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ABSTRACT
Relevance Learning Vector Quantization (RLVQ) (intro-
duced in [1]) is a variation of Learning Vector Quantiza-
tion (LVQ) which allows a heuristic determination of rel-
evance factors for the input dimensions. The method is
based on Hebbian learning and defines weighting factors
of the input dimensions which are automatically adapted to
the specific problem. These relevance factors increase the
overall performance of the LVQ algorithm. At the same
time, relevances can be used for feature ranking and input
dimensionality reduction.

We introduce a different method for computing the
relevance of the input dimensions in RLVQ. The relevances
are computed on-line as Ordered Weighted Aggregation
(OWA) weights. OWA operators are a family of mean
type aggregation operators [2]. The principal benefit of
our OWA-RLVQ algorithm is that it connects RLVQ to the
mathematically consistent OWA models.
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1 Introduction

Kohonen introduced LVQ [3] as a method to define a clas-
sification based on a number of patterns from the trainig
set. The vector quantization is a mapping from then-
dimensional space of the feature vectors into a finite space
of n-dimensional vectors referred to as codebook. The vec-
tors of the codebook are the prototypes and are labeled with
the label of the class they represent. LVQ iteratively adapts
codebook vectors to implement desired classification opti-
mizing a global criteria based on the Euclidian distance.
Various modifications to the basic algorithm where pro-
posed [3] to ensure a faster convergence (OLVQ) or for
better adaptation of the borders (LVQ2, LVQ3).

RLVQ is a modified version of LVQ which introduces
relevance factors for features. It uses a modified metric by
assigning a weight to each dimension of the vectors. Thus,
an additional procedure iteratively adapts the scaling fac-
tors with a Hebbian learning technique, giving an overview
of the influence of individual features in the classification
process.
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OWA operators are a class of aggregation operators
that provide an aggregation based on the reordering of the
criteria that must be satisfied. The weights of the OWA
operator are associated to the ordered position of these cri-
teria, not to a particular one [2].

We introduce the OWA-RLVQ algorithm as a new
method for computing the relevances of the input features
considering them as OWA weights. The relevances are
adapted on-line, in common with prototypes training. The
metric we use is a particular case of the ordered weighted
generalized mean [4] and we use it as an alternative to
the Euclidean metric in the LVQ algorithm. Our method
makes an interesting connection between two different ap-
proaches: RLVQ and OWA. We have obtained a good
recognition accuracy on several standard datasets. Mean-
while, the technique can be used for ranking the input fea-
tures and reducing the dimensionality of the input space.

2 Relevance learning vector quantization

Sometimes, not all the features of the input vectors have
the same importance in the decision of a classification sys-
tem. Some of them can prove to be more influent than oth-
ers, therefore a feature relevance vector can be computed.
RLVQ is an iterative method based on Hebbian learning
that introduces weighting factors of the inputs. This is a
heuristical algorithm and a number of improvements were
proposed [5], [6] in order to avoid unstable behaviour in
particular situations.

RLVQ is a supervised algorithm that stronger rein-
forces the weights of the features that most contribute to
the correct classification than the weights of the features
having a negative influence. The clustering is realized by
a set of prototypes that are tuned by the incoming feature
vectors and a standard LVQ algorithm.

Assume that a clustering of data intoC classes is to
be learned and a set of training data is given:

X = {(xi,yi) ⊂ Rn × {1, . . . , C} | i = 1, . . . ,M}.

The components of a vectorxi are[xi1, . . . , xin].
LVQ chooses prototype vectors inRn for each class,

so calledcodebooks. Denote the set of all codebooks
by {w1, . . . ,wK}. The components of a vectorwj are
[wj1, . . . , wjn]. The training algorithm adapts the code-



books for as least as possible quantization error on all fea-
ture vectors, as follows [3]:

1. For a given inputxi, find the closest codebook,wj ,
the winner, which provides the least value of the dis-
tance‖xi − wj‖. If xi andwj have the same class
label, the feature vector is correctly classified.

2. Update the winner codebook:

wj =















wj + η(xi − wj) if xi was
correctly
classified

wj − η(xi − wj) otherwise

whereη > 0 is the learning rate.

RLVQ uses a modified weighted metric in this algo-
rithm:

‖xi − wj‖λ =

√

√

√

√

n
∑

k=1

λk(xik − wjk)2

where λ = [λ1, . . . , λn] is the relevance vector and
∑n

k=1
λk = 1. Following a similar rule, the weighting

factors are iteratively adapted [1]:

1. λk =















max{λk − α|xik − wjk|, 0} if xi was
correctly
classified

λk + α|xik − wjk| otherwise
for k = 1, . . . , n. α > 0 is the learning rate for the
weighting factors.

2. Normalize the weights vector.

Relevance determination can be used after LVQ learn-
ing, or simultaneously, this second version yielding an on-
line algorithm. Reported results [1] proved a better classi-
fication accuracy of RLVQ compared to the standard LVQ.

