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Abstract: The paper presents an extension of the Fuzzy ARTMAP model 

that employees the feature weights in the determination of the ART 

categories. The features weights measure the relative importance of each 

input in a data classification task. 
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1. Introduction 

 
The Fuzzy ARTMAP (FAM) architecture 

is based on the adaptive resonance theory 
(ART) developed by Carpenter and 
Grossberg ([3], [4], [5], [7], [8], [10], 

[14]). FAM family of neural networks is 
known to be one of the few models that 

possess incremental learning capability 
[16], solves the stability-plasticity dilemma 

[9] and has most of the desirable properties 
for pattern classifiers [17]. 
 The success of ART-based architectures 

is given by the advantages they have over 
another multi-layer networks previously 

developed [6], [7], [8]: dynamic allocation 
of nodes without network disruption, fewer 
training cycles required for training and 

guaranteed convergence due to using 

monotonically decreasing weights. 
 The FAM paradigm is prolific and there 
are many variations of Carpenter's et al. 

[8] initial model: ART-EMAP [10], 
dARTMAP [11], Fuzzy ARTVar [13], 
PROBART [15], Boosted ARTMAP [19], 

Gaussian ARTMAP [20], FAMR [1], but 
the list is far to be exhaustive. 

 FAM with Feature Weighting (FAMFW) 

[2] algorithm uses a scaled distance 
measure by considering the input relevance 

as feature weights. The input relevance 
represents a numerical quantification of the 
importance of each feature in a data 

classification task. In this paper we discuss 
the details of categories determination 

while the input weights have different 
values. In section 2 we give a brief 

description of FAMFW. Section 3 is 
dedicated to the presentation of the impact 
that the feature weighting has in FAMFW. 

The experiments on artificial data are 
presented in section 4 while section 5 

contains the conclusions. 
 

2. Fuzzy ARTMAP with feature weights 

 
A FAM consists of a pair of fuzzy ART 

modules, ARTa and ARTb connected by an 
inter-ART module called Mapfield [8]. 
ARTa and ARTb are used for coding the 

input and output patterns, respectively, and 
Mapfield allows mapping between inputs 

and outputs. The ARTa module contains the 
input layer F1

a and the competitive layer 
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F2
a. A preprocessing layer F0

a is also 

added before F1
a. Analogous layers appear 

in ARTb. 
 The initial input vectors are in the form: 

 

( ) [ ] niaaa in …… ,11,0,,,1 =∀∈=a      (1) 

 
 The complement coding is a data 
preprocessing technique performed in the 

two fuzzy art module by the F0
a (and F0

b 
respectively) layer in order to avoid 

proliferation of nodes. Each input vector a 
= (a1, . . . , an) produces the normalized 
vector A = (a, ac) = (a, 1 − a) whose L1 

norm is constant: |A| = n. 
 Let us denote by Ma the number of nodes 

in F1
a and by Na the number of nodes in 

F2
a. Due to the preprocessing step, Ma = 

2n. wa is the weight vector between F1
a 

and F2
a. Each F2

a node  represents a class 
of inputs grouped together, denoted as a 

“category”. Each F2
a category has its own 

set of adaptive weights stored in the form 

of a vector: 

 

( ) a
a
Mj

a
j

a
j Njww

a
…… ,1,,, ,1, =∀=w      (2) 

 
where Na is the number of ARTa categories. 

They are represented as hyper-rectangles 
inside the  unit box. We use similar 

notations for the ARTb module that 
receives m-dimensional input vectors. For 
a classification problem the class index is 

the same as the category number in F2
b, 

and ARTb can be replaced by an 

Nb−dimensional vector.  
 The Mapfield module allows FAM to 

realize heteroassociations by establishing 
many-to-one  links between various 
categories from ARTa and ARTa, 

respectively. The number of nodes in 
Mapfield is equal to the number of nodes 

in F2
b. Each node j from F2

a is linked to 
every node from F2

b via a weight vector 
wj

ab. 

