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Absteact. The prassnt paper presents an approach for virtual walking systam in iumersive
envircaunents based on an innovative weadmill solution. A survey of the virmal walking
systems for immersive envirommenits followed by the fommmlation of our research goals 15 also
presanted, Dhfferent methods and systems for walking in virtual environments ore discussed
andl the man prnciples of virtual walking systems are identified and clossified, Advantages
anadl disadvantages for the vanous principles identified are presented and then comparanvely
ot apgroach s presented, as well as fumee ways of developiment.

Kevwords, Viruval Eovironment, Treadmull, Omni-direstional. Helonomie, Immersion

Sensntion

1. Introduction

The pumpose of this paper is 0 present a novel
approach for walking-like-navigation in virtal
environments based on a robotic system with two
DOF’s. First we sununarize the existing projects in
the wvirfual walking in pnmersive  environments
domain, to observe and to analyvee  different
characteristics of the applications developed so far
and then our svsrem and approach is presented in this
respect,

The paper is organized imte five parts. The
intreduction part shortly describes the article content.
In the second part which is a state of the art in virtual
locomotion devices, we svmmarize the solutions of
the nwost mmpertant existing devices, We divided thas
chapter into two parts depending on the period of
time in which the projects were developed and
presented to the scientific and public environment.
The chapier is concluded with a short analyze of the
present devices drawbacks. In the thurd chaprer we
desenibed our system’s goal mdicaing the man
features that a product must have for Virmal reality
Applications. In the second and third part of the

chapter we prasenfed our actual work and we
sketched future progress md development directions.
Short conclusions abont the research in this domain,
our work and references are presented at the end.

2. State of the Art

In the recent years various Virmal Reality techniques
have been developed with implications in different
areas of inferest, One of the most important issnes
with technical solutions cumrently just in their early
stages is that of a device capable to permit a user to
walk unrestricted into a virtual enviromment. 1f this
shall e achieved there shall be many domains of
applicatnons known or wodeveloped wver that will
inply wsing this technigue of navigation. Some of the
actual domains that would benefit from such
technology are computer games, computer graphics,
enviromnent  sinulaters. mulitary  simulators  and
atliers,



2.1. Previous work
From a literature survev that we performed. we
identified three technical solutions of interest for
virtual walkimg purpose, shortly mtroduced hers
below.

The first device is called Omwi-direction Ball-
bearing Dise Platforsn (OBDP) (Huang er al., 2000),
Fig. 1.

T wh ball bearmg sensors

T

[ T P — {tl:l

Fig. 1. The OBDP device
{a) side view; (b) the surface of the OBDP

The OBDP device 15 umque compared with other
devices because no motor 15 used and practically it 15
a passivie design. It has sigmbeant features hke two-
dimensional walking. absence of tracking devices and
a safety support element. The main element of the
platform is represented by the ball-bearing disc
locomotion device which has a double role: to
support omu-directnonal walkimg as well as to detect
user’s movement. The concave shape of the dise
in¢luding nineteen concentric circles provided with
975 steel balls and position sensors, permit’s user to
walk in any direction and fo slip back in the centre of
the dise after every step is made. An orbating frame
around uvser’s waist has the role o support and
equilibrate  user when walking by applying a
constrain force to keep him in centre of the disc. A
suggzestive image 15 presented in Fig. 1 (a).

Martin Schwaiger's (Schwaiger et al.. 2008). 4
Joot following locomorion device with force feedback
capabilities 15 a seven DOF device that allows free
movement of the user m any direction without
restrictions. The system differs from the existing 2D
foot followers by added new rotational degrees of
freedom. It can provide wnconumon movement
simations including 90 degree turns and sidesteps
because of its seven DOF capabalities, There are three
DOF on each step and one rotational DOF on device,
as presented n Fig. 2.

Fig. 2. The foot locomotion device

The svstem includes the following components:
two  telescopic arms provided with footpads, a
camage mountmg system and a rotational system.
Together these systems assure a complex walking
pattern as shown in Fig. 3. diagram.

