

*Dept. of Electronics and Computers, Transilvania University of Braşov.
**High School of Building and Constructions, Braşov.

SYMBOLIC MODEL VERIFIER –
AN EDUCATIONAL FORMAL VERIFICATION

TOOL

S. MĂTASE* A. CAŢARON* A. CAŢARON**

Abstract: The modern verification of the integrated circuits is based on the
a priori logical verification, in the design phase, instead of testing a
prototype. This method was proved to lead to significant costs decreases. The
paper presents the Symbolic Model Verifier (SMV), an educational formal
verification tool. We present the new type of formal verification named model
checking and we present a practical verification example.

Key words: educational tool, formal verification, Symbolic Model Verifier.

1. Introduction

The verification has a very significant
role in the life of any system. There is no
product to not be tested prior to utilization.
These very simple principles are also
available for ASIC. The design of an
integrated circuit has become a very
complex operation since the dramatic
increase of the complexity of integrated
circuits. In the early years, design started
with connecting the elementary gates in a
prototype. The first testing was done by
electrical measurements of the resulted
product. The design has moved now into
the area of the logical part of the circuit.
There are specialized applications that
automatically produce the layout starting
from a high-level language code. These
languages actually allow the designer to
describe the circuit functionality.

It is obvious that to test a circuit is not
necessary anymore to physically realize a
prototype. The technology allows us now

to make coherent tests of the software
description of the circuit. These tests
confirm that logically, the designed
structure agrees with the specification
constraints. The verification role is
extremely important. Avoiding the errors
before producing the physical circuit by
describing it in a hardware description
language (Verilog, VHDL etc.) reduces the
very high financial efforts, even millions
of US dollars.

Formal verification is a generic name
for a collection of techniques to test the
correctness of a system or program.
Formal verification can be used to
mathematically prove that the system is in
accordance with the specifications. Formal
verification needs a formal description of
the system and a formal specification of its
desired behaviour.

The purpose of this paper is to present a
formal verification solution applied to a
part of a network processor, specifically to
the block implementation of the round-

96 Symbolic Model Verifier – An educational formal verification tool

robin mechanism. In order to achieve the
intended goal, a formal verification tool
named Symbolic Model Verifier (SMV)
will be employed.

2. Traditional verification / formal

verification

In the traditional approach, using the
same hardware description language does
the functional verification of a circuit. The
inputs flow through the circuit producing
outputs. The verifier has to generate the
input signals according to a priori
schemes, which may have to be applied
during the circuit use. More importantly,
he has to study the output signals
generated by the system. Let us consider a
circuit with 2200 Boolean inputs. The total
number of different input combinations is
2200. To verify the circuit for all these
possible combinations is an impossible
task.

From the designer point of view, this
verification is not sufficient. Many errors
can be hidden, representing corner cases.
These errors lead to unpredictable
evolutions of the system, far from the
design specifications. This is the reason
why it was necessary to introduce a safer
cover of the input signals space.

The formal verification is a new
technique to test the circuits described in a
high level language. Its goal is to cover the
input signals space by providing a
mathematical proof that a circuit performs
correctly, according to the design
specifications.

3. SMV – an academic formal

verification application

At this moment, many professional
formal verification tools are available. For
example, IBM developed RuleBase,
Cadence developed FormalCheck.
RuleBase employs a formal verification

method called Symbolic CTL Model
Checking. This paper will shortly present
SMV (Symbolic Model Verifier), a
verification tool developed by a team from
Berkley University, U.S., coordinated by
Ken McMillan. This software application
uses the verification model named model
checking. This is equivalent with an
exhaustive verification of the possible
input signals space.

In model checking the specifications are
sets of properties to be verified. These
properties are presented with temporal
logic, a special notation used to simply
express temporal relations between signals.
The properties have to meet some
specifications connected to "legal" input
signals, the allowed combinations of the
circuit inputs. The combinations are
generated by a set of interconnected finite
state machines, with the result of
producing all possible legal inputs for the
tested circuit. An important principle
implemented by SMV to produce the legal
inputs is the non-determinism. Using this
concept, the finite state machines
generating the inputs are able to produce
the whole area of values. This exhaustive
verification model is appropriate for small
size circuits. In practice, the circuits have
much bigger dimensions.