 The learning algorithm is shortly 

described below and a more detailed 
description can be found in [12]. For every 
training pattern we set the vigilance 

parameter factor equal to its baseline value 
and consider that all nodes are not 

inhibited. For each preprocessed input A, a 
fuzzy choice function is used to obtain the 

response of each F2
a category: 

 

( ) aa

ja

a

j

j NjT …,1, =
+

∧
=

w

wA
A

α
    (3) 

 
 Let us denote by J the node with the 

highest fuzzy choice. If the resonance 
condition: 

 

( ) a

a

Ja

J ρρ ≥
∧

=
A

wA
wA,        (4) 

 
is not fulfilled, then the Jth node is 

inhibited such that it will not participate to 
further competitions for this pattern and a 
new resonant category is searched. This 

eventually leads to creation of a new 
category in ARTa. 

 A similar process occurs in ARTb. If the 
winning node from ARTb is K, then F2

b 
output vector is set to: 

 

b

b

k Nk
Kk

y ,,1,
otherwise,0

if,1
…=



 =

=     (5) 

 
An output vector xab is formed in the 
Mapfield: 

 
ab

j

bab wyx ∧=                (6) 

 
 A Mapfield vigilance test controls the 
match between the predicted vector xab and 

the target vector yb: 
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abb

ab

ρ≥
y

x
                  (7) 

 

where [ ]1,0∈abρ  is a Mapfield vigilance 

parameter. If the case when the test from 
(7) is not passed, then a sequence of steps 
named match tracking is initiated.  The 

vigilance parameter ρa is increased and a 
new resonant category will be sought for 

ARTa. If the inequality from (7) is fulfilled, 
then learning occurs in ARTa, ARTb and 
Mapfield: 

 

( ) ( ) )()()( 1 olda

Ja

olda

Ja

newa

J wwAw ββ −+∧=
                        (8) 

 
and the analogous in ARTb. 

 In [2] we introduced the FAMFW, an 
extension of FAM which uses a weighted 

distance. The size s(wj ) of a category wj is 
defined by: 

 

( ) jj ns ww −=                (9) 

 
and the distance between the category wj 
and a normalized input A is: 

 

∑
=

=∧−=
n

i

jijjj ddis
1

),( wAwwA (10) 

 

where ( )
jnjjjj dd …,1=∧−= wAwd . 

It was shown in [12] that 
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 The weighted distance ( )λwA ;, jdis , a 

generalized form of ( )
jdis wA, , is: 

 

( ) ∑
=

=
n

i

jiij ddis
1

;, λλwA         (13) 

 

where ( )nλλ …,1=λ , [ ]ni ,0∈λ  is the 

weight of the ith feature and n=λ . 

 

3. The impact of weighted distance in 

FAMFW 

 

First of all, the condition n=λ  allows 

to set nii ,1,1 =∀=λ  which leads to 

the original distance used in FAM. The 

reason for which we allow zero values 

for iλ  will be described further in this 
section. However, other different 

restrictions on λ could be imagined. 

 Below we present some remarks 

concerning the properties of weighted 

distance used in FAMFW, considered 

for the bidimensional input space.  

 When we set 2,1,1 =∀= iiλ  the 

points situated at a constant distance from 

the input category corresponds to a 
hexagonal shape, as shown in Figure 1. 

When one considers that a specific feature 
has a different weight from the other, the 
hexagonal shape is flattened on the 

direction of the feature with the highest 
weight. This is depicted in Figure 2, when 

the feature along the y axis has a larger 
weight that the one from the x dimension. 
This behavior is in accordance with our 

intuition: for features that are found to be 
more relevant than the others, we should 

avoid large shapes on that direction, as 
these could lead to overlaps and 
misclassification, or worse, to rejected 

training patterns. Meanwhile, for the 
dimensions where we have low 

discriminatory power, denoted by low 

values of iλ , one should allow for large 
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shapes, as these will not lead to overlaps. 

This intuition is supported by the 

experimental results. 