Fig. 3. Rhomboid shaped walking diagram

The figure presents the movement pattern of left
ired) and nght (blue) arms which desenbes two
circular ranges of operation. A linear walking implies
the use of telescopic arms (green). footpads (red) and
the carmage mounting svstem (blue) represented in
Fig. 2. Rotanonal walking (90 degrees mms and side
mwovement) adds movement of the rotational system
(vellow).

The Walk simuiation apparatns for evercise and
virfwal reality imvented by Julian David Williams
(Williams er al.. 2008). Fig. 4, is a concave platform
on which the user steps using special footwear
designed to assure minmwm friction. Like the OBDP
device this 15 a passive system too, UsSing no motor
powered elements. Movement 15 permutted in any
direction. at any speed. ncluding even jumping.
Changing direction is done by lefting the front foot
slide in the new direction while the back foot follows,
The platform can be made out of special material
offermg  extra  grip.  Another way to  enable
locomotion is by using special footwear like roller-
skates which decrease friction. Tracking is made by
nse of special VR glasses and sensors moumted either
on the user or inside the platform.



Fig.4. Walk and rin simulahon device

2.2. Recent inventions

The Sting Walker project (Iwata et al., 2007)
(http-/intron kz_tsukuba.ac jp/stringwalker/stnngwal
ker hitml) mvolves a pair of shoes actuated by motor-
pulley mechanisms, Fig.5. These actions take place
ann a meetor controlled, 1300num in duameter, tumtalle
that mvolves ommi=direciional locomotion.

Fig. 5. The String Walker device
[a) bazic structire: (b) overall view

Each shoe is connected to the motor mechanisms
nsing four independent smings, The motor-pulley
mechanism has a double role: o actuate he sirings
and to measure position and orientation of the shoe.
There are also touch sensors in every shoe that detect
fhe stance and swing phase of walking. This device
provides six  plus one DOF  including three
mdependent DOF s for each foot given by the motor
pulled strings, and the mmtable — the seventh DOF.
Fig. 5. (a).

The working principle 5 quure sunple. Tlser's
position in virtual space is permanently adjusted by
the feet tracking system. There is a circular area
placed in the centre of the mmtable called dead zone
m which the & pomnt of the person must be kept.
Every adjusmment of the user’s walking direction is
made accordingly with this zone by pulling the user’s
feet back m this area.

Another interesting approach regarding walking
mto  virtual environment 1= CvberWall  project
{Eobuffo Giordano &1 al.. 2008}
{http:/www.cyberwalk-project.org/), Fig. 6. It is an
EU project that wwvolves locomotion usimng an onuu-
directional treadimull along with a marker less
tracking, optimised control and some other
techmiques that allow a user to walk in VR in a free
fashion. The platform 15 made out of several belrs
whnel form an mfnute plane along XY axes, Fig. 6
{a}.

-[“'II.

Fig. 6. The CyvberWalk device

In fact thers are 25 conventional treadmills pulled
on the X axis. The whole system 15 driven on the Y
axis. by a dnve chain. This allows a walking area of
4.5m by 4.5m and permits the user to walk at a rate
of about 2m per second. The key of this svstem is
that each treadmill moves mmdependently from the
other ones and from the drive chamn. This allows the
user to move freely in any direction indefimtely.

The Italian research group { members of
Universita di Roma “La Sapienza™ ) from the project
team who created CyvberWalk, desgined also another
interesting virtual walking system called CyberCarpet
(De Luca et al., 2006, 2007). CyberCarpet is a virtual
walking nonholonomic plarform that permits user to
have unconstramed omni-directional locomotion, Fig.

7 {a).

Fig. 7. The CyberCarpet device
(a) struemre: (b) ball-bearing plarform

The platform consists of two  actuating
mechanisms, one linear (includes a ball-array belt)
and one angular, Fig. 7 {b). a vision and irackmg
system and rwo progessing and contrel systems, one
for image and one for platform’s control. Mechanical
structure and svstems architecture is presented in Fig.
8,

| ";IEJ - H[::‘
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Fig. 8. The CvberCarper device
(a) mechanical structure; (b) system architecture



Captured images are used to control platform
movement that iz processed and then correlated to
user's movement in order to force keeping user's
body position to the centre of the platform. Two
vectors  provide information  for  conmolling
platform™s movement: users pose (position and
orientation) and angular position of the twontable.
Ball-bearing platform’s role is to capture and transmit
forces both from user’s feet and nnderbying platform.