To verify such a circuit, the user has to
decompose it in small enough modules,
which can be explored exhaustively with
model checking. The name of this method
is compositional verification. SMV
integrates some other techniques to adjust
complex circuits in order to verify them
both by model checking: symmetry
reduction, temporal case splitting, data
type reduction, induction, etc.

4. Case study: a round-robin block

verification

We will suppose that we have to verify
the component circuit of a network

Bulletin of the Transilvania University of Braşov • Vol. 8 (43) - 2001 97

processor. Its role is to serve concurrent
requests for accessing a unique
transmission line. The negotiating
procedure is round-robin.

The circuit has request inputs (req1,
req2, req3, req4), clock and reset
inputs and an output, corresponding to
each a request (ack1, ack2, ack3,
ack4). We assume that initially the
system is trying to serve request no. 1. At
each step it tries to serve the request with
the closest order number to the last served
request, using the following algorithm:

...
Step i: serve request k
Step i+1: serve the request
(k+l mod 4) if active, where
l is an integer from 1 to 4
and the serving priority is
ascending order of l. If no
request is active, no answer
is issued.
...

The SVM code contains:
a) The designed circuit code (written

in SMV or Synchronous Verilog)
b) The SMV code with the input

generation
c) The SMV code for properties

verification.
We will present the code corresponding

to b) and c).
The generation of the input signals can

be viewed as an “environment” generation.
The clock signal is Boolean and is

active at each moment, equivalent to the
system clock.

The reset signal is also Boolean, and
is active only at the initial moment, then
becomes inactive. This signal can have a
non-deterministic behaviour, but this
restriction does not influence the generality
of the verification. The request signals are

the four components of the array req, for
an easier processing.

clk : boolean;
clk := 1;

reset : boolean;
init(reset) := 1;
next(reset) := 0;

req : array 0..3 of boolean;
init(req[0]) := 0;
init(req[1]) := 0;
init(req[2]) := 0;
init(req[3]) := 0;
for (i=0; i<4; i=i+1)
next(req[i]) :=
 case{
 req[i]=1 & gnt[i]=1

: {0, 1};
 req[i]=1 : 1;
 default : {0,1};
 };

These code lines produce the legal

inputs corresponding to the requests.
How are the inputs generated

corresponding to the 4 requests?
Initially, we will consider all the

requests on 0, which is the system is in the
reset state. Non-deterministic delayed
Mealy automata, as the following, model
the evolution of the requests:

a) When emitting the request req[i]
and it receives an acknowledgement signal
gnt[i] that is it is served, the evolution
of the request is not determined and the
value at the next clock can be 0 or 1;

b) When the request was asserted and
the acknowledgement signal has not been
received yet, its value at the next clock is
the same as the current one, 1;

c) If the request was not asserted at the
current step, at the next step it will have a
not-determined value, 0 or 1, as in the first
situation.

98 Symbolic Model Verifier – An educational formal verification tool

For the purpose of verification, the code
has to be extended by a set of user
variables, used in a more visible and
compact writing of the testing properties.

We introduce the variable served in this
module. It actually implements the
arbitration mechanism. This variable stores
the index of the last served request. This
value is used to compute the next request
to be served.

served : 0..3;

init(served) := 3;
next(served) :=
 case{
 reset : 3;
 gnt[(served + 1) mod 4]
 : (served + 1) mod 4;
 gnt[(served + 2) mod 4]
 : (served + 2) mod 4;
 gnt[(served + 3) mod 4]
 : (served + 3) mod 4;
 gnt[(served + 4) mod 4]
 : (served + 4) mod 4;
 default : served;
 };

We initially consider the line "parked"
on request 3, which is assigned value 1. In

other words, this is the last served request.
The next request to be served will be
chosen from requests 0, 1, 2, 3, in this
order, corresponding to the associated
request value.

The automata implementing this
behaviour were presented in this section
and cover all the situations in a real-world
use.

The testing code is composed by one or
more assertions or rules, implementing the
necessary properties of the given
specifications. These properties are:

a) The arbitration to be fair, that is each
asserted request to finally receive an
acknowledgement signal;

b) The sending of the acknowledgement
signals is accordance with the arbitration
mechanism;

c) It is not possible to issue more
acknowledgement signals at one moment;

d) It is not possible to issue an
acknowledgement signal when the
associated request has not been asserted.

