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ABSTRACT
We introduce a novel Fuzzy ARTMAP (FAM) architec-
ture: FAM with Feature Weighting (FAMFW). In the first
stage, the features of the training data are weighted. In
the second stage, the obtained weights are used to im-
prove the FAMFW training. The effect of this approach
is a more sensitive FAM category determination: Cate-
gory dimensions in the direction of relevant features are
decreased whereas category dimensions in the direction of
non-relevant feature are increased. Potentially, any fea-
ture weighting method could be used, which makes the
FAMFW very general. In our study, we use a feature
weighting algorithm based on the Neural-Gas algorithm.
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1 Introduction

The FAM architecture is based upon the adaptive reso-
nance theory (ART) developed by Carpenter and Grossberg
([7]). FAM neural networks have several advantages owing
to their capability to classify and analyze noisy informa-
tion with fuzzy logic and to avoid the plasticity-stability
dilemma of other neural architectures. The FAM paradigm
is prolific and there are many variations of Carpenter’set
al. initial model. One way to improve the FAM algorithm
is to generalize the distance measure between vectors, [8].

We introduce a novel FAM architecture with dis-
tance measure generalization: FAM with Feature Weight-
ing (FAMFW). Feature weighting is a feature importance
ranking algorithm where weights, not only ranks, are ob-
tained. In our approach, weights (relevances) of the train-
ing data features are first generated. Next, these weights,
also called relevances, are used by the FAMFW network,
generalizing the distance measure. Potentially, any fea-
ture weighting method could be used, which makes the
FAMFW very general. In our study, we only focus on a
feature weighting algorithm based on the Neural-Gas (NG)
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algorithm.
NG [9] is a neural model applied to the task of vector

quantization by using a neighborhood cooperation scheme
and a soft-max adaptation rule, similar to the Kohonen fea-
ture map. The Euclidean distance is replaced by the neigh-
borhood ranking of the reference vectors for a given input
vector. The Supervised Relevance Neural Gas (SRNG) al-
gorithm combines the NG and the Generalized Relevance
LVQ (GRLVQ) algorithms [10]. The idea was to incor-
porate neighborhood cooperation of NG into the GRLVQ
to speedup convergence and make initialization less cru-
cial. In a previous paper [11], we have introduced the En-
ergy Supervised Relevance Neural Gas (ESRNG) feature
weighting algorithm. The ESRNG maximizes the informa-
tional energy as a criteria for computing the relevances of
input features and was used in combination with the SRNG
model.

In this paper, we use the ESRNG feature weighting
algorithm as a preliminary step of the FAMFW model. Af-
ter introducing the basic FAM notations (Section 2), we
describe the FAMFW algorithm in Section 3. In Section 4
we combine the FAMFW and the ESRNG algorithms: the
weights obtained by the ESRNG are used in the FAMFW
model. Sections 5 and 6 contain the preliminary results and
conclusions.

2 A short description of the FAM

We will review first the main FAM algorithm, described in
Carpenter’set al. article [7]. More simplified presentations
can be found in [12] and [13].

A FAM consists of a pair of fuzzy ART modules,
ARTa and ARTb connected by a an inter-ART module
called Mapfield.ARTa andARTb are used for coding the
input and output patterns, respectively, and Mapfield allows
mapping between inputs and outputs. TheARTa module
contains the input layerF a

1 and the competitive layerF a
2 .

A preprocessing layerF a
0 is also added beforeF a

1 . Analo-
gous layers appear inARTb.

The initial input vectors have the form:a =
(a1, . . . , an) ∈ [0, 1]n. A data preprocessing technique
calledcomplement coding is performed in the two fuzzy art
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module by theF a
0 (andF b

0 respectively) layer in order to
avoid proliferation of nodes. Each input vectora produces
the normalized vectorA = (a,1 − a) whoseL1 norm is
constant:|A| = n.

Let Ma be the number of nodes inF a
1 andNa be the

number of nodes inF a
2 . Due to the preprocessing step,

Ma = 2n. wa is the weight vector betweenF a
1 and

F a
2 . EachF a

2 node represents a class of inputs grouped
together, denoted as a “category”. EachF a

2 category has
its own set of adaptive weights stored in the form of a
vector wa

j , j = 1, . . . Na whose geometrical interpreta-
tion is a hyper-rectangle inside the unit box. Similar nota-
tions and affirmations are valid forARTb, that receivesm-
dimensional input vectors. For a classification problem, the
class index is the same as the category number inF b

2 , thus
ARTb can be simply substituted by anNb−dimensional
vector.

