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Abstract. Input feature ranking and selection represent a necessary
preprocessing stage in classification, especially when one is required to
manage large quantities of data. We introduce a weighted LVQ algo-
rithm, called Energy Relevance LVQ (ERLVQ), based on Onicescu’s in-
formational energy [10]. ERLVQ is an incremental learning algorithm for
supervised classification and feature ranking.

1 Introduction

Standard Learning Vector Quantization (LVQ) [9] does not discriminate be-
tween more or less informative features: their influence to the distance function
is equal. On the contrary, the Distinction Sensitive Learning Vector Quantizer
(DSLVQ), introduced by Pregenzer et al. [11], holds a changeable weight (rel-
evance) value for every feature and employs a weighted distance function for
classification. This function is based on the Euclidean approach, but other
weighted distance functions could also be applied. An iterative heuristic train-
ing process is used to tune the weight values for a specific problem: the influence
of features which frequently contribute to miss classifications of the system is
reduced while the influence of the very reliable features is increased. This fa-
cilitates class discrimination and makes the system less sensitive to noise. A
DSLVQ variation is Relevance LVQ (RLVQ), introduced in [3].

In DSLVQ and RLVQ, the updating of the relevances is only heuristically
motivated. For this reason, an improved RLVQ has been proposed by Hammer
et al. [7], which obeys a stochastic gradient descent on an energy function.
Another approach is OWA-RLVQ [4], with the relevances computed as Ordered
Weighted Aggregation (OWA) weights.

We will include these LVQ variations in a general LVQ algorithm class,
called ”weighted LVQ”. A weighted LVQ algorithm is characterized by the
following features: a) the input features are weighted and the weights are used
in the distance function; b) relevances and codebook vectors are updated in



parallel, during the learning phase. The updating can be performed incremen-
tally, after processing each learning sample; c) the resulted relevances may be
regarded as feature ranks and used for dimensionality reduction of the input
space (i.e., feature selection).

Our aim is to bring weighted LVQ type algorithms into a different theoret-
ical framework. We introduce ERLVQ, a weighted LVQ algorithm based on
mutual information (MI) optimization. A sensible part of this approach is the
estimation of MI because of its high computational complexity. In order to
avoid this drawback, Principe et al. [12], and Torkkola [13] have recently de-
veloped expressions for approximating MI based on measures similar to Renyi’s
quadratic entropy. A similar approach can be found in [8]. Rather than using
Renyi’s entropy, we estimate MI using Onicescu’s informational energy [10].
Our estimation is used in conjunction with a weighted LVQ algorithm. It up-
dates incrementally both the codebook vectors and the feature relevances. The
relevances can be used for feature ranking.

After introducing the basic notations in Section 2, we describe in Section
3 our MI estimation procedure and the ERLVQ algorithm. In Section 4 we
compare ERLVQ to other weighted LVQ algorithms and finally, in Section 5,
we conclude with some closing remarks.

2 The weighted LVQ algorithm

We aim to introduce firstly the basic notations used in LVQ, and to describe
the general weighted LVQ algorithm.

Assume that a clustering of data into C classes is to be learned and a set
of training data is given:

X = {(xi,yi) ⊂ Rn × {1, . . . , C} | i = 1, . . . ,M}

The components of a vector xi are [xi1, . . . , xin]. LVQ chooses codebook vec-
tors in Rn for each class. Denote the set of all codebook vectors by {w1, . . . ,wK}.
The components of a vector wj are [wj1, . . . , wjn].

The distance between xi and wj is determined by a weighted distance
function dist(xi,wj , λ), employing the feature weights vector λ = [λ1, . . . , λn],∑n

k=1 λk = 1. The weight, or relevance, λk measures the importance of the k-
th feature in the supervised classification of the input vector xi. The (overall)
rank of the k-th feature at step i of the LVQ training is an average of all λk,
for k = 1, 2, . . . , i.

A weighted LVQ algorithm learns xi by performing the following steps:

1. Find the closest codebook, wj , the winner, which provides the minimum
value of dist(xi,wj , λ), for j = 1, 2, . . . ,K.

2. Update the winner codebook according to the LVQ algorithm [9].

3. Update the relevance vector λ according to some rule, and normalize it.



4. Update the rank of each feature as an average over the previous steps.

This steps can be used in an incremental supervised LVQ learning algorithm
for the set X.

