fails from miscellaneous reasons or the
model of the probability density function cannot be clearly
selected, we can choose a non-parametric approach, e.g. a KNN
based method, as presented in [7].

In our study, we have joint male-female pairs (married, but
not necessarily from the same family), as data samples from
the hypothized joint probability distribution (X,Y"). Variable
X is the number of deaths per thousand annual risk exposures
of joint lives and survivors (males), given at least one death
occurred in the group. Variable Y is the number of deaths

= e <\/11—7‘1>
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per thousand of joint lives and survivors annual exposures
(females), given that a death in that group occurred.

We use older age mortality rates by policy, derived from
the database of the Individual Annuity Experience Committee
(IAEC) of the Society of Actuaries with the contract data
from major insurance companies based in the USA. We will
compute our unilateral dependency measure to investigate the
dependency of male mortality rate on female’s for a general
block of joint lives and survivors contracts. o(X,Y) is not
like most the traditional correlation but aims to quantify
the unilateral causation relationship between X and Y. The
causality relationship between X mortality rate (by policy)
and one of the FARM (Factors Affecting Retirement Mortality)
variables as Y may be measured and ranked for model factor
selection, although it is outside the scope of this section.
The unilateral dependency measure between random variables
will be applied to mortality variable rate to hopefully aid
stochastic model efficiency via incorporating mortality variable
as a dynamic, experience-adjustable stochastic process, whose
causation relationship should be recognized, evaluated, and
quantified by a robust yet practical measure system. We will
calculate o(X,Y") directly from the joint probability model
derived from a large multivariate mortality data sets. The final
goal is to use our results for screening and selecting essential
mortality model predictors from the FARM collection for the
future research.

For the years 2000-2008, we have extracted 2276 subgroups
of Joint & Survivor contracts, which are matched as (z,y)
pairs belonging to the same risk group.

To compute the density functions of X, Y, joint (X,Y),
and joint (Y, X) we first try to fit them into a joint probability
density model, the first step when we want to apply our
method. Since the true shape of the random variables X and
Y is not known, we have to investigate the fitting of the data
with various models and select the distribution which passes
the statistical tests. The first assumption was they might be
modeled by the normal distribution, but X and Y fit fails
to pass the normal test. They are not normally distributed
in probability. Thus, it is not practical to plug in a bivariate
Gaussian model to calculate o(X,Y").

However, they pass the lognormality test strongly, including
for a bivariate lognormal distribution as assessed by applying
the Kolmogorov-Smirnov and Anderson-Darling tests to the
marginal distributions of X and Y. The testing of the bivariate
joint density model of X and Y is assumed to pass via
the well-known joint normal distribution, where joint normal
is established if the marginal distribution is normal. This
theorem is applied to the joint lognormal distribution in light
of monotonic variable transformation. The resulted values are
o(X,Y) = 0.00519505 and o(Y, X) = 0.00529863 which is
an indicator that the group X (survival of males) has a slightly
lower dependence on group Y (survival of females) than the
vice versa [12].

For the second case study we refined the data and we set
the variable X as the number of deaths per thousand age 65+
male joint lives and survivors, given at least a death occurred
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Fig. 5. 3D Histogram Based on 2000-2008 IAEC Database representing the intrinsic mortality model for all age joint lives. The random variable corresponds
to the number of deaths per 1000 annual exposures. 583 older age groups of male-female pairs from 2276 joint lives groups, with zero truncated were used

in this plot.

in all special groups and the variable Y as number of deaths
per thousand age 65+ female joint lives and survivors, given at
least a death occurred in all special groups. We found that both
series also fit well with the lognormal distribution, as depicted
in the 3D representations from Figs. 3 and 4. The obtained
values are o(X,Y’) = 0.0042535 and o(Y, X) = 0.0043478,
showing once again that the group X (survival of males) has
a slightly lower dependence on group Y (survival of females)
than the vice versa.

When age independent, the mortality random routine for
male or female groups all follow lognormal model very
closely. The joint lives mortality seems to fit well by our bi-
variate lognormal model [12]. Although further statistical tests
should be performed, the theory of bivariate normal model
lends strong support of strong fit of a bivariate lognormal.

We conclude that the IAEC data consistently reveals
o(X,Y) < o(Y, X) to be considered by models.

This indicates an average of 5 out of 1000 group expe-
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Fig. 6. 3D Histogram Based on 2000-2008 IAEC Database representing the intrinsic mortality model for older age (65+) joint lives. The random variable
corresponds to the number of deaths per 1000 annual exposures. 523 older age groups of male-female pairs from 2276 joint lives groups, with zero truncated

were used in this plot.

riences male’s mortality rate depends on the female’s for the
policyholders contained in the 2000-2008 IAEC Database. For
policyholders over 65 years old, the unilateral dependence is
lower by one per thousand exposures, reducing to 4 cases
out of 1000. As far as male’s mortality rates depending on
female’s mortality rate more than the vice versa, the o(X,Y")
results support a tie, however, slightly leaning toward more
female dependency on the male’s mortality.

It will be interesting to see if such finding remains the same
for uninsured populations in the U.S. for the future research,
and also for the new data after 2008 which is becoming
available in 2016, especially traditionally people may believe
that the male mortality depends on their female partners.

VI. CONCLUSION

We have derived and proved some properties of the contin-
uous unilateral dependence measure o(X,Y’) and relate them
to Li’s postulates. The following postulates are fulfilled: P1,
P2, and P4. However, P5 and P6 are not satisfied. Postulate
P3 is only partially satisfied.

The o(X,Y) measures the unilateral dependence between
the two variables. The continuous version is very useful when
we have to derive some mathematical properties regarding
approximation techniques, as we did in [6] and [7]. The quite
simple mathematical expression of o( X, Y") makes this process
easier than when using more complex nonsymmetric measures.

In the case studies, we showed that the higher volatility
(largely scaled variable or larger standard deviation parameter,
the random variable gives lower IE as in the Pareto example
and lower o(X,Y) as in the bivariate normal. This result is
consistent with the concept of certainty measured by the IE
and the o(X,Y’) measure.

The testing of bivariate lognormal density model of X and
Y is assumed to pass via the well known joint normal distri-
bution property where joint normal is established if marginal
distribution is normal. This property is extended to lognormal
model without mathematical proof included, but our intuition
instead, supported by monotonic variable transformation.

With respect to our application area (mortality rate modeling
for life insurance), the o(X,Y") can be used to other intrinsic
mortality models to help identify, investigate, analyze and
model other inter-relationships among risk factors that drive
the direction or magnitude of mortality rate for a specific
insurance product, when the database is available and fit to
parametric probability density function well.

In practice, insurance companies use deterministic mortality
tables to price life insurance products and set the reserves to
prevent insolvency. With increasing regulatory concern, there
is a movement to stochastic models to better predict these risk
factors, such as mortality rate, which is never a constant, but
instead a variable subject to population change anti-selection
and longevity. Finally, the o(X,Y’) may be need to to screen
and rank important factors from the FARM variables to help
improve actuarial risk models for older age retirement industry.
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