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Abstract: The modern verification of the integrated circuits is based on the 
a priori logical verification, in the design phase, instead of testing a 
prototype. This method was proved to lead to significant costs decreases. The 
paper presents the Symbolic Model Verifier (SMV), an educational formal 
verification tool. We present the new type of formal verification named model 
checking and we present a practical verification example. 
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1. Introduction 
 

The verification has a very significant 
role in the life of any system. There is no 
product to not be tested prior to utilization. 
These very simple principles are also 
available for ASIC. The design of an 
integrated circuit has become a very 
complex operation since the dramatic 
increase of the complexity of integrated 
circuits. In the early years, design started 
with connecting the elementary gates in a 
prototype. The first testing was done by 
electrical measurements of the resulted 
product. The design has moved now into 
the area of the logical part of the circuit. 
There are specialized applications that 
automatically produce the layout starting 
from a high-level language code. These 
languages actually allow the designer to 
describe the circuit functionality.  

It is obvious that to test a circuit is not 
necessary anymore to physically realize a 
prototype. The technology allows us now 

to make coherent tests of the software 
description of the circuit. These tests 
confirm that logically, the designed 
structure agrees with the specification 
constraints. The verification role is 
extremely important. Avoiding the errors 
before producing the physical circuit by 
describing it in a hardware description 
language (Verilog, VHDL etc.) reduces the 
very high financial efforts, even millions 
of US dollars. 

Formal verification is a generic name 
for a collection of techniques to test the 
correctness of a system or program. 
Formal verification can be used to 
mathematically prove that the system is in 
accordance with the specifications. Formal 
verification needs a formal description of 
the system and a formal specification of its 
desired behaviour. 

The purpose of this paper is to present a 
formal verification solution applied to a 
part of a network processor, specifically to 
the block implementation of the round-
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robin mechanism. In order to achieve the 
intended goal, a formal verification tool 
named Symbolic Model Verifier (SMV) 
will be employed. 
 
2. Traditional verification / formal 

verification 
 

In the traditional approach, using the 
same hardware description language does 
the functional verification of a circuit. The 
inputs flow through the circuit producing 
outputs. The verifier has to generate the 
input signals according to a priori 
schemes, which may have to be applied 
during the circuit use. More importantly, 
he has to study the output signals 
generated by the system. Let us consider a 
circuit with 2200 Boolean inputs. The total 
number of different input combinations is 
2200. To verify the circuit for all these 
possible combinations is an impossible 
task.  

From the designer point of view, this 
verification is not sufficient. Many errors 
can be hidden, representing corner cases. 
These errors lead to unpredictable 
evolutions of the system, far from the 
design specifications. This is the reason 
why it was necessary to introduce a safer 
cover of the input signals space. 

The formal verification is a new 
technique to test the circuits described in a 
high level language. Its goal is to cover the 
input signals space by providing a 
mathematical proof that a circuit performs 
correctly, according to the design 
specifications.  
 
3. SMV – an academic formal 

verification application 
 

At this moment, many professional 
formal verification tools are available. For 
example, IBM developed RuleBase, 
Cadence developed FormalCheck. 
RuleBase employs a formal verification 

method called Symbolic CTL Model 
Checking. This paper will shortly present 
SMV (Symbolic Model Verifier), a 
verification tool developed by a team from 
Berkley University, U.S., coordinated by 
Ken McMillan. This software application 
uses the verification model named model 
checking. This is equivalent with an 
exhaustive verification of the possible 
input signals space.  

In model checking the specifications are 
sets of properties to be verified. These 
properties are presented with temporal 
logic, a special notation used to simply 
express temporal relations between signals. 
The properties have to meet some 
specifications connected to "legal" input 
signals, the allowed combinations of the 
circuit inputs. The combinations are 
generated by a set of interconnected finite 
state machines, with the result of 
producing all possible legal inputs for the 
tested circuit. An important principle 
implemented by SMV to produce the legal 
inputs is the non-determinism. Using this 
concept, the finite state machines 
generating the inputs are able to produce 
the whole area of values. This exhaustive 
verification model is appropriate for small 
size circuits. In practice, the circuits have 
much bigger dimensions.  

To verify such a circuit, the user has to 
decompose it in small enough modules, 
which can be explored exhaustively with 
model checking. The name of this method 
is compositional verification. SMV 
integrates some other techniques to adjust 
complex circuits in order to verify them 
both by model checking: symmetry 
reduction, temporal case splitting, data 
type reduction, induction, etc. 
 
