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Abstract—The informational energy (IE) can be interpreted
as a measure of average certainty. In previous work, we have
introduced a non-parametric asymptotically unbiased and con-
sistent estimator of the IE. Our method was based on the
kth nearest neighbor (kNN) method, and it can be applied to
both continuous and discrete spaces, meaning that we can use
it both in classification and regression algorithms. Based on
the IE, we have introduced a unilateral dependency measure
between random variables. In the present paper, we show how to
estimate this unilateral dependency measure from an available
sample set of discrete or continuous variables, using the kNN
and the naı̈ve histogram estimators. We experimentally compare
the two estimators. Then, in a real-world application, we apply
the kNN and the histogram estimators to approximate the
unilateral dependency between random variables which describe
the temperatures of sensors placed in a refrigerating room.

I. INTRODUCTION

A critical aspect of many machine learning approaches is

how well an information theory measure is estimated from

the available training set. This relates to a standard concept in

statistics – probability density estimation. Density estimation
is the construction of an estimate of the density function from

the observed data [1]. We will refer here only to nonparametric
estimation, where less rigid assumptions will be made about

the distribution of the observed data. Although it will be

assumed that the distribution has the probability density f , the

data will be allowed to speak for themselves in determining

the estimate of f more than would be the case if f were

constrained to fall in a given parametric family.
Much effort has been devoted to the nonparametric estima-

tion of the mutual information (MI). The simplest approach

is naı̈ve estimation (which attempt to construct a histogram

where every point is the center of a sampling interval) is

plagued with both systematic (bias) and statistical errors [2].

An ideal estimator does not exist, and the choice of the

estimator depends on the structure of data to be analyzed.

It is not possible to design an estimator that minimizes both

the bias and the variance to arbitrarily small values [2].
An alternative to the well-known MI measure is the uni-

lateral dependency measure which can be derived from On-

icescu’s IE. Onicescu’s IE was interpreted by several authors

as a measure of expected commonness, a measure of average

certainty, or as a measure of concentration. For a continuous

random variable X with probability density function f(x), the

IE is [3], [4]:

IE(X) =

∫ +∞
−∞

f2(x)dx (1)

In order to study the interaction between two random

variables X and Y , the following measure of unilateral de-

pendency was defined by Andonie et al. [5]:

o(X,Y ) = IE(X|Y )− IE(X) (2)

with the following properties:

1) o is not a symmetric function;

2) o(X,Y ) ≥ 0 and the equality holds iff X and Y are

independent;

3) o(X,Y ) ≤ 1 − IE(X) and the equality holds iff X is

completely dependent on Y .

This measure quantifies the unilateral dependence charac-

terizing X with respect to Y and corresponds to the amount

of information detained by Y about X . There is an obvious

analogy between o(X,Y ) and the MI, since both measure the

same phenomenon. However, the MI is a symmetric, not a

unilateral measure.

When studying the interaction between two random vari-

able, why is a unilateral dependency measure useful, and why

do we not simply use the well-known MI? Let us consider

two sets of experiments, characterized respectively by random

variables X and Y . The experiments run simultaneously

and interact probabilistically. Our question is which variable

influences probabilistically more the other one. Thus, X can

be viewed as X|Y and Y can be viewed as Y |X . While

the correlation quantifies linear dependency and MI describes

the degree of interdependence between two random variables,

the asymmetric measure o(X,Y ) helps us understand which

random variable, X or Y , has a higher influence on the



other one. If both X and X|Y are available, we can estimate

IE(X|Y ) as well as o(X,Y ), and similarly for Y and Y |X .

When the data is acquired from real world experiments

or from simulators, we need to store series of values for X
and Y featuring the two phenomena running independently,

as well as measurements of values generated by the two

phenomena running simultaneously, in order to capture X|Y
and Y |X . Moreover, the precision of the IE(X|Y ) and

o(X,Y ) estimators increase when more values of X|Y are

available for each value of Y .

In the present paper, we introduce two statistical inference

techniques for the unilateral dependency measure o(X,Y )
using a.) the kNN estimation method, and b.) the naı̈ve his-

togram estimation. Based on a simple probability distribution,

we experimentally compare the two estimators. Then, in a

real-world application, we apply the histogram and the kNN

estimators to approximate the unilateral dependency between

random variables which describe the temperatures of sensors

placed in a refrigerating room with.