At the level of 2007 CyberCarpet was the fastest
and largest implementation of any ball-bearing
platforms,. having capabilities of 2m's on linear and
2rad’s on rotational mevement and an area of 0.8,

At a conceptual level CyberWalk is one of the
maost similar projects regarding our idea about a VR
walking device. The main difference iz that we are
using a treadmill instead of a ball-bearing belt for
linear movement. Another difference refers to our
mechanical design of the angular motion platforim.
because we mtend to use a circular platforin provided
with one or two motor achnated wheel under the
linear treadmull,

Firmsphere (Medina et al., 2008)
{http:/fwarw nirtusphere.com), developed by
VirtuSphere Inc. Fig. 9. is a vmgue device offering a
more realistic immersion feeling., also @iving full
freedom of movement, while assuring natural
posture. It has a sphere shape made out of latticed
ABS plastic, fall enough to hold a person. resting on
a stable platform that has wheels attached to at
allowing movement i any direction.

The device has a platform composed of 25 wheels
that support the sphere wioch assure that knocking
ofl 15 made mmpossible.

As the vser walks or mns, the sphere rolls on the
wheels, accommodanng the motion. The wheels are
equipped  with  sensors  that  desenbe  dwechon.
information then passed through a CPU to the user’s
HMD, changing the virtual view.

N

Fig. 9, The VirtuSpehere Device

The VirtuSphere is designed to help in military
training, but can also be a tool for use in
entertanment of real-time simulations of events.

One of the most mteresting and most vecent
inventions m this domain 1s the CiresdaFloor (Twata
a1, al.. 20035
{http:/intron kz tsukuba.ac,jp/'CirculaFloor/ CirculaFl
oor_j.htm).

CirculaFloor, Fig. 10, was developed by a team lead
by professor Iwarta from Tsukuba Universiry, Japad,
It 15 a locomotion mnterface that 15 using a group of
tiles mvolving a holonomic mechanism that permits
omni-directional motion.

Fig. 10, The CirculaFloor device

System's basic locomotion element 15 a
mechanical tile called Fmax Carrier, capable to
devalop an omni-directional movement. The infinite
surface 18 practically given be the nles” movement.
giving the user the possibility to walk into a virtual
environment but standing still in reality, This is
achieved by a complex svstem that uses position
sensors put on each tle, to track movement of the
feet. a laser range finder that measures the walker's
position and a PC that controls the tiles” locomotion
through wireless B5232¢ modules. Each movable nle
has a 586mm (W) x 5386mm (D) % 92mm (H). a
weight of 16.2 kg and can carrv a load of 80 kz in
12005,

Funciional principles are almost il same as w the
StmngWalker device. A circular 200 mm diameter
dead zone is placed in the cenmre of the walking area.
a G point or projection of the central position of the
walker 15 calculated and a locomotion algorithm
permanently updates the tiles’ position to force the G
point of the walker to be in the dead zone all the time,
Pulling back direction and velocity of the tiles are
calculated using the direction and the distance
berween the G point and the dead zone's circle, This
algorithm cancels the walker’'s movement m any

arbatrary direction.

2.3, Discussion on the existing inventions
Observing the soluhons presented above, the problem
of virtual walking could be formulated as the
development of a system to cancel the unser’s real
motion While walking in a Virtual Enviromment. Two
main principles could be identified as being used so
far to solve this problem. The first principle we called
i “kmmstic  compensation” smee it i bassd on
applving forces on #he wser in order to compensate
the forces applied by the ground and the second
principle 15 called “Kinematic compensation” since it
involves a system that compensates the motion of the
user by moving the walking ground in opposite
direction with respect to the vser moton - thus the
two motions cancelling one each other.