4. Case study: a round-robin block 

verification 
 

We will suppose that we have to verify 
the component circuit of a network 
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processor. Its role is to serve concurrent 
requests for accessing a unique 
transmission line. The negotiating 
procedure is round-robin.  

The circuit has request inputs (req1, 
req2, req3, req4), clock and reset 
inputs and an output, corresponding to 
each a request (ack1, ack2, ack3, 
ack4). We assume that initially the 
system is trying to serve request no. 1. At 
each step it tries to serve the request with 
the closest order number to the last served 
request, using the following algorithm: 
 
... 
Step i: serve request k 
Step i+1: serve the request  
(k+l mod 4) if active, where 
l is an integer from 1 to 4 
and the serving priority is 
ascending order of l. If no 
request is active, no answer 
is issued. 
... 
 

The SVM code contains: 
a) The designed circuit code (written 

in SMV or Synchronous Verilog) 
b) The SMV code with the input 

generation 
c) The SMV code for properties 

verification. 
We will present the code corresponding 

to b) and c). 
The generation of the input signals can 

be viewed as an “environment” generation.  
The clock signal is Boolean and is 

active at each moment, equivalent to the 
system clock.  

The reset signal is also Boolean, and 
is active only at the initial moment, then 
becomes inactive. This signal can have a 
non-deterministic behaviour, but this 
restriction does not influence the generality 
of the verification. The request signals are 

the four components of the array req, for 
an easier processing. 

 
clk : boolean; 
clk := 1; 
 
reset : boolean; 
init(reset) := 1; 
next(reset) := 0; 
 
req : array 0..3 of boolean; 
init(req[0]) := 0; 
init(req[1]) := 0; 
init(req[2]) := 0; 
init(req[3]) := 0; 
for (i=0; i<4; i=i+1) 
next(req[i]) :=  
 case{ 
  req[i]=1 & gnt[i]=1  

: {0, 1}; 
  req[i]=1 : 1; 
  default  : {0,1}; 
 }; 

 
These code lines produce the legal 

inputs corresponding to the requests.  
How are the inputs generated 

corresponding to the 4 requests?  
Initially, we will consider all the 

requests on 0, which is the system is in the 
reset state. Non-deterministic delayed 
Mealy automata, as the following, model 
the evolution of the requests: 

a) When emitting the request req[i] 
and it receives an acknowledgement signal 
gnt[i] that is it is served, the evolution 
of the request is not determined and the 
value at the next clock can be 0 or 1; 

b) When the request was asserted and 
the acknowledgement signal has not been 
received yet, its value at the next clock is 
the same as the current one, 1; 

c) If the request was not asserted at the 
current step, at the next step it will have a 
not-determined value, 0 or 1, as in the first 
situation. 
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For the purpose of verification, the code 
has to be extended by a set of user 
variables, used in a more visible and 
compact writing of the testing properties. 

We introduce the variable served in this 
module. It actually implements the 
arbitration mechanism. This variable stores 
the index of the last served request. This 
value is used to compute the next request 
to be served. 

 
served : 0..3; 
 
init(served) := 3; 
next(served) := 
 case{ 
  reset : 3; 
  gnt[(served + 1) mod 4]  
       : (served + 1) mod 4; 
  gnt[(served + 2) mod 4] 
       : (served + 2) mod 4; 
  gnt[(served + 3) mod 4]  
       : (served + 3) mod 4; 
  gnt[(served + 4) mod 4]  
       : (served + 4) mod 4; 
  default : served; 
 }; 

We initially consider the line "parked" 
on request 3, which is assigned value 1. In 

other words, this is the last served request. 
The next request to be served will be 
chosen from requests 0, 1, 2, 3, in this 
order, corresponding to the associated 
request value. 

The automata implementing this 
behaviour were presented in this section 
and cover all the situations in a real-world 
use. 

The testing code is composed by one or 
more assertions or rules, implementing the 
necessary properties of the given 
specifications. These properties are: 

a) The arbitration to be fair, that is each 
asserted request to finally receive an 
acknowledgement signal; 

b) The sending of the acknowledgement 
signals is accordance with the arbitration 
mechanism; 

c) It is not possible to issue more 
acknowledgement signals at one moment; 

d) It is not possible to issue an 
acknowledgement signal when the 
associated request has not been asserted. 