The rest of the paper is structured as follows. Section

II gives an overview of previous work. Section III briefly

describes the kNN IE approximation method. In Section IV

we introduce our new kNN approximator for the o(X,Y )
measure. In Section V, we describe how we adapt the naı̈ve

histogram method, a standard technique, for the o(X,Y ) esti-

mation. Section VI compares the kNN and histogram o(X,Y )
estimators. We conclude in Section VII with a synthetic

comparison of the two introduced estimators.

II. PREVIOUS WORK

In a sequence of papers ([6], [7], [8], [9]), we have in-

troduced a Parzen windows approach for the approximation

of the o(X,Y ) dependency measure from sample datasets.

We used this approach in classification and feature weighting,

in combination with LVQ and Neural Gas type algorithms.

The Parzen windows estimate cannot be applied on continuous

spaces, and this is an important drawback. This means that the

Parzen windows estimation of o(X,Y ) cannot be applied in

an important machine learning domain – continuous function

approximation (or prediction). We note that the same inconve-

nience exists when estimating the Shannon type MI through

Parzen windows.

To overcome this problem, our first step was to introduce

a kNN estimator for the IE in [10]. We proved that this

estimator is asymptotically unbiased and consistent [11] (i.e.,

it is a “good” estimator). Let us remind ourselves that a statis-

tic whose mathematical expectation is equal to its intended

parameter is called unbiased estimator of that parameter.

Otherwise, the statistic is said to be biased. A statistic that

converges asymptotically to its intended parameter, as its

sample size increases, is called consistent estimator of that

parameter [12].

In accordance to our results from [11], we can state now that

the kNN is a “good” o(X,Y ) estimator, both for the discrete

and the continuous case.

III. kTH NEAREST NEIGHBOR ESTIMATION OF THE

INFORMATIONAL ENERGY

From our previous results [10], [11], we will summarize

how we can estimate IE(X) from a random sample x1,
x2, . . . , xn of d-dimensional observations, with a distribution

having the unknown probability density f(x).
The kNN estimators represent an attempt to adapt the

amount of smoothing to the “local” density of data. The

degree of smoothing is controlled by an integer k, chosen to

be considerably smaller than the sample size. Let us denote

dj(xi) the distance from the reference point xj to the point

xi. For each xi, we define d1(xi) ≤ d2(xi) ≤ . . . ≤ dn(xi)
to be the distances from xi to all other points of the sample,

arranged in ascending order.

The kNN density estimate of probability density function

f(x) in xi is defined by [1]:

f̂(xi) =
k

2ndk(xi)
(3)

The IE is the average of the f(x) values, as can be seen from

eq. (1), that is IE(X) = E(f(x)). Since all n observations

from our samples have the same probability 1/n, a convenient

estimator for IE is:

ˆIE
(n)

k (X) =
1

n

n∑
i=1

f̂(xi) (4)

where f̂(xi) is the estimate of the probability density

function f(xi).
To evaluate this formula, we have to obtain f̂(xi). We start

by determining the probability density Pik(ε) of the random

distance Ri,k,n between a fixed point xi and its kth nearest

neighbor, selected from the remaining n − 1 points. The

probability Pik(ε)dε of the kth nearest neighbor, to be within

distance Ri,k,n ∈ [ε, ε+dε] from xi, can be expressed in terms

of the trinomial formula [13]:

Pik(ε)dε =
(n− 1)!

1!(k − 1)!(n− k − 1)!
dpi(ε)p

k−1
i (1− pi)

n−k−1

where pi(ε) =
∫
‖x−xi‖<ε f(x)dx is the mass of the ε-ball

centered at xi and
∫
Pik(ε)dε = 1. We notice here that the

distance between xi and a subset of k − 1 points is smaller

than ε, while the distance to the remaining n − k − 1 points

is larger than ε+ dε.
We can express the expected value of pi(ε) using the

probability mass function of the trinomial distribution:

EPik(ε)(pi(ε)) =

∫ ∞
0

Pik(ε)pi(ε)dε =

= k

(
n− 1

k

)∫ 1
0

pk−1(1− p)n−k−1pdp =

= k

(
n− 1

k

)∫ 1
0

p(k+1)−1(1− p)(n−k)−1dp.



This equality can be reformulated using the Beta function:

B(m,n) =

∫ 1
0

xm−1(1− x)n−1dx =
Γ(m)Γ(n)

Γ(m+ n)
.