3 Ordered Weighted Aggregation Operators

An OWA operator [2] of dimensionn is a function

F : Rn → R

such that

F (a1, a2, . . . , an) =

n
∑

i=1

via
∗

i ,

whereV = [v1, v2, . . . , vn] is a weighting vector asso-
ciated to the operator,vi ∈ [0, 1],

∑n
i=1

vi = 1, and
A∗ = [a∗

1
, a∗

2
, . . . , a∗

n] is the descending reordering of the
argumentsA = [a1, a2, . . . , an] such thata∗

i is the ith

largest of theai, a∗

1
≥ a∗

2
≥ . . . ≥ a∗

n.
The OWA operators are aggregation operators, sat-

isfying the commutativity, monotonicity, bounding and
idempotency properties [2].

A number of methods for setting the weight vector
components’ were proposed. Yager [2] suggested a method
based on the concept of linguistic quantifiers. O’Hagan [8]
introduced a technique based on providing an orness degree
for the weighting vector. Based on this information, the
values can be obtained by maximizing the dispersion. In
[7], [8], Filev and Yager computed the aggregation operator
weights by gradient descending method, using a target vec-
tor of aggregated values. Torra [9], [10] used a particular
aggregation operator named Weighted OWA (WOWA) and
determined its parameters in a two steps optimization pro-
cedure, providing an ideal outcome for each training pat-
tern. In a recent work, Karayiannis [4] introduced an OWA-
based family of learning vector quantization and clustering
algorithms.

4 OWA-RLVQ

We aim to introduce an algorithm for computing the OWA
weights as relevance factors for supervised clustering prob-
lems.

First, we will define the distance between an input
vectorxi and a codebook vectorwj as an aggregation op-
erator:

D∗

ij =

√

√

√

√

n
∑

k=1

λk(|xik − wjk|∗)2,

where
∑n

k=1
λk = 1, and|xik − wjk|

∗ is thekth largest
difference between corresponding components of the input
vector and the codebook vector.

This distance is a special case of the ordered weighted
generalized mean [4]:

M =

(

n
∑

k=1

λka∗

k
p

)1/p

wherep ∈ R∗. For p = 2, this reduces to our modified
distance, wherea∗

k = |xik − wjk|
∗ and |xi1 − wj1|

∗ ≥
|xi2 − wj2|

∗ ≥ . . . ≥ |xin − wjn|
∗.

The LVQ algorithm must be reformulated to mini-
mize an objective function based on this modified distance.
We compute

∆w∗

j = ηλ(xi − wj)
∗ (1)

if xi was correctly classified according to theD∗

ij distance,
and

∆w∗

j = −ηλ(xi − wj)
∗ (2)

if xi was not correctly classified. We note that(xi − wj)
∗

is a reordered vector and the relevances will apply after re-
ordering. Thus, the components ofw∗

j from (1) and (2) will
correspond to the resulting positional weight components.
The resulting trained codebooks will generally be different
than the codebooks obtained by the regular LVQ algorithm,
because they reflect a different training approach.



We consider thatxi is correctly classified if the dis-
tanceD∗

ij to codebookwj is minimum for the entire set
of codebooks, where the two vectors have the same class
label:

D∗

ij < D∗

il for anyl 6= j.

We denoted = [d1, . . . , dn], wheredk = xik − wjk,
k = 1, . . . , n. If xi was correctly classified according to
D∗

ij , a small|dk|
∗ should induce a large∆λk and the re-

verse. Thus,|dk|
∗ < |dk′ |∗ leads to∆λk > ∆λk′ , that is

−|dk|
∗ > −|dk′ |∗ with ∆λk > ∆λk′ . We may consider

now∆λk = −α|dk|
∗, and∆λk = −α|xik −wjk|

∗. When
the classification is not correct, we can follow a similar path
and obtain∆λk = α|xik − wjk|

∗.
We use the transform:

λk =
eλk

∑n
i=1

eλi

for k = 1, . . . , n, to ensure that
∑n

k=1
λk = 1 andλk ∈

[0, 1].
The following procedure updates on-line both the rel-

evances and the feature ranks.

1. Initialize η and α. Initialize the relevance vector:
λk = 1

n , k = 1, . . . , n.

2. Initialize the codebooks.

3. Update the codebooks according to the modified LVQ
rule, using theD∗

ij distance:

w∗

j =















w∗

j + ηλ(xi − wj)
∗ if xi was

correctly
classified

wj∗ − ηλ(xi − wj)
∗ otherwise

4. Update the relevances:

λk =















λk − α|xik − wjk|
∗ if xi was

correctly
classified

λk + α|xik − wjk|
∗ otherwise

for k = 1, . . . , n.

5. Transform the relevances:

λk =
eλk

∑n
i=1

eλi

for k = 1, . . . , n.

6. Compute the weight of each feature as an average of
its before ordering position index in the input vector,
for all previous steps.

7. Repeat steps 3-6 for each training pattern.

Table 1. Feature ranking for the Iris database.

