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Abstract. We introduce an information-theoretical approach for ana-
lyzing cause-effect relationships between time series. Rather than using
the Transfer Entropy (TE), we define and apply the Transfer Informa-
tion Energy (TIE), which is based on Onicescu’s Information Energy.
The TIE can substitute the TE for detecting cause-effect relationships
between time series. The advantage of using the TIE is computational:
we can obtain similar results, but faster. To illustrate, we compare the
TIE and the TE in a machine learning application. We analyze time
series of stock market indexes, with the goal to infer causal relationships
between them (i.e., how they influence each other).

1 Introduction

Causal analysis is not merely a search for statistical correlations, but an inves-
tigation of cause-effect relationships. Although, in general, statistical analysis
cannot distinguish genuine causation from spurious covariation in every conceiv-
able case, this is still possible in many cases [15]. Causality is usually posed using
two alternative scenarios: the Granger causality and the information-theoretical
approach (based on the Kullback-Leibler divergence or the TE).

The Granger1 causality test [5] is a statistical hypothesis test for determining
whether one time series is useful in forecasting another. According to Granger,
causality could be reflected by measuring the ability of predicting the future
values of a time series using past values of another time series. The Granger test
is based on linear regression modeling of stochastic processes. More complex
extensions to nonlinear cases exist, but these extensions are more difficult to
apply in practice [6].

The TE, introduced by Schreiber [17], has been used to quantify the statisti-
cal coherence between time-series. It is able to distinguish driving and responding
elements and to detect asymmetry in the interaction of time-series. For instance,
in the financial market, based on the TE concept, Kwon and Oh [12] found that
the amount of information flow from index to stock is larger than from stock to

1 Clive Granger, recipient of the 2003 Nobel Prize in Economics.
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index. It indicates that the market index plays a role of major driving force to
individual stock. Barnett et al. proved that Granger causality and TE causality
measure are equivalent for time series which have a Gaussian distribution [1].
Hlaváčková-Schindler [8] generalized this result.

Our main contribution is an information-theoretical approach for analyzing
cause-effect relationships between time series. Rather than using the relatively
well-known Kullback-Leibler divergence and the TE (both based on a measure of
uncertainty - the Shannon entropy), we introduce the TIE, which is based on a
measure of certainty - the Onicescu Information Energy (IE) [14]. In general, any
monotonically growing and continuous probability function can be considered as
a measure of certainty and the IE is such a function. The IE is a special case
of Van der Lubbe et al. certainty measure [18] and was interpreted by several
authors as a measure of expected commonness, a measure of average certainty,
or as a measure of concentration, and is not related to physical energy. We
claim that the TIE can substitute the TE for detecting cause-effect relationships
between time series, with the advantage of being faster to compute.

An hot application area of causal relationships is finance. Most investors
in the stock market consider various indexes to be important sources of basic
information that can be used to analyze and predict the market perspectives. We
may be interested in the correlation (and beyond that, causality as well) between
two time series such as a market/bench index and an individual stock/ETF
products. An ETF (Exchange Traded Fund), is a marketable security that tracks
an index, a commodity, bonds, or a basket of assets like an index fund. In our
application, we compare the TIE and the TE in a machine learning application,
analyzing time series of stock market indexes with the goal to infer how they
influence each other.

The paper is organized as follows. First, we refer to previous work (Sect. 2).
Section 3 introduces the TIE. The financial application is presented in Sect. 4.
The paper is concluded in Sect. 5.

2 Related Work: TE for Financial Time-Series

An overview of causality detection based on information-theoretic approaches
in time series analysis can be found in [9]. Most of the information-theoretic
approaches in time series analysis are based on the TE. The recent literature on
TE applications is rich.

TE measures the directionality of a variable with respect to time base on the
probability density function (PDF). For two discrete stationary processes I and
J , TE relates k previous samples of process I and l previous samples of process
J and is defined as follows [17]:

TEJ→I =
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where it and jt are the discrete states at time t of I and J , respectively; i
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t are the k and l dimensional delay vectors of time series I and J , respectively.
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TJ→I measures the extend to which time series J influences time series I.
The TE is asymmetric under the exchange of it and jt, and provides information
regarding the direction of interaction between the two time series. In fact, the
TE is an equivalent expression for the conditional mutual information [9].

Accurate estimation of entropy-based measures is notoriously difficult and
there is no consensus on an optimal way for estimating TE from a dataset [4].
Schreiber proposed the TE using correlation integrals [17]. The histogram esti-
mation approach with fixed partitioning is the most widely used. This method
is simple and efficient, but not scalable for more than three scalars. It also has
another drawback - it is sensible to the size of bins used. Since estimating the
TE reduces to the non-parametric entropy estimation, other entropy estima-
tion methods have been also used for computing the TE [4,7,19]: kernel density
estimation methods, nearest-neighbor, Parzen, neural networks, etc.

Without intending to be exhaustive, we mention two papers which describe
time-series information flow analysis with TE. Other recent results can be found
in [3,13].