We obtain:

EPik(ε)(pi(ε)) = k

(
n− 1

k

)
Γ(k + 1)Γ(n− k)

Γ(n+ 1)
=

= k
(n− 1)!

(n− k − 1)!k!

k!(n− k − 1)!

n!
,

which can be rewritten as:

EPik(ε)(pi(ε)) =
k

n
. (5)

On the other hand, assuming that f(x) is almost constant

in the entire ε-ball around xi, we have [13]:

pi(ε) ≈ V1R
d
i,k,nf(xi)

where we denote the volume of the ball of radius ρr,n in a

d-dimensional space by

Vρr,n = V1ρ
d
r,n =

π
p
2 ρdr,n

Γ(p2 + 1)
.

V1 is the volume of the unit ball and Ri,k,n is the Euclidean

distance between the reference point xi and its kth nearest

neighbor. This means that V1R
d
i,k,n is the volume of the d-

dimensional ball of radius Ri,k,n. By using the Euclidean

distance, we assume that all dimensions are at the same scale.

We obtain the expected value of pi(ε):

E(pi(ε)) = E(V1R
d
i,k,nf(xi)) = V1R

d
i,k,nf̂(xi). (6)

Equations (5) and (6) both estimate E(pi(ε)). Their results

are approximatively equal:

V1R
d
i,k,nf̂(xi) =

k

n
.

That is:

f̂(xi) =
k

nV1Rd
i,k,n

, i = 1 . . . n. (7)

This is the estimated probability density function. By sub-

stituting f̂(xi) in eq. (4), we finally obtain the following IE

approximation:

ÎE
(n)

k (X) =
1

n

n∑
i=1

k

nV1Rd
i,k,n

. (8)

According to [11], ÎE
(n)

k (X) is asymptotically unbiased

and consistent (i.e., it is a “good” estimator).

IV. THE KNN o(X,Y ) ESTIMATOR

Our goal is to infer o(X,Y ) from the random sample x1,
x2, . . . , xn. We will use the results from Section III to deduct

a new kNN estimator for o(X,Y ).

First, we substitute ÎE
(n)

k (X) from eq. (8) in eq. (2):

ô(X,Y ) = ÎE
(n)

k (X|Y )− ÎE
(n)

k (X) (9)

where:

ÎE
(n)

k (X|Y ) =
m∑
j=1

f̂(yj)ÎE
(n)

k (X|yj) (10)

and

ÎE
(n)

k (X) =
1

n

n∑
i=1

k

nV1Rd
i

(11)

is an adaptation of eq. (8).

We can write:

ÎE
(n)

k (X|yj) =
1

n

n∑
i=1

f̂(xi|yj)

where

f̂(xi|yj) =
f̂(xi, yj)

f̂(yj)
. (12)

We re-write the right hand side of this equation by using

the estimated probability density function from eq. (7):

f̂(xi, yj) =
kij

mnV1Rd
i,j

, i = 1 . . . n, j = 1 . . .m

f̂(yj) =
kj

mV1Rd
j

, j = 1 . . .m

and we obtain:

f̂(xi|yj) =
kij

mnV1Rd
i,j

mV1R
d
j

kj
=

kijR
d
j

nkjRd
i,j

.

Ri is the Euclidean distance between the reference point xi
and its kth

i nearest neighbor, when the points are drawn from

the one-dimensional probability distribution f(x): Ri = ‖xi−
xi,ki‖. Similarly, Rj is the Euclidean distance between the

reference point yj and its kth
j nearest neighbor, when the points

are drawn from the one-dimensional probability distribution

f(Y ): Rj = ‖yj −yj,kj‖. Then, Rij is the Euclidean distance

between the reference point (xi, yj) and its kth
ij nearest neigh-

bor, when the points are drawn from the joint probability distri-

bution f(X,Y ): Rij =
√

(xij − xij,kij )
2 + (yij − yij,kij )

2.