Rank 1 2 3 4

RLVQ Feature 4 2 3 1

OWA-RLVQ
Feature 4 3 2 1

OWA-RLVQ
Feature Weight 1.86 1.44 1.24 1.17

This algorithm computes relevance OWA weights by
minimizing the modified distance which we consider as an
aggregated value. We have to distinguish between the rel-
evance and the rank of a feature. The rank is attached to
a specific feature, whereas the relevance is attached to a
specific position in the ordered vector of distances to the
codebooks. This explaines why we have to perform step 6.

5 Experiments

We tested the OWA-RLVQ algorithm on standard bench-
marks in order to study the resulted relevance vectors and
recognition rates. The Iris database [11] contains 3 classes,
50 vectors each. Two of them are not linearly separable.
The problem is to detect the classes based on 4 features. We
trained OWA-RLVQ with 6 codebooks, obtaining a recog-
nition rate of 96.6%. The obtained relevance vector was
[0.15 0.21 0.23 0.38]. We usedη = 0.3 andα = 2. The ex-
periments showed that the most important feature is the last
one and the least important is the first one, the same rank-
ing as reported in [1]. In Table 1 we present the ranking
resulted after the RLVQ and OWA-RLVQ training, using
the same initial set of codebooks.

The Vowel Recognition database (Deterding data)
[11] contains vectors extracted from 15 individual speak-
ers pronouncing vowels in 11 contexts, 6 times each. The
problem is to use the pronounciations of the first 8 speakers
for training and of the last 7 speakers for tests. We obtained
the following relevance vector: [0.032 0.039 0.043 0.044
0.077 0.136 0.137 0.15 0.163 0.173], and a recognition rate
of 46.75%. The LVQ recognition rate for this experiment
was 44.8%, and the RLVQ recognition rate was 46.32%.
The problem is known as difficult and we used 59 code-
books. In the OWA-RLVQ experiments we setη = 1.7
andα = 1.9. Table 2 describes the ranking resulted for
the Vowel Recognition database. Feature 2 is ranked as
most important by RLVQ and the second most important
by OWA-RLVQ. Feature 10 is ranked as the least impor-
tant by both models.

The Ionosphere dataset [11] consists of 351 instances
of radar collected data, with 34 continuous attributes each.
The vectors are labeled with ”bad” or ”good”, being a bi-
nary classification task. We used the first 200 instances,
balanced between positive and negative examples, for train-



Table 2. Feature ranking for the Vowel Recognition dataset.

Rank 1 2 3 4 5

RLVQ Feature 2 5 1 9 6

OWA-RLVQ
Feature 8 2 4 5 6

OWA-RLVQ
Feature Weight 5.209 5.209 5.2 5.17 5.16

Rank 6 7 8 9 10

RLVQ Feature 3 4 8 7 10

OWA-RLVQ
Feature 9 3 7 1 10

OWA-RLVQ
Feature Weight 5.15 5.15 5.14 5.14 5.13

Table 3. Feature ranking for the Ionosphere database. Only
the five most important features are represented.

Rank 1 2 3 4 5

RLVQ Feature 20 28 26 12 6

OWA-RLVQ
Feature 14 12 1 3 28

OWA-RLVQ
Feature
Weight 19.2 19.16 19.1 19.07 19.06

ing, and the remaining 151 for tests. We used 8 code-
books, and the values of the OWA-RLVQ training parame-
ters wereη = 3.3 andα = 3.5. The obtained recognition
rate (93.37%) was better than the LVQ and the RLVQ rates
(90.06%, respectively 92.71%). The typical rates reported
in [11] start from 0.9. Table 3 presents the ranking of the
most important 5 features.

Table 4 compares the recognition rates obtained with
LVQ, RLVQ, and OWA-RLVQ, using each time the same
set of initial codebooks. We have generally obtained better
results with our OWA-RLVQ algorithm.

Constant feature values over all the training set may

Table 4. Comparative recognition rates obtained with LVQ,
RLVQ and OWA-RLVQ.

Database LVQ RLVQ OWA-RLVQ

Iris 91.33% 95.33% 96.6%

Vowel 44.8% 46.32% 46.75%

Ionosphere 90.06% 92.71% 93.37%

lead to an undesired reinforcement of the corresponding
relevance and this is a known drawback of RLVQ too.
Therefore, some preprocessing is necessary to eliminate
constant features. As the training progresses, the rele-
vances adapt to the data.

6 Conclusions and Future Work

We introduced a method for computing the relevances of
the input dimensions as OWA weights. The proposed al-
gorithm computes on-line the relevances, giving the pos-
sibility of dynamic adaptation to the incoming data. The
experimental results showed that the supplementary func-
tionality introduced by OWA-RLVQ offers a good recog-
nition rate. The relevance factors can be used for on-line
feature ranking. A straightforward application of feature
ranking is feature selection in order to reduce input space
dimensionality.

Our OWA-RLVQ is different than the OWA-based
LVQ algorithms introduced by Karayiannis [4], since we
modify the LVQ metric following the RLVQ strategy.

It is interesting to note that our approach is a new
method for computing OWA weights. Compared to the
gradient descending approach described in [7], [8], this is
performed in a dynamic way. We aim to investigate further
this aspect.
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