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Abstract. We describe a kernel method which uses the maximization
of Onicescu’s informational energy as a criteria for computing the rele-
vances of input features. This adaptive relevance determination is used
in combination with the neural-gas and the generalized relevance LVQ
algorithms. Our quadratic optimization function, as an L2 type method,
leads to linear gradient and thus easier computation. We obtain an ap-
proximation formula similar to the mutual information based method,
but in a more simple way.

1 Introduction

Relevance LVQ (RLVQ) [2] uses a weighted distance function for the LVQ clas-
sification. A modification of RLVQ has been proposed by Hammer et al. [3],
Generalized RLVQ (GRLVQ), which obeys a stochastic gradient descent on an
energy function.

The neural-gas (NG) algorithm [4] represents a neural model which is applied
to the task of vector quantization by using a neighborhood cooperation scheme.
The NG network uses an adaptation rule similar to the Kohonen feature map. It
replaces the Euclidian distance with the neighborhood ranking of the reference
vectors for a given input vector. The Supervised Relevance Neural Gas (SRNG)
algorithm [1] combines the NG and the GRLVQ. The idea was to incorporate
neighborhood cooperation of NG into the GRLVQ to speedup the convergence
and make initialization less crucial.

In our previous work we have introduced two LVQ classificators based on On-
icescu’s informational energy (IE): the Energy RLVQ (ERLVQ) [5] and the En-
ergy GRLVQ (EGRLVQ) [6]. We have obtained incremental learning algorithms
for feature ranking and supervised classification. The sensible part of such an
approach is the mutual information estimation, which poses great difficulties as
it requires the knowledge on the underlying probability density functions of the
data space and the integration on these functions [13]. Our technique proved to
be an efficient solution to this problem.

In this paper, we describe the Energy SRNG (ESRNG) classificator, a ker-
nel method which uses the maximization of the IE as a criteria for computing
the relevances of input features. This adaptive relevance determination is used
in combination with the SRNG model, providing an alternative way for deter-
mining the relevances. After introducing the SRNG notations and the relevance
determination using IE, we define the ESRNG algorithm and compare it to other
algorithms of this family.
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2 SRNG

Assume that a clustering of data into M classes, c1, . . . , cM , is implemented and a
set of training data is available: X = {(xi, ci) ⊂ IRn×{1, . . . , M} | i = 1, . . . , N}.
The training vectors xi have n components [xi1, . . . , xin]. A subset of reference
vectors from IRn are assigned to each class. Denote the set of all reference vectors
by W = {w1, . . . , wK}. The components of a vector wj are [wj1, . . . , wjn].

The NG algorithm optimizes a cost function which uses the rank rj(xi, W )
of the reference vector wj for a given input xi [1], [4]:

CNG =
1

C(γ)

∑

wj∈W

∑

xi∈X

hγ(rj(xi, W ))‖xi − wj‖2,

where hγ(rj(xi, W )) = e−rj(xi,W )/γ , C(γ) =
∑K−1

r=0 hγ(r), and γ is a parameter
which gives the neighborhood range. The rank rj(xi, W ) of the reference vector
wj for the input vector xi is the number of reference vectors that are in the
relation ‖xi − wk‖ ≤ ‖xi − wj‖, where j, k ∈ {1, . . . , K} and j �= k. The
neighborhood ranking of the reference vectors is updated each time a training
vector is applied to the input of the neural network.

The GRLVQ algorithm uses a squared weighted distance between an input
vector xi and a reference vector wj , D2

ij =
∑n

k=1 λk(xik − wjk)2, where λ =
[λ1, . . . , λn] is the relevance vector, with λi ≥ 0, i = 1, . . . , n,

∑n
i=1 λi = 1. The

Supervised Relevance NG (SRNG) can be obtained [1] by including the NG idea
in the GRLVQ algorithm. The cost function optimized by this algorithm is:

CSRNG =
∑

xi∈X

∑

wj∈W xi

hγ(rj(xi, W
xi))f(µλ(xi, wj))