The Mapfield module allows FAM to perform het-
eroassociative tasks, establishing many-to-one links be-
tween various categories fromARTa andARTb, respec-
tively. The number of nodes in Mapfield is equal to the
number of nodes inF b

2 . Each nodej from F a
2 is linked to

every node fromF b
2 via a weight vectorwab

j .
The learning algorithm is sketched below. For every

training pattern, the vigilance parameter factor is set equal
to its baseline value, and all nodes are not inhibited. For
each (preprocessed) inputA, a fuzzy choice function is
used to get the response for eachF a

2 category:

Tj(A) =
|A ∧ wa

j |

αa + |wa
j |

, j = 1, . . . , Na (1)

LetJ be the node with the highest value computed as in (1).
If the resonance condition from eq. 2 is not fulfilled, then
theJ th node is inhibited such that it will not participate to
further competitions for this pattern and a new search for a
resonant category is performed. This might lead to creation
of a new category inARTa.

ρ(A,wa
J ) =

|A ∧ wa
J |

|A|
≥ ρa (2)

A similar process occurs inARTb and letK be the winning
node fromARTb. TheF b

2 output vector is set to:

yb
k =

{

1, if k = K

0, otherwise
k = 1, . . . , Nb (3)

An output vectorxab is formed in Mapfield:xab = yb ∧
wab

j . A Mapfield vigilance test controls the match between
the predicted vectorxab and the target vectoryb:

|xab|

|yb|
≥ ρab (4)

whereρab ∈ [0, 1] is a Mapfield vigilance parameter. If
the test from (4) is not passed, then a sequence of steps
calledmatch tracking is initiated (the vigilance parameter
ρa is increased and a new resonant category will be sought

for ARTa); otherwise learning occurs inARTa, ARTb and
Mapfield:

w
a(new)
J = βa

(

A ∧ w
a(old)
J

)

+ (1 − βa)w
a(old)
J (5)

(and the analogous inARTb) andwab
Jk = δkK , whereδij is

Kronecker’s delta.

3 FAMFW

The FAMFW is a FAM architecture with a generalized dis-
tance measure. Since this is the essential difference, we
only describe here this modification and illustrate its effect
on the categories created.

Like in [8], for a categorywj we define its sizes(wj):

s(wj) = n − |wj | (6)

and the distance to a normalized inputA:

dis(A,wj) = |wj | − |A ∧ wj | =

n
∑

i=1

dji (7)

wheredj = wj − A ∧ wj = (dj1, . . . , djn). In [8] it is
shown that:

Tj(A) =
n − s(wj) − dis(A,wj)

n − s(wj) + αa

(8)

ρ(A,wa
J ) =

n − s(wj) − dis(A,wj)

n
(9)

Let us consider a weighted distancedis(A,wj ;λ), a gen-
eralized form of the functiondis(A,wj):

dis(A,wj ;λ) =
n

∑

i=1

λidji (10)

whereλ = (λ1, . . . , λn), andλi ∈ [0, n] is the weight asso-
ciated to theith feature. We impose the constraint|λ| = n.
Forλ1 = . . . = λn = 1, we obtain the FAM as a particular
case.

In [8], Charalampidiset al. used the following
weighted distance:

dis(x,wj |λ, ref) =
n

∑

i=1

(1 − λ)lref
j + λ

(1 − λ)lji + λ
dji (11)

with l
ref
j a function of categoryj’s lengths of the hyper-

rectangle andλ a scalar in[0, 1]. In our case, the function
dis(A,wj ;λ) does not depend on sides of the category cre-
ated during learning, but on the weight computed for each
feature. This makes our approach very different than the
one in [8].

The effect of using the distancedis(A,wj ;λ) for a
bidimensional category is depicted in Figure 1(a). The
hexagonal shapes represent the points situated at constant
distance from the category. These shapes are flattened in
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the direction of the feature with a larger weight and elon-
gated in the direction of the feature with a smaller weight.
This is in accordance with the following intuition: The
category dimension in the direction of a relevant feature
should be smaller than the category dimension in the direc-
tion of a non-relevant feature. Hence, we may expect that
more categories will cover the relevant directions than the
non-relevant ones.

(a) Bounds for constant weighted dis-
tancedis(A,wj ; λ) for various values
of vector λ. The rectangle from the
middle represents a category.