The code that implements these
properties is the following:

rule_fairness1 : assert G req[0] -> F gnt[0];
rule_fairness2 : assert G req[1] -> F gnt[1];
rule_fairness3 : assert G req[2] -> F gnt[2];
rule_fairness4 : assert G req[3] -> F gnt[3];

rule_arb0 : assert G gnt[0] -> X served=0;
rule_arb1 : assert G gnt[1] -> X served=1;
rule_arb2 : assert G gnt[2] -> X served=2;
rule_arb3 : assert G gnt[3] -> X served=3;

rule_no_more_than_one_grant_at_the_time:
 : assert G gnt[0]+gnt[1]+gnt[2]+gnt[3] <= 1;

rule_grant0_with_request0
 : assert G gnt[0] -> req[0];
rule_grant0_with_request1

Bulletin of the Transilvania University of Braşov • Vol. 8 (43) - 2001 99

 : assert G gnt[1] -> req[1];
rule_grant0_with_request2
 : assert G gnt[2] -> req[2];
rule_grant0_with_request3
 : assert G gnt[3] -> req[3];

To write these rules, we used an
instructions subset of SMV that
implements the temporal logic. Three new
operators, G, F and X represent this type of
logic:

a) G - the global operator: in each state
of the system evolution, the suffixing
property has to be true. G m means that m
will be true at all times in the future;

b) F - the future operator: there is a
state in the system evolution where the
suffixing property is true. F m is true if m
will be true at some time later;

c) X - the next operator: in any of the
states possible to occur at in the next clock
state, the suffixing property is true. X m
means that m will be true at the next time.

For example, the following rule:
rule_fairness4 :
 assert G req[3] -> F
gnt[3];
has to be read: “In any state of the system
evolution, if request 3 is asserted, starting
with this state, there is a state in the future
where the acknowledge signal will be
asserted.”

5. Conclusions

In this paper we have presented
Symbolic Model Verifier, a formal
verification tool, suited for educational use
in digital circuit design. We also presented
the new type of formal verification named
model checking and a practical verification
example.

The paper shows the methodology of
applying SMV verification on a round-
robin block. The results proved the
improved performance of the formal
verification techniques compared to the

regular verification as follows: the
verification is exhaustive, the input space
modeling is simple and it frees the
verification engineer from building
functional scenarios used in the traditional
verification.

The complete verification of a system
can be done only by formal verification. It
offers the certitude that the tested system
performs correctly in every possible case.

Though SMV was developed for
academic purposes, it is possible to use it
for quite complicate circuits. Especially for
designs including large data path
components, the user must split them into
small enough parts for SMV to verify. This
technique is known as compositional
verification.

From the testing engineer’s point of
view, SMV is easy to use, as long as the
base syntax is similar to the known HDLs
and the temporal logic is easy to
understand. This allows concise
specifications about temporal relationships
between signals. The main problem in the
industrial use of formal verification is the
high cost of the software tools and the
hardware needs. The costs with the smaller
number of errors in the logic design of the
circuit bring the main advantages.

This tool was designed for use in an
academic environment. It offers an easier
design and functional verification of
integrated circuits. This recommends it as
a good option for implementing training in
formal verification.

References

1. McMillan, K.: The SMV language.

Berkley University, CA, USA, 1998.

100 Symbolic Model Verifier – An educational formal verification tool

2. McMillan, K.: Getting started with
SMV. Berkley University, CA, USA,
1998.

3. http://www.haifa.il.ibm.co
m/projects/verification/RB

_Homepage/index.html
RuleBase presentation.

4. http://www.cadence.com/dat
asheets/formalcheck.html
FormalCheck presentation.

System Model Verifier – o aplicaţie educaţională

pentru verificarea formală

Rezumat: Verificarea modernă a circuitelor integrate se bazează pe
verificarea logică a priori, încă din faza de proiectare, înlocuind verificarea
şi testarea unui prototip. Această metodă, aşa cum s-a dovedit practic,
conduce la scăderi semnificative ale costurilor globale de proiectare şi
realizare a unui produs. Acest articol prezintă System Model Verifier (SMV),
o aplicaţie de verificare formală cu caracter educaţional. Este prezentat noul
tip de verificare formală, numit model checking, şi este dezvoltat un model
practic de verificare formală.

Cuvinte cheie: software educaţional, verificare formală, Symbolic Model
Verifier.

Recenzent: Conf. dr. ing. Dan Nicula.