Now we can re-write eq. (10):

ÎE
(n)

k (X|Y ) =
m∑
j=1

f̂(yj)
1

n

n∑
i=1

kijR
d
j

nkjRd
i,j

and the estimate of o(X,Y ) is:



ô(X,Y ) =
m∑
j=1

kj
mV1Rd

j

1

n

n∑
i=1

kijR
d
j

nkjRd
i,j

− 1

n

n∑
i=1

ki
nV1Rd

i

Therefore:

ô(X,Y ) =
1

n2V1

⎛
⎝ 1

m

m∑
j=1

n∑
i=1

kij
Rd
i,j

−
n∑
i=1

ki
Rd
i

⎞
⎠ (13)

We may think to simplify this expression by setting ki =
kij , and obtaining:

f̂(xi|yj) =
Rd
j

nRd
i,j

,

but this is not always a good option. However, although we

do not have a general method to set the nearest neighbor

parameter, Silverman [1] suggests that an optimal choice of k
is proportional to

n4/(d+4). (14)

In our case, the optimal values of ki and kij may not be equal,

because these two parameters refer to different samples.

V. HISTOGRAM ESTIMATION OF o(X,Y )

The naı̈ve histogram estimation of a probability density

function is a standard technique (see [1]). We will show how

we can use it for inferring o(X,Y ), and this method will be

an alternative to our kNN estimator from Section IV.

Considering the same random sample x1, x2, . . . , xn as

above, the histogram estimator of probability density function

f(x) in xi is:

f̂(xi) =
number of x falling in the same bin as xi

nh
(15)

where n is the sample size and h is the bin width. All points

falling in the same bin have the same f̂(x). The empirical

value of IE can be written as:

IEempirical(X) =

∑n
i=1 f̂(xi)

n
. (16)

From eqs. (15) and (16), the estimate of the IE can be

expressed by

IEempirical(X) =

∑number of bins
bin=1 (nbin)

2

n2h
(17)

where nbin is the number of points in the current bin. We add

in each bin nbin times the number nbin of points falling into

the same bin as xi.
In the case of the conditional probability density function,

we draw for each point y several points xy from f(x|y), and

find IEempirical(X|Y ) by a formula similar to eq. (17).

The empirical value of o(X,Y ), obtained from the his-

togram is:

oempirical(X,Y ) = IEempirical(X|Y )− IEempirical(X).

VI. EXPERIMENTS

A. A simple probability distribution

The non-parametric estimation of the IE is appropriate when

the available sample has an unknown distribution. Neverthe-

less, it is interesting to compare the estimator’s outcome with

the results provided by a wider used technique, such as the

naı̈ve histogram estimation, as well as with the theoretical

value of a probability density function.

In our experiments, we consider the joint probability density

function

fX,Y (x, y) =
6

5

(
x+ y2
)
, x ∈ [0, 1], y ∈ [0, 1], (18)

which has the marginal probability density functions

fX(x) =

∫ 1
0

6

5

(
x+ y2
)
dy =

6

5

(
x+

1

3

)
and

fY (y) =

∫ 1
0

6

5

(
x+ y2
)
dx =

6

5

(
1

2
+ y2
)
.

The conditional probability density function is:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

x+ y2

1
2 + y2

,

and the theoretical value of o(X,Y ) is:

o(X,Y ) = IE(X|Y )− IE(X)

IE(X) =

∫ 1
0

f2(x)dx = 1.12

IE(X|Y ) =

∫ 1
0

∫ 1
0

fX,Y (x, y)fX|Y (x|y)dxdy = 1.1351

and

o(X,Y ) = 1.1351− 1.12 = 0.0151.

A similar method can be used to find the values IE(Y ) =
1.128, IE(Y |X) = 1.14787, and o(Y,X) = 0.01987.

To compare the theoretical values with the kNN and the

histogram estimates, we need a sample of values drawn from

the proposed distribution. The rejection sampling method [14]

is appropriate for our case because we can find the inverses

of the f(x), f(y) and f(x|y) functions.

We draw a value from fX(x) by finding first the cumulative

density function

F (x) =

∫ x

0

6

5

(
z +

1

3

)
dz =

3x2 + 2x

5

and then its inverse

x = F−1(t) =

√
15t+ 1− 1

3

where t is a uniform random number from [0, 1].



Fig. 1. The empirical value of o(X,Y ) determined from the histogram, with bin width of 15 points. The theoretical values IE(X) = 1.12, IE(X|Y ) =
1.1351, o(X,Y ) = 0.0151, IE(Y ) = 1.128, IE(Y |X) = 1.14787, o(Y,X) = 0.01987 have been marked with dashed lines.