(b) Bounds for constant distancedis(A,wj ; λ) for null fea-
ture weight. The rectangle in the middle represents the cate-
gory.

Figure 1. Geometric interpretation of constant distance
when usingdis(A,wj ;λ) for bidimensional patterns

As shown in Figure 1(b) for the bidimensional case,
when one uses null weights for a specific feature, the
bounds are reduced to parallel lines on both sides of the
rectangle representing the category. In this extreme case,
the discriminative distance is the one along the remaining
feature dimension. This is another major difference be-
tween our approach and the one in [8], where, while us-
ing functiondis(x,wj |λ, ref), the contours of a constant
weighted distance are inside some limiting hexagons. In
our approach, the contour is insensitive to the actual value
of the null weighted feature.

4 Features weights obtained with the
ESRNG algorithm

In our experiments, we used the ESRNG procedure to de-
termine the weights of the generalized distance measure in
FAMFW. We will outline the principal steps of the ESRNG
algorithm, introduced with details in [11]. ESRNG is an
iterative algorithm that simultaneously adapts a set of ref-
erence vectors for as least as possible quantization error on
all feature vectors and updates the input features relevances
maximizing an informational energy measure. ESRNG has
the following steps:

1. Update the reference vectors using the SRNG scheme.

2. Update the relevance factors.

3. Repeat steps 1 and 2 for all samples from the training
set.

The SRNG algorithm uses a generalized Euclidean
distance. Two reference vectors are updated at each step:
wj andwk, which are the closest to the current input vector
xi from the same class and from another class. The updat-
ing formulas for the two reference vectors can be found in
[11].

The ESRNG algorithm generates numeric values as-
signed to each input feature, quantifying their importance
in the classification task: the most relevant feature receives
the highest numeric value. The formula that iteratively
adapts the relevances is:

λ(t+1) = λ(t) − α
1

4σ2
G(y1 − y2, 2σ2I) ·

·(y2 − y1)I(x1 − wj(1) − x2 + wj(2)),

wherewj(1) andwj(2) are the closest prototypes tox1 and
x2, respectively, two consecutive training vectors from dif-
ferent classes.G is the multidimensional Gaussian kernel
used in the Parzen windows approximation of the continu-
ous probabilities densities. We have used these relevance
factors as feature weights in the FAMFW algorithm.

5 Experiments

We illustrate the FAMFW behavior on artificial and real
datasets. First, we used an artificial dataset: points were
distributed inside of two circles. Second, we used Iris
dataset, which has 150 patterns in three classes, two of
them being overlapped.

5.1 Artificial dataset: two circles

Two datasets were generated: the first represents a pair of
non-overlapping circles. The second corresponds to a pair
of partially overlapping circles. In both cases, the circles
are vertically stacked (Figures 2(a) and 2(b)) and each of
them is considered an output class.
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Table 1. Number ofARTa categories and PCC for non-overlapping circles and various values ofλ.

Test λ = [1, 1] λ = [0.8, 1.2] λ = [0.5, 1.5] λ = [0, 2]
no. No. of ARTa PCC No. of ARTa PCC No. of ARTa PCC No. of ARTa PCC

categories categories categories categories
1 6 98.14% 6 99.17% 5 99.87% 7 99.95%
2 6 99.25% 6 99.3% 7 99.53% 7 99.7%
3 6 98.92% 5 100% 5 100% 5 100%
4 6 100% 6 100% 6 100% 8 100%
5 6 99.21% 6 99.35% 6 99.65% 5 100%

Avg. 6 99.104% 5.8 99.564% 5.8 99.81% 6.4 99.93%

Table 2. Number ofARTa categories and PCC for overlapping circles and various values ofλ.

Test λ = [1, 1] λ = [0.8, 1.2] λ = [0.5, 1.5] λ = [0, 2]
no. No. of ARTa PCC No. of ARTa PCC No. of ARTa PCC No. of ARTa PCC

categories categories categories categories
1 8 84.08% 7 88.77% 9 87.59% 7 90.14%
2 6 79.75% 8 80.98% 8 81.58% 8 88.12%
3 7 87.45% 7 88.36% 7 88.91% 6 89.52%
4 8 88.59% 8 89.41% 8 90.06% 8 90.06%
5 8 88.11% 8 88.6% 8 88.7% 8 88.26%

Avg. 7.4 85.596% 7.6 87.224% 8 87.368% 7.4 89.22%

(a) Test dataset for
two non-intersecting
circles.