Kwon and Yang [11] computed the information flow between 25 stock mar-
kets to determine which market serves as a source of information for global
stock indexes. They analyzed the daily time series for the period of 2000 to
2007 using TE in order to examine the information flow between stock markets
and identify the hub. They concluded that the American and European markets
are strongly clustered and they are able to be regarded as one economic region,
while Asia/Pacific markets are economically separated from American and Euro-
pean market cluster. Therefore, they could infer that American and European
stock markets fluctuate in tune with a common deriving mechanism. The con-
siderable quantity of the TE from American and European market cluster to
the Asia/Pacific markets is the strong evidence that there is an asymmetry of
information flow between the deriving mechanisms.

Sandoval [16] used the stocks of the 197 largest companies in the world,
in terms of market capitalization, in the financial area, from 2003 to 2012. He
studied the causal relationships between them using TE. He could assess which
companies influence others according to sub-areas of the financial sector. He
also analyzed the exchange of information between those stocks and the net-
work formed by them based on this measure, verifying that they cluster mainly
according to countries of origin, and then by industry and sub-industry.

3 Transfer Information Energy

The information entropy of a discrete random variable I with possible values
{i1, i2, . . . , in} is the expected value of the information content of I [2], H(I) =
−∑n

t=1 p(it) log p(it), whereas the IE is the expected value of the probabilities
of the possible values of I [14], IE(I) =

∑n
t=1 p(it) · p(it).

We define the TIE:

TIEJ→I =
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to quantify the increase in certainty (energy) of process I, knowing k previous
samples of process I and l previous samples of process J . Like the TE, the TIE
is non-symmetric and measures cause-effect relationships between time series I
and J . For computational reasons, we take k = l = 1.

Both (1) and (2) can be rewritten substituting the conditional probabilities:

TEJ→I =
∑

it+1,it,jt

p(it+1, it, jt) log
p(it+1, it, jt)p(it)
p(it+1, it)p(it, jt)

, (3)

TIEJ→I =
∑

it+1,it,jt

p(it+1, it, jt)
(

p(it+1, it, jt)
p(it, jt)

− p(it+1, it)
p(it)

)
. (4)

Comparing formulas (3) and (4), we observe that for TE we have 4 multi-
plications/divisions and one logarithm, whereas for TIE we have 3 multiplica-
tions/divisions and 1 subtraction. Considering all operations equivalent, the TIE
is theoretically 20% faster, which is obviously a rough theoretical estimate.

The histogram estimation of TE and TIE between two time series can be
computed in three steps: (a) Transformation of the continuous valued time series
into series with discrete values by binning; the result is a sequence of tokens
selected from an alphabet with as many symbols as the number of bins; (b)
Evaluation of the probabilities p(it+1, it, jt), p(it), p(it+1, it), and p(it, jt), for all
it and jt; and (c) Computation of TE and TIE by using Eqs. (3) and (4).

4 Transfer Energy Between Financial Time Series

We illustrate with all details the estimation of TI and TIE on a real-world data
set, to make the procedure reproducible.

Table 1. The 20 stock market indexes, obtained from the finance.yahoo.com web site.
We estimate the TE and TIE of all pairs from the 20 stock market symbols. Each
symbol represents a time series of daily closing prices recorded between Jan. 3, 2000–
Feb. 14, 2017.

Americas Asia/Pacific Europe

1: MERV 8: AORD 16: ATX

2: BVSP 9: SSEC 17: BFX

3: GSPTSE 10: HSI 18: GDAXI

4: MXX 11: BSESN 19: AEX

5: GSPC 12: JKSE 20: SSMI

6: DJA 13: N255

7: DJI 14: KS11

15: TWII
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For 20 stock market indexes from Americas, Asia/Pacific and Europe
(Table 1), we estimate the TE and TIE for all pairs. The working days of the
markets across the world may vary from one country to another. Therefore, the
time series are aligned by time stamp and the missing values are replaced with
the previous available ones. We estimate TE and TIE as follows:

(a) Discretization: binning the time series
We slice the domain limited by the minimum and maximum values from the
whole data set into equally sized intervals which are then labeled by assigning
a symbol to each of them. The result is a sequence of characters, for which we
compute the probabilities needed in Eqs. (3) and (4).

When the binning is applied on the first log-returns of stocks, the narrow
bins provide more information content, thus a higher value of entropy H then
the large bins. Nevertheless, the correlation between the two choices of binning
is high in general, reflecting an important similarity of the approaches [16]. In
general, for shorter time series it is advisable to use larger bins in order to
avoid the excessive fragmentation (and thus very low or uniform probabilities of
symbols). We use 24 bins, noting that the binning strategy is less relevant in our
case, since we are not interested in absolute values for TE and TIE, but in their
relative values (for comparison). Fig. 1 depicts the binning and Table 2 shows a
numerical example of binning based on the first values of the DJI and HSI stock
indexes.