The code that implements these 
properties is the following: 

 

 
 
rule_fairness1 : assert G req[0] -> F gnt[0]; 
rule_fairness2 : assert G req[1] -> F gnt[1]; 
rule_fairness3 : assert G req[2] -> F gnt[2]; 
rule_fairness4 : assert G req[3] -> F gnt[3]; 
 
rule_arb0 : assert G gnt[0] -> X served=0; 
rule_arb1 : assert G gnt[1] -> X served=1; 
rule_arb2 : assert G gnt[2] -> X served=2; 
rule_arb3 : assert G gnt[3] -> X served=3; 
 
rule_no_more_than_one_grant_at_the_time: 
  : assert G gnt[0]+gnt[1]+gnt[2]+gnt[3] <= 1; 
 
rule_grant0_with_request0 
  : assert G gnt[0] -> req[0]; 
rule_grant0_with_request1 



Bulletin of the Transilvania University of Braşov • Vol. 8 (43) - 2001             99 

  : assert G gnt[1] -> req[1]; 
rule_grant0_with_request2 
  : assert G gnt[2] -> req[2]; 
rule_grant0_with_request3 
  : assert G gnt[3] -> req[3]; 
 

To write these rules, we used an 
instructions subset of SMV that 
implements the temporal logic. Three new 
operators, G, F and X represent this type of 
logic: 

a) G - the global operator: in each state 
of the system evolution, the suffixing 
property has to be true. G m means that m 
will be true at all times in the future; 

b) F - the future operator: there is a 
state in the system evolution where the 
suffixing property is true. F m is true if m 
will be true at some time later; 

c) X - the next operator: in any of the 
states possible to occur at in the next clock 
state, the suffixing property is true. X m 
means that m will be true at the next time. 

For example, the following rule: 
rule_fairness4 :  
 assert G req[3] -> F 
gnt[3]; 
has to be read: “In any state of the system 
evolution, if request 3 is asserted, starting 
with this state, there is a state in the future 
where the acknowledge signal will be 
asserted.” 

 
5. Conclusions 
 

In this paper we have presented 
Symbolic Model Verifier, a formal 
verification tool, suited for educational use 
in digital circuit design. We also presented 
the new type of formal verification named 
model checking and a practical verification 
example. 

The paper shows the methodology of 
applying SMV verification on a round-
robin block. The results proved the 
improved performance of the formal 
verification techniques compared to the 

regular verification as follows: the 
verification is exhaustive, the input space 
modeling is simple and it frees the 
verification engineer from building 
functional scenarios used in the traditional 
verification. 

The complete verification of a system 
can be done only by formal verification. It 
offers the certitude that the tested system 
performs correctly in every possible case. 

Though SMV was developed for 
academic purposes, it is possible to use it 
for quite complicate circuits. Especially for 
designs including large data path 
components, the user must split them into 
small enough parts for SMV to verify. This 
technique is known as compositional 
verification. 

From the testing engineer’s point of 
view, SMV is easy to use, as long as the 
base syntax is similar to the known HDLs 
and the temporal logic is easy to 
understand. This allows concise 
specifications about temporal relationships 
between signals. The main problem in the 
industrial use of formal verification is the 
high cost of the software tools and the 
hardware needs. The costs with the smaller 
number of errors in the logic design of the 
circuit bring the main advantages. 

This tool was designed for use in an 
academic environment. It offers an easier 
design and functional verification of 
integrated circuits. This recommends it as 
a good option for implementing training in 
formal verification. 
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System Model Verifier – o aplicaţie educaţională 

pentru verificarea formală 
 
Rezumat: Verificarea modernă a circuitelor integrate se bazează pe 
verificarea logică a priori, încă din faza de proiectare, înlocuind verificarea 
şi testarea unui prototip. Această metodă, aşa cum s-a dovedit practic, 
conduce la scăderi semnificative ale costurilor globale de proiectare şi 
realizare a unui produs. Acest articol prezintă System Model Verifier (SMV), 
o aplicaţie de verificare formală cu caracter educaţional. Este prezentat noul 
tip de verificare formală, numit model checking, şi este dezvoltat un model 
practic de verificare formală. 
 
Cuvinte cheie: software educaţional, verificare formală, Symbolic Model 
Verifier. 
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