3 The Energy Relevance LVQ algorithm

In feature selection algorithms, the MI can be used for evaluating the ”informa-
tion content” of each individual feature with regard to the output class. The
feature selection method is searching for a subset of relevant features from an
initial set of available features. The subset should maximize MI.

The MI, I(Y,X) = H(Y ) − H(Y |X), measures the dependence between
two random variables X and Y using Shannon’s entropy. Rather than using
this formula, we should look at some more convenient ways to express it, ac-
cording to [12]. We use Onicescu’s informational energy [10]. For a discrete
random variable X with probabilities pk, the informational energy was defined
as E(X) =

∑n
k=1 p2

k.
We will first show that there is a similarity between I(Y, X) and the depen-

dence measure o(Y, X) = E(Y |X) − E(Y ), introduced in [1]. The application
o has the following properties: i) o is not symmetrical with respect to its ar-
guments; ii) o(X, Y ) ≥ 0 and equality holds iff X and Y are independent; iii)
o(X, Y ) ≤ 1− E(X) and equality holds iff X is completely dependent on Y.

The value o(X, Y ) measures the unilateral dependence of X relative to Y,
whereas I(Y, X) measures the interdependence of X and Y (it is symmetrical).
Generally, both unilateral and bilateral measures are useful for characterizing
stochastic systems [1]. We will use the unilateral measure o.

Let us consider the transform yi = λ(xi−wj), where yi, (i = 1, . . . , N), are
samples of the random variable Y . Each input vector xi, (i = 1, . . . , N), belongs
to one of the classes c1, c2, . . . , cM , and the prototypes wj , (j = 1, . . . , P ), are
determined by the LVQ algorithm. We consider the class labels as samples of
a discrete random variable C. The vector λ stores the relevances.

We iteratively compute the relevances by gradient ascent on o(Y, C):

λ(t+1) = λ(t) + η
N∑

i=1

∂o(Y,C)
∂yi

I (xi −wj) , (1)

where η is the learning rate.
For the continuous informational energy [6], we have:

o(Y, C) =
M∑

p=1

1
p(cp)

∫
y

p2(y, cp)dy −
∫
y

p2(y)dy. (2)

Using the Parzen windows approximation [12], this can be rewritten:



o(Y, C) =
1
N

(
M∑

p=1

1
Mp

)
Mp∑

k,l=1

G(ypk − ypl, 2σ2I)− 1
N2

N∑
k,l=1

G(yk − yl, 2σ2I)

(3)
where I is the unit diagonal matrix, G(y, σ) is the Gaussian kernel, and Mp is
the number of training samples from class cp.

Using two consecutive samples y1 and y2, as suggested in [13], and obtain:

o(Y,C) = G(0, 2σ2I)− 1
2
G(y1 − y2, 2σ2I). (4)

We compute the partial derivatives of o(Y,C) in (4), introduce them in (1),
and finally obtain:

λ(t+1) = λ(t) − η
1

4σ2
G(y1 − y2, 2σ2I)(y2 − y1)I(x1 −wj(1) − x2 + wj(2)) (5)

where wj(1) and wj(2) are the winner codebooks for x1, respectively for x2.
Using the relevances computed in (5), we define the weighted distance be-

tween an input vector xi and a codebook vector wj :

|xi −wj |λ =

√√√√ n∑
k=1

λk(xik − wjk)2.

We are ready to introduce the ERLVQ algorithm. After initializing the
relevance vector λk = 1/n, (k = 1, . . . , n), and the codebook vectors, the
following procedure updates incrementally the codebook vectors, the relevances
and the feature ranks, for a given input xi:

1. Find the closest codebook, wj , the winner, which provides the minimum
value of |xi −wj |λ, for j = 1, 2, . . . ,K.

2. Update the winner codebook:

wj =
{

wj + γλI(xi −wj) if xi was correctly classified
wj − γλI(xi −wj) otherwise

where γ > 0 is the learning rate.

3. Update the relevances according to (5). Normalize:

λk =
eλk∑n
i=1 eλi

,

(k = 1, . . . , n), to ensure that
∑n

k=1 λk = 1 and all λk ∈ [0, 1]. (Note that
λk can become negative in Step 3.)

4. Update the overall rank of each feature as an average over the previous
steps.



Table 1: Comparative recognition rates obtained with LVQ, RLVQ, OWA-
RLVQ, and ERLVQ.