(b) Test dataset for
two intersecting cir-
cles.

Figure 2. Artificial datasets: pairs of circles. In each case,
one circle is an output class.

The training set consisted of 20 patterns and the test
set contained 10000 patterns, with approximately the same
number of patterns for each class. Different simulations
were used to generate five pairs of train/test sets. The points
are uniformly, independently and identically distributed in-
side the circles. For non-overlapping circles, the centres
were (50, 50) and (50, 170), respectively, and for the over-
lapping circles (50, 50) and (50, 120). The radius was al-
ways 50.

The tests were performed with the following fea-
ture weights: λ = [1, 1] (the particular case of FAM),
λ = [0.8, 1.2], λ = [0.5, 1.5], andλ = [0, 2]. The indi-
vidual and averaged values for the number ofARTa cat-
egories and the percent of correct classification (PCC) are
reported in Tables 1 and 2 for non-overlapping and overlap-
ping circles, respectively. For the last three values ofλ, the
number ofARTa categories is relatively the same as for the
FAM. However, the PCC increases with the weight associ-
ated to they feature, reaching the highest value when the
x feature is completely omitted, i.e. whenλ = [0, 2]. The
PCC, for increasing value of the second weight, is mono-
tonically increasing and at least as large as the PCC ob-
tained forλ = [1, 1].

5.2 The Iris dataset

This standard dataset contains 3 classes of 50 instances
each, where each class refers to a type of the iris plant [14].
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Table 3. Number ofARTa categories and PCC for Iris Dataset, for 10 orders of the dataset.

Test λ = [1, 1, 1, 1] λ = [0.65249, 0.74508, 1.45877, 1.14366]
no. Number ofARTa categories PCC Number ofARTa categories PCC
1 16 93.33% 14 93.33%
2 14 96.66% 14 96.66%
3 7 96.66% 7 100.0%
4 6 90.0% 7 93.33%
5 11 96.66% 9 96.66%

Avg. 10.8 94.66% 10.2 96.0%

One class is linearly separable from the other 2; the latter
arenot linearly separable from each other.

In order to compare the behavior of FAM and
FAMFW we performed the following experiments. We
generated five random permutations of the whole set of 150
patterns. For each permutation, we selected the first 90 pat-
terns as training set, the next 30 patterns as validation set
and the last 30 patterns as test set.

In the first set of experiments, we consideredλ =
[1, 1, 1, 1], which corresponds to FAM. We used 10 val-
ues for ρa: 0.0, 0.1, . . . , 0.9 and 10 values forβa:
0.1, 0.2, . . . , 1.0.

In the second set of experiments, we obtained the
feature weights by applying the ESRNG algorithm:λ =
[0.65249, 0.74508, 1.45877, 1.14366]. We decided to limit
the upper value ofβa to 0.5, because the large values in-
creased the number ofARTa categories. We considered
10 values forρa: 0.0, 0.1, . . . , 0.9 and 5 values forβa:
0.1, 0.2, 0.3, 0.4, 0.5.

The optimal values ofρa, βa for FAMFW, with re-
spect to the validation set, were used to train the FAMFW
on the joined train and validation set, and then used for the
test set. The results (number ofARTa categories and PCC)
are reported in Table 3. For FAMFW with features weights
determined by ESRNG, we obtained better or equal PCC
values as with the FAM, with a slightly smaller number of
ARTa categories.

6 Conclusion

The experiments with artificial datasets served as a proof-
of-concept for our system. The dataset had one irrele-
vant feature (thex coordinate). Decreasing the associated
weight we could improve the PCC, while maintaining a rel-
atively constant number of input categories. As expected,
the highest PPC was obtained for a null weight associated
to the irrelevant feature. The test with overlapping classes
was encouraging.

For the Iris dataset, the results were also good. Exper-
imentally, we discovered that small values forβa are more
appropriate for the FAMFW, since they generate moderate
extensions of theARTa regions.

According to our preliminary experiments, using the

feature relevances can improve the FAM algorithm. Other
feature algorithms may be also used. It is an open problem
how to determine, from the nature of the training data, if
the preliminary stage for computing the feature relevances
is profitable. For datasets with very unequal feature rele-
vances, our approach appears to be more performant than
the basic FAM algorithm. Experiments with more complex
and difficult datasets should be performed in the future.
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