Fig. 1. Binning the time series. The left graph presents the raw values of the DJI stock
ranging between Jan. 3, 2000–Feb. 14, 2017. On the right side, we represent the log-
returns of closing prices and the slicing of the values domain, with 24 equal intervals
between minimum and maximum values. Each interval is labeled with a symbol (a
letter).

(b) Compute the marginal and joint probabilities in Eqs. ( 3) and (4)
We denote by TEt the term under the sum sign in (3) and by TIEt the term
under the sum sign in Eq. (4). The next step is to evaluate TEt and TIEt

by counting the number of each occurrence (Table 2). The string obtained by
binning the log-returns of the DJI stock starts with the symbols “g l m n l j
k k m k . . . ”. Therefore, p(i1) = 0.00673 is the probability of occurrence of
symbol “g”, p(i2) = 0.21054 is the probability of occurrence of symbol “l”,
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Table 2. Illustration of the step by step calculation of TE and TIE. Binning the log-
returns of the DJI values is subject to slicing the values interval, limited by −0.082 and
0.105. The limits of log-returns of HSI are −0.135 and 0.134. The probabilities are the
relative frequencies of symbols or combination of symbols, while TE and TIE can be
calculated from the intermediary values TEi and TIEi, which are obtained from the
probabilities listed on column ti.

t0 t1 t2 t3

Closing prices of DJI 11357.51 10997.93 11122.65 11253.26

Log-returns of DJI −0.0321 0.0112 0.0116

Binned log-returns
of DJI

i1 : g i2 : l i3 : m

Closing prices of
HSI

17369.63 17072.82 15846.72 15153.23

Log-returns of HSI -0.0172 -0.0745 -0.0447

Binned log-returns
of HSI

j1 : k j2 : f j3 : i

(it+1, it) (i2, i1) : lg (i3, i2) : ml (i4, i3) : nm

(it, jt) (i1, j1) : gk (i2, j2) : lf (i3, j3) : mi

(it+1, it, jt) (i2, i1, j1) : lgk (i3, i2, j2) : mlf (i4, i3, j3) : nmi

p(it) p(i1) p(i2) p(i3)

p(it+1, it) p(i2, i1) p(i3, i2) p(i4, i3)

p(it, jt) p(i1, j1) p(i2, j2) p(i3, j3)

p(it+1, it, jt) p(i2, i1, j1) p(i3, i2, j2) p(i4, i3, j3)

TE =
∑

(TEt) TE1 TE2 TE3

TIE =
∑

(TIEt) TIE1 TIE2 TIE3

etc. The probability p(i2, i1) = 0.00179 is the probability of the sequence “gl”,
p(i3, i2) = 0.00942 is the probability of “lm”, etc. The string obtained by binning
the log-returns of the HSI stock starts with the symbols “k f i n o m l l l m . . . ”.
We obtain the probability of “gk”: p(i1, j1) = 0.00224, the probability of “gk”:
p(i2, j2) = 0.00224, etc. Next, p(i2, i1, j1) = 0.00067 is the probability of “lgk”,
p(i3, i2, j2) = 0.00022 is the probability of “mlf”, etc. For an accurate estimation,
a larger number of decimals is preferred.

(c) Estimate TE and TIE
We calculate TEt and TIEt. For the first step, TE1 = 0.000011 and TIE1 =
0.0000022, etc. Finally, we compute TE = 47.76 and TIE = 17.85, summing-up
the partial results.

The results are summarized in the heatmaps (Fig. 2). The lighter shaded
pixels are associated with a higher values of TE and TIE. We visually observe
that the two heatmap correlate well. In fact, Pearson correlation coefficient is
0.973, showing a strong correlation.
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Figure 3 illustrates the execution time for computing TIE and TI. For time
series with more than 1,000 values, the execution time for TIE becomes clearly
shorter. For an increasing number of values, the ratio TIE/TE of the executions
times decreases.

Fig. 2. The two heatmaps are calculated for TE (left) and TIE (right), between all
combinations of the 20 stock indexes.

Fig. 3. Execution time. The graph shows the ratio TIE/TE of the executions times,
for an increasing number of values. The time is computed for the DJI and HSI stocks
ranging between Jan. 3, 2000–Feb. 14, 2017. The relative efficiency of TIE increases
for larger time series. For 4357 points, the ratio is 0.49918.

5 Conclusions

According to our preliminary results, the TIE can substitute the TE for detect-
ing cause-effect relationships between time series, with the advantage of a
computational complexity reduction. This result is very interesting, since the
TE is already a standard concept (Scheiber’s paper [17] has at this moment
842 citations.



Transfer Information Energy 519

Even if its use as an information flow measure is debatable (see [10]), the
TE can be used as a measure of the reduction in uncertainty about one time
series given another. Symmetrically, the TIE may be viewed as a measure of the
increase in certainty about one time series given another. It is an open problem
if the TIE is an appropriate energy flow measure.
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