Database LVQ RLVQ OWA-RLVQ ERLVQ

Iris 91.33% 95.33% 96.66% 97.33%
Vowel 44.80% 46.32% 46.75% 47.18%
Ionosphere 90.06% 92.71% 93.37% 94.03%

Table 2: Feature ranking for the Iris database.
Rank 1 2 3 4

RLVQ Feature 4 2 3 1
OWA-RLVQ Feature 4 3 2 1
ERLVQ Feature 1 2 3 4

4 Experiments

We have tested the ERLVQ algorithm on the following standard datasets [2]:
Iris, Vowel Recognition, and Ionosphere. Table 1 shows the recognition rates
obtained for LVQ, RLVQ, OWA-RLVQ, and ERLVQ, using each time the same
set of initial codebooks. We have generally obtained better results with ER-
LVQ.

Feature ranking is hard to compare because of the differences in data in-
terpretation. For the Iris database, Table 2 presents the ranking of the four
features, resulted after the RLVQ, OWA-RLVQ and ERLVQ training, using
the same initial set of codebook vectors. LVQ can not calculate feature ranks.
The last feature is the most important one for algorithms which try to find well
defined classes based on their centroid, such as RLVQ and OWA-RLVQ. For
ERLVQ, feature ranking is focused on discriminating as much as possible the
borders of classes. The first feature is in this case the most important one.

The ERLVQ ranking is similar to the results reported in [5], where the bidi-
mensional projection of patterns from classes ”1” and ”2”, using only the first
two features, leads to two well delimited clusters with relatively close centroids.
On the other hand, the bidimensional projection of the same patterns based on
the last two features creates two clusters with quite distanced centroids, but
the classes are not well delimited.

5 Conclusions

ERLVQ is a computational attractive neural model for applications with large
and redundant data sets. Compared to RLVQ and OWA-RLVQ, ERLVQ has



better recognition rates. For feature ranking, ERLVQ has a better class dis-
crimination capability by comparison with RLVQ and OWA-RLVQ, but the
resulted classes are not necessarily well distributed in the pattern space.

References

[1] R. Andonie and F. Petrescu. Interacting systems and informational energy.
Foundation of Control Engineering, 11:53–59, 1986.

[2] K. Blacke, E. Keogh, and C. J. Merz. UCI Repository of Machine Learning
Databases, www.ics.uci.edu/˜mlearn/MLSummary.html, 1998.

[3] T. Bojer, B. Hammer, D. Schunk, and K. T. von Toschanowitz. Rel-
evance determination in learning vector quantization. In M. Verleysen,
editor, Proceedings of the European Symposium on Artificial Neural Net-
works (ESANN 2001), pages 271–276, D-side publications, 2001.

[4] A. Cataron and R. Andonie. RLVQ determination using OWA opera-
tors. In M. Hamza, editor, Proceedings of the Third IASTED Interna-
tional Conference on Artificial Intelligence and Applications (AIA 2003),
Benalmadena, Spain, Sept. 8-10, pages 434–438, ACTA Press, 2003.

[5] R. K. De, N. R. Pal, and S. K. Pal. Feature analysis: Neural network and
fuzzy set theoretic approaches. Pattern Recognition, 30:1579–1590, 1997.

[6] S. Guiasu. Information Theory with Applications. McGraw-Hill, 1977.

[7] B. Hammer and T. Villmann. Generalized relevance learning vector quan-
tization. Neural Networks, 15:1059–1068, 2002.

[8] D. Huang and T. W. S. Chow. Searching optimal feature subset using
mutual information. In M. Verleysen, editor, Proceedings of the European
Symposium on Artificial Neural Networks (ESANN 2003), pages 161–166,
D-side publications, 2003.

[9] T. Kohonen. Self-Organizing Maps. Springer Verlag, 1997.

[10] O. Onicescu. Theorie de l’information. Energie informationelle. C. R.
Acad. Sci., Ser. A-B, Tome 263:841–842, 1966.

[11] M. Pregenzer, G. Pfurtscheller, and D. Flotzinger. Automated feature
selection with a distinction sensitive learning vector quantizer. Neurocom-
puting, 11:19–29, 1996.

[12] J. C. Principe, D. Xu, and J. W. Fisher III. Information-theoretic learning.
In S. Haykin, editor, Unsupervised Adaptive Filtering. Wiley, New York,
NY, 2000.

[13] K. Torkkola. Feature extraction by non-parametric mutual information
maximization. Journal of Machine Learning Research, 3:1415–1438, 2003.