It can be easily shown that 

when 2,1,0 =∀> iiλ , the shapes 

generated by points at constant 

weighted distance from the category 

are always hexagonal. When one of the 

two weights is null, the shape reduces 

to a pair of straight lines inside the unit 

square, situated on one side and 

another of the rectangle representing 

the category. This is shown in Figures 

3 and 4. Again, this is fully compliant 

with the general intuition, as irrelevant 

features will produce shapes that has no 

variance along the corresponding 

dimension. 
 

4. Experimental results 

 
 We illustrate the FAMFW behavior on 

two artificial datasets, consisting of points 

selected from the surfaces determined by 

two circles. The main purpose of this study 

is to show how the feature weights 

influence the behavior and the 

performance of FAMFW.  

 We generated two datasets. The first one 

represents bidimensional patterns 

consisting of points coordinates randomly 

generated inside of two overlapping 

circles, and the second one contains 

patterns from two non-overlapping circles. 

In both cases the x coordinates of the two 

circles have the same values (see Figures 5 

and 6) and each of them is considered an 

output class. The points outside the circles 

were not taken into account.  

 The training set consisted of 20 patterns 
and the test set contained 10000 patterns, 

with approximately the same number of 
patterns for each class. Each time we 
performed five tests with different pairs of 

train/test sets. The points are uniformly, 
independently and identically distributed 

 
 

Figure 1. Points located at constant distance from the input category 

 

 
 

Figure 2. Points located at constant distance from the category, when the weight 

associated to the vertical axis is larger than the one for the x axis 
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inside the circles. For the overlapping 

circles, the centers were (50, 50) and (50, 
100), respectively, and for the non- 
overlapping circles (50, 50) and (50, 170). 

In each case the radius was 50 points. 

 We used the overlapped circles in tests 
with the following values of the feature 

weights: ]1,1[=λ which is the particular 

case of FAM, ]2.1,8.0[=λ , ]5.1,5.0[=λ , 

and ]2,0[=λ . Because we have been 

particularly interested by the overlapping 
classes, we only reported here for the case 
of non-overlapped circles the tests realized 

with ]1,1[=λ  and ]2,0[=λ . The 

individual and averaged values for the 

number of ARTa categories and the percent 
of correct classification (PCC) are reported 
in Tables 1 and 2 for the overlapping and 

the non-overlapping circles, respectively. 
For the last three values of λ, the number 

of ARTa categories is relatively the same as 
for FAM. However, the PCC increases 

with the weight associated to the y feature, 

reaching the highest value when the x 
feature is completely omitted, i.e. when 

]2,0[=λ . The PCC, for increasing value 

of the second weight, is monotonically 

increasing and at least as large as the PCC 

obtained for ]1,1[=λ . 

 

 

Figure 5. Test set for two 

overlapping circles centered at 

(50,50) and (50,100), with the 

radius of 50 points 

 

 
 

Figure 3. Point situated at constant distance from the rectangle, when the feature along 

the x axis has null weight 

 

 
 

Figure 4. Point situated at constant distance from the rectangle, when the feature along 

the y axis has null weight 
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We also tested the behavior of FAMFW 

when the weights are given contrary to the 
general intuition, i.e. large for non-relevant 
features and small for relevant features. 

The results are given in Tables 3, for the 
non-overlapping circles. As one can see, 

the performance degrades significantly for 

these cases, in terms of PCC. Similar 
behavior was obtained for the case of 
overlapping circles. 

 

Table 1 
Number of  ARTa categories and PCC for overlapping circles and various sets of λ . 

]1,1[=λ  ]2.1,8.0[=λ  ]5.1,5.0[=λ  ]2,0[=λ  Test 

no 
No. of 

ARTa 

categ 

PCC No. of 

ARTa 

categ 

PCC No. of 

ARTa 

categ 

PCC No. of 

ARTa 

categ 

PCC 

1 9 70.59% 9 71.84% 10 72% 9 72.16% 

2 8 68.73% 8 69.17% 9 68.58% 8 68.87% 

3 8 72.22% 7 73.37% 8 74.99% 8 77.64% 

4 8 76.31% 9 76.96% 8 78.99% 11 77.82% 

5 8 78.56% 9 78.82% 9 78.31% 8 77.59% 

Avg. 8.2 73.282% 8.4 74.032% 8.8 74.574% 8.8 74.816% 

 
Table 2 

Number of  ARTa categories and PCC for non-overlapping circles and various sets of λ. 