C(γ, Kxi)
,

with µλ(xi, wj) = |xi−wj |2λ−Dik

|xi−wj |2λ+Dik
. Dik is the weighted distance between xi and

the closest reference vector that does not belong to Wxi , a subset of W which
contains the reference vectors from the same class with xi. Kxi is the cardinality
of Wxi . According to this cost function, all reference vectors from Wxi and the
closest reference vector that does not belong to this set are updated by [1]:

∆wj = ηλI
∂f

∂µ

Dik

(|xi − wj |2λ + Dik)2
(xi − wj)

rj(xi, W
xi)

C(γ, Kxi)
(1)

where wj is the closest reference vector from xi that does not belong to Wxi ,
and

∆wk = −
∑

wj∈W xi

η1λI
∂f

∂µ

|xi − wj |2λ
(|xi − wj |2λ + Dik)2

(xi − wk)
rj(xi, W

xi)
C(γ, Kxi)

(2)

for all reference vectors from Wxi . In these relations, η and η1 are two posi-
tive constants. We used the sigmoid function f(µ) = 1

1+e−µε for which ∂f
∂µ =

f(µ) (1 − f(µ)), with ε a positive constant.
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3 Relevance Determination Using Informational Energy

Onicescu’s IE [7], [8] is defined by: E(Y ) =
∫ +∞
−∞ p2(y)dy, where Y is a contin-

uous random variable with probability density function p(y). The conditional
information energy between Y and a discrete random variable C is: E(Y |C) =∫

y

∑M
p=1 p(cp)p2(y|cp)dy.

The unilateral dependence measure o(Y, X) = E(Y |X) − E(Y ), defined in
[9], quantifies the amount of information contained in random variable X about
random variable Y .

The ESRNG algorithm uses a vector of relevances obtained by maximizing
o(Y, X) with an ascending gradient method [6]. A transformation which makes
the connection between the input vector and the class represented by the refer-
ence vector wj is employed: yi = λI(xi−wj). In this equation, xi, i = 1, . . . , N ,
is the set of training vectors that belong to one of the c1, c2, . . . , cM classes;
wj , j = 1, . . . , P , are the reference vectors of the classes; λ is the vector of rel-
evances; I is the unity matrix. The values yi, i = 1, . . . , N , are samples of the
random variable Y .

We obtain the relevance values by an iteratively updating approach:

λ(t+1) = λ(t) + α
N∑

i=1

∂o(Y, C)
∂yi

I (xi − wj) .

Considering the M class labels as samples of a discrete random variable
denoted by C, we have: o(Y, C) = E(Y |C)− E(Y ). The conditional information
energy can be reformulated as a dependence of the squared mutual probability
density E(Y |C) =

∑M
p=1 p(cp)

∫
y

p2(y|cp)dy =
∑M

p=1
1

p(cp)

∫
y

p2(y, cp)dy.

This allows us to write o(Y, C) =
∑M

p=1
1

p(cp)

∫
y p2(y, cp)dy −

∫
y p2(y)dy,

which can easily estimated by using the Parzen windows with the Gaussian

kernel G(y − yi, σ) = 1√
2πσ

· e−
‖y−yi‖2

2σ .

The probability density p(y) can be expressed [10] as p(y) = 1
N

∑N
i=1 G(y −

yi, σ
2). We can write:

∫
y p2(y, cp)dy = 1

N2

∑Np

k=1
∑Np

l=1 G(ypk − ypl, 2σ2) and
∫

y
p2(y)dy = 1

N2

∑N
k=1

∑N
l=1 G(yk − yl, 2σ2), where ypk, ypl are two training

samples from class p, and yk, yl are two training samples from any class. Np is
the number of the training samples from the class p.

We obtain

o(Y, C) =
1
N

(
M∑

p=1

1
Np

) Np∑

k=1

Np∑

l=1

G(ypk − ypl, 2σ2I) −

− 1
N2

N∑

k=1

N∑

l=1

G(yk − yl, 2σ2I).