Fig. 2. The kNN estimated value of o(X,Y ), where k was determined with formula (14). The theoretical values IE(X) = 1.12, IE(X|Y ) = 1.1351,
o(X,Y ) = 0.0151, IE(Y ) = 1.128, IE(Y |X) = 1.14787, o(Y,X) = 0.01987 have been marked with dashed lines. IE(X|Y ) and IE(Y |X) converge
towards the theoretical values when the number of samples increase.

A sample from fX|Y (x|y) can be drawn with a two steps

method. First, we draw a sample y from fY (y). Next, we have

to determine the cumulative density function of fX|Y (x|y):

F (x|y) =

∫ x

0

z + y2

1
2 + y2

dz =
x2 + 2xy2

1 + 2y2

and

xy = F−1(w) = −y2 +
√

2wy2 + +y4

where w is a uniform random number from [0, 1] and y is the

sample determined at the first step.

For a better fit with the theoretical conditional probability

distribution function fX|Y (x|y), we generate between 2–10 x
values for each y value, and between 2000–5000 y points. We

apply the histogram method for 15 points in each bin because

we determined experimentally that this value provided the

most accurate estimations for our example. The kNN estimator

is tested with the values of ki and kij determined directly by

formula (14), without applying any scale.

The histogram estimation (Fig. 1) looks unbiased, but has

a large variability around the true values, even when the

data sample size increases. Moreover, the estimated value of

o(X,Y ) is mostly negative although it should be positive, as

known from its properties. The kNN estimation (Fig. 2) is

biased and tends to underestimate the true values. However,

when the data sample size increases, the kNN estimation

becomes more accurate, because it is asymptotically unbiased

and consistent.

B. Temperature sensors data

In our real-world application, we study the temperature drop

of two parcels placed in a room which is refrigerated by two

air conditioning units AC1 and AC2. The experimental data

are obtained with the emulator introduced in [15]. Each of

the two air conditioners generate a temperature of 1◦C. The

two parcels P1 and P2 at initial temperatures 25◦C and 20◦C,

having the sensors TS101 and TS102 attached, are placed in the

room at various positions. We study the temperature variation



(a) Scenario S1 (b) Scenario S2

(c) Scenario S3.1 (d) Scenario S4.1

Fig. 3. Sample scenarios running on the data obtained with the emulator presented in [15]. The sensors TS101 and TS102 measure the temperatures of the
parcels P1 and P2. The low temperature produced by the air conditioning units AC1 and AC2 spread across the room as figured out by the image colors.

Fig. 4. The temperature values recorded in the mentioned scenarios along of 5000 ticks.

recorded by TS101 and TS102 under the following scenarios:

S1. Parcel P1 is placed at position POS1 to obtain the values

of X measured by sensor TS101.
S2. Parcel P2 is placed at position POS2 to obtain the values

of Y measured by sensor TS102.
S3. Parcel P1 is placed at position POS1. The parcel P2 is

also placed, but its position slightly varies around POS2.
For each new position of parcel P2, we measure a new

series of values X|Y from the TS101 sensor.

S4. Parcel P2 is placed at position POS2. The parcel P1 is

also placed, but its position slightly varies around POS1.
For each new position of parcel P1, we measure a new

series of values Y |X via the sensor TS102.

These experiments allow us to determine how the presence

of a parcel in the neighborhood of the other affects the

evolution of temperatures recorded by the two sensors. We



TABLE I
HISTOGRAM ESTIMATION WITH 5 BINS.

Data / scenario TS101 Data / scenario TS102
IE(X) IE(X|Y ) o(X,Y ) IE(Y ) IE(Y |X) o(Y,X)

S1, S3.1 0.4973212 0.4647864 -0.032534 S4, S4.1 0.7889546 0.776226 -0.012728
S1, S3.1, S3.2 0.4973212 0.5695512 0.0722299 S4, S4.1, S4.2 0.7889546 0.4582482 -0.330706
S1, S3.1, . . . , S3.3 0.4973212 0.5428637 0.0455425 S4, S4.1, . . . , S4.3 0.7889546 0.4442722 -0.344682
S1, S3.1, . . . , S3.4 0.4973212 0.5634884 0.0661671 S4, S4.1, . . . , S4.4 0.7889546 0.481437 -0.307517
S1, S3.1, . . . , S3.5 0.4973212 0.5471003 0.0497791 S4, S4.1, . . . , S4.5 0.7889546 0.4640422 -0.324912

TABLE II
KNN ESTIMATION.