]1,1[=λ  ]2,0[=λ  Test 

no 
No. of 

ARTa 

categories 

PCC No. of 

ARTa 

categories 

PCC 

1 6 98.14% 7 99.95% 

2 6 99.25% 7 99.7% 

3 6 98.92% 5 100% 

4 6 100% 8 100% 

5 6 99.21% 5 100% 

Avg. 6 99.104% 6.4 99.93% 

Table 3 
The effect of using inappropriate values for weighting the features (PCC and ARTa 

categories number) in the case of the two non-overlapping circles. These weights reverse 

the natural importance of the two features 

]8.0,2.1[=λ  ]5.0,5.1[=λ  ]0,2[=λ  Test 

no 
No. of 

ARTa 

categories 

PCC No. of 

ARTa 

categories 

PCC No. of 

ARTa 

categories 

PCC 

1 6 97.13% 7 98.15% 6 49.79% 

2 6 98.33% 6 91.97% 7 50.44% 

3 6 98.61% 5 99.05% 7 49.39% 

4 7 100% 7 99.46% 8 49.42% 

5 6 98.99% 5 98.6% 7 50.5% 

Avg. 6.2 98.612% 6 97.446% 7 49.908% 



Bulletin of the Transilvania University of Braşov • Vol. 14 (49) - 2007                                         7 

 

 
4. Conclusions 

 
The feature weights introduced in Fuzzy 
ARTMAP determine a more “sensitive” 

behaviour on the dimensions with a higher 
importance for the patterns classification, 

while the regions on the less important 
dimensions can more easily expand. The 

tests with the artificial dataset had one 
completely irrelevant feature and we 
progressively decreased its weight. The 

first goal of our tests was to determine the 
recognition accuracy of the FAMFW with 

different weights values. The second goal 
of our tests was to determine the behaviour 
of FAMFW when we artificially reverse 

the importance of the two features by 
assigning to them inappropriate weights.  

 In the case of the overlapping circles, the 
progressive increase of the importance of 
the second feature produced a better 

recognition accuracy for the FAMFW. On 
the other hand, as we expected, the number 

of ARTa categories slightly increased 
because the shape of the regions was 
influenced by the values of the weights. 

The datasets obtained from the non-
overlapping circles was, as we expected, 

an easier task for FAMFW and the zero 
value of the least important feature 
produced the best recognition accuracy.  

 For the second set of tests we assigned to 
the most important feature a lower weights 

that to the other feature. The feature 
weights were reversed and we tried to 

verify that FAMFW will have lower 
performance. The PCC values decreased 
comparing to the value obtained for 

]2,0[=λ . The results confirmed our 

suppose and the weights vector ]0,2[=λ  

produced a PCC of 49.908%, very close to 

50% which is the highest non-
determination.   

 Our experiments showed that FAMFW is 
a viable model. An open problem that 

might be investigated in the future is what 

is the limit of the overlapping degree that 
the classes can have. 
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Impactul ponderării intrărilor în reŃelele neurale Fuzzy ARTMAP 
Rezumat: Lucrarea prezintă o extensie a modelului Fuzzy ARTMAP care 
foloseşte ponderarea intrărilor pentru determinarea categoriilor ART. 
Ponderile intrărilor cuantifică importanŃa relativă a fiecărei intrări în 
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Cuvinte cheie: machine learning, ponderea intrărilor, fuzzy ARTMAP. 
Recenzent:.Prof. dr. ing. Gheorghe Toacşe 
Supervizor traducere în limba engleză: Asist. univ. Laura Sasu 



 