We use two consecutive samples y1 and y2 as classes representatives. This ex-
pression can only be evaluated when the two training vectors belong to different
classes. In this case, we obtain:
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o(Y, C) = G(0, 2σ2) − 1
2
G(y1 − y2, 2σ2).

4 The ESRNG as a Kernel Based Algorithm

When y1 �= y2, we have ‖y1 − y2‖2 > 0 and G(0, 2σ2) > G(y1 − y2, 2σ2). This
means o(Y, C) > 0 for all input vectors. Hence, this is a positive defined kernel.

The squared weighted distance between an input vector xi and a reference
vector wj D2

ij =
∑n

k=1 λk(xik − wjk)2 requires that λk ≥ 0 for all k = 1, . . . , n.
In the case when at least one relevance value is negative, this condition can
be realized by transforming the relevance vectors with λk = eλk∑n

i=1 eλi
+ ε or

by scaling the relevance components λk = λk + mini=1,...,n λi + ε, where ε is a
positive constant. We usually apply a transform of the relevance vector in order
to keep its component’s values in a reasonable domain.

Finally, we obtain:

λ(t+1) = λ(t) − α
1

4σ2 G(y1 − y2, 2σ2I)(y2 − y1)I(x1 − wj(1) − x2 + wj(2))(3)

where wj(1) and wj(2) are the closest prototypes from the input vectors x1 and
x2, respectively.

The ESRNG algorithm adapts the reference vectors for as least as possible
quantization error on all feature vectors. After initializing the relevance vector
λk = 1/n, k = 1, . . . , n, the codebook vectors, η, α, and σ, the following proce-
dure updates incrementally the codebook vectors, the relevances and the feature
ranks, for a given input xi:

1. Update the codebook vectors using the SRNG relations (1) and (2).
2. Update the relevances according to our formula (3) and transform them.
3. Update the overall rank of each feature as an average over all previous steps.

Since we also obtain a ranking of the input vectors’ components, this algo-
rithm can be used not only in classification tasks, but also in feature selection.

The weighted Euclidean metric we use allows for a direct interpretation as
kernelized NG if the relevances are fixed [1]. In this case, the relevances should
not be updated after processing each input pattern. This may be achieved if we
allow a preprocessing of the patterns, where the relevances are computed first.

5 Experiments

The classification results obtained by ESRGN, applied on three well known
datasets (Iris, Ionosphere, and Vowel Recognition [11]), are compared in Table
1 with other experiments performed under similar conditions.

We used 6 reference vectors to classify the 150 vectors from the Iris database.
The third component was ranked as most important and the least important was
the second component, while the recognition rate was 97.33%. The 351 instances
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of the Ionosphere dataset were split into two subsets. For the first training 200
samples we used 8 reference vectors. The remaining 151 samples were used in
the classification tests. We obtained a recognition rate of 94.40%. For the Vowel
recognition database (Deterding data) we trained 59 reference vectors and we
obtained a recognition accuracy of 47.61%. The second feature was found as
most important, whereas the 7-th and 10-th features were ranked as the least
important.

Figure 1 shows the average values of the feature relevances obtained with
ESRNG experiments.

Table 1. Comparative recognition rates for the test data

Iris Vowel Ionosphere
LVQ 91.33% 44.80% 90.06%
RLVQ 95.33% 46.32% 92.71%
GRLVQ 96.66% 46.96% 93.37%
SRNG 96.66% 47.61% 94.03%
ERLVQ 97.33% 47.18% 94.03%
EGRLVQ 97.33% 47.18% 94.40%
ESRNG 97.33% 47.61% 94.40%
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Fig. 1. The average values of the feature relevances obtained with ESRNG experiments

6 Conclusions

Our contribution is an information theory approximation of the relevances in the
supervized NG algorithm. This method proves to be computationally effective
and leads to good recognition rates.

Jenssen et al. [12] have recently proved that information theoretic learning
based on Parzen windows density estimation is similar to kernel-based learning.
Since the distance we use allows for a direct interpretation as kernelized NG, in
our future work we will attempt to combine these two results.
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