Data / scenario TS101 Parameters Data / scenario TS102 Parameters
IE(X) IE(X|Y ) o(X,Y ) ki kij IE(Y ) IE(Y |X) o(Y,X) kj kji

S1, S3.1 0.9104424 1.678031 0.7675881 909 292 S4, S4.1 0.9096563 3.382819 2.473163 909 292
S1, S3.1, S3.2 0.9104424 1.226694 0.3162511 909 463 S4, S4.1, S4.2 0.9096563 1.064047 0.1543904 909 463
S1, S3.1, ..., S3.3 0.9104424 1.07795 0.1675078 909 607 S4, S4.1, ..., S4.3 0.9096563 1.180015 0.2703589 909 607
S1, S3.1, ..., S3.4 0.9104424 1.010859 0.1004169 909 736 S4, S4.1, ..., S4.4 0.9096563 1.157799 0.2481422 909 736
S1, S3.1, ..., S3.5 0.9104424 0.9918889 0.0814465 909 854 S4, S4.1, ..., S4.5 0.9096563 0.9812464 0.0715900 909 854

randomly re-position the parcels P1 and P2 five times each,

denoting these scenarios by S3.1–S3.5 and S4.1–S4.5. The

emulated scenarios S1, S2, S3.1, and S4.1 are presented in Fig.

3. The temperatures recorded in the above mentioned scenarios

after 5000 ticks are depicted in Fig. 4. From the simulation

of scenarios S1 and S2, we obtain the samples of random

variables X and Y . For each value of X , we obtain one

corresponding value of X|Y from scenario S3.1. For additional

precision, for each value of X , we can obtain a set of values

of X|Y if we run the scenarios S3.1 – S3.5. The same idea

applies for Y and Y |X .

Table I summarizes the experimental results obtained with

the histogram estimator. The histogram method yields nearly

constant values for IE(X|Y ) and IE(Y |X), given a fixed

number of bins, meaning that increasing the data set has little

impact on this estimator. Nevertheless, the values of o(X,Y )
and o(Y,X) should be positive, thus the bias is an important

element in this case.

Table II summarizes the experimental results obtained with

the kNN estimator. The kNN estimator of the IE becomes

more precise when the volume of the available data increases.

Thus, we progressively increase the amount of experimental

data, starting with the data measured in scenarios S1 and S3.1,
and ending with the data measured in scenarios S1, S3.1,
. . . , S3.5 for IE(X|Y ), and similarly with scenarios S2 and

S4 for IE(Y |X). The decrease of IE(X|Y ) is more robust

when the formula (14) is used to set parameters ki, kij , kj
and kji. We notice that it is important to adapt the values

of these parameters to the sample size, in order to avoid the

limitation of the kth nearest distance. Overall, IE(Y |X) also

decreases, but not as clear as IE(X|Y ), meaning that Y is

more sensitive to external influences. We can say that X has a

stronger influence on Y than Y on X , which might lead to the

decision to remove the sensor TS102 because its information

appears to be less relevant.

VII. CONCLUSIONS

In our examples, summarized in Figs. 1 and 2, all with

unidimensional variables, histogram estimation is computa-

tionally more efficient than the kNN method and is more

stable than the kNN estimator (smaller variance and smaller

bias). However, for data sets with two or more dimensions, the

histogram method becomes computationally expensive, due

to the rapid increase of the number of bins. Another known

drawback of the histogram method is the bias generated by

the origin and width of the bins have a strong influence. It is

difficult to find optimal values for the parameters of the bins

(i.e., their hyper-volume, origin, and orientation) [1].

It is true, the kNN estimator is computationally more inten-

sive than the histogram method (at least for unidimensional

variables), but it is a “good” estimator – it is asymptotically

unbiased and consistent – which are nice properties that

the histogram method lacks. Therefore, it is generally more

accurate than the histogram estimator.

The histogram method may be used, for instance, to process

in real time a data stream, and draw a quick (but not final)

conclusion. The kNN method is perhaps more useful in batch

mode, as a second step, to consolidate the results.

Approximating o(X,Y ) from from sample datasets be-

comes more relevant if this measure is incorporated into ma-

chine learning algorithms, as we did in [6], [7], [8], and [9]. In

classification algorithms, all three estimators (Parzen windows,

kNN, and histogram) may be used to approximate o(X,Y )
from data samples. In the future, it may be interesting to

compare their relative performances. For continuous function

approximation, only the kNN and the histogram methods may

be used.
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