Locking to the solution presented it appears that
Ohmni-divection Ball-bearing Dise Platform (OBDE)
{Huang et al.. 2000}, 4 foor following locomation
device with force feedback capabilittes (Schwaiger et
al., 2008) and Dive Soine Waiker (Twata et al.. 2007)
are of kinetic compensation type while The
CrberWalt (Robuffo Giordano et al. 2008). The
CvbarCarper (De Luca er al., 2006, 2007} and
CircilaFloor (Iwata et. al., 2005) belong to rthe
kinematic compensation type. Comparing the two
principles, it c¢an be said that the kinetic
compensation based systems often involve force
flows that close through the user, aspect that is
normally  felt as  uncomfortable and  artificial,
reducing thus the degree of realism. so important in
Virtual Reality applications. In contrast with this, the
kinematic compensation systems are superior boil
from comfort pout of view and natural mferaciion
and user navigation. In tum. these systems nead very
complex tracking svstems able to identify and even fo
anfticipare the user intention of motion such as o be
able to generate the compensation motion in real
time.

Various protorypes of interface devices for
walking nto VE. envireiunsats have been developed
in the recent years. Most of them show interesting
features and ideas that will allow researchers fo
finally find a way in the near future to develop a fully
omni-directional, immersing device capable to
simulate real human walking in virtual environment.
In this section some drawback elements and functions
on the most important existing prototype categories
are identified.

Early treadiulls were capable of moving only 11
back and  forward  diection.  Most  recemt
developments allow omuu-directional walking bt
encounter differsnt problems. They are very large.
bulky and complex mechamisms. some of themn
weighting several tones, occupying large areas and
being impractical. A common <charactersstic is thar
they allow walking only on flat surfaces thus hmiting
simulation of the real surface. In some possible
applications there could be a need of walking on up
or downhill surfaces. Other limitations are given by
the control mechanisms of a treadmill device and of
the treadmills” acceleration cansing inertia forces on
the walker, forces not presemt m real lecomotion,
Speed and consistency are also unresolved 1ssues.

The CirculaFloor was developed to overcome
drawbacks of treadmulls like weight and area which
made them difficnlt to msall and properly mmplenent
in other places as laboratories. In tus  sense
CireulaFloor 15 a more compast hardware system,
Ancther treadonull disadvantage resolved by the
CirgulaFloor 18 scalability. The system ¢an  be
extended and wpgraded easily by adding more
mechanical tiles which allow an extension of the
surface space. System limitation is given by its
complex actmation mechanism of the tiles which does

mot permil sufficient walking speed. Anotber problem
15 given by the accurate control of the tiles,

Devices like the ones of Schwaiger et al.. 2006,
and Huang et al.. 2003, have the disadvantage of high
cost of the components given by sensitivity of the
sensors and tracking algonthms which do not support
side stepping. In fact OBDP's main disadvantage 1s
that the wser motion 15 not exactly compensated
kinetically but by a force applied at waist level of the
wser, which could canse unstable gait. The same
problem appears at Williams (2008) Walk simtlanion
apparatus for exercise and virfnal realify, given by
unstable gait.

Systems such as Power Shoes or Siring Walker
have problems in allowing the user to have a correct
posture and gait. Generally they use a number of
moters for actuating the sinngs or the flexible shafis
that dive the shoss. Another major limntation of
these methods 15 the need of a lugh degres of
accuracy required for wacing user's foot-pad.

VirmSphere has the advantage of a  greater
mmmersion  sensatien compared e other devices
(readmills or carpers) and also giving virfual full
freedom of movement. It presents disadvantages of
dimension sl comnplexity,  Winle the Cvberwalk
system 15 a very large system and therefore suitable
only with HMD based VR systems, the Cybercarpet
seems to pose problems at high speed at the level of
the ball bearings that the user is walking on.

3. The proposed System

3.1. Gaal

Our goal 15 1o design a virteal walking systeimn that 1s
perfecily adapted o the way the humans are moving.
For thus pumpose, the Orst obssrvaton s that the
human gait 1% composed basically of a linear motion
ples a mring capability, while lateral walking 15 ot
commonly nsed becanse of the feet interference. This
iz the reason, the technical solution we propose
materialize these two DOF s, leading us to the idea of
a translational carpet having rotational capability.
The type of the system proposed is of “kinematic
compensation” and is a very similar approacls with
Cybercarpet except the ball bearings system that
supports the human in the Cybercarpet case. The
main difference 15 that the campet motion 15 ety
iransmtted to the walker, which probably will need
some specific control mput i order to avold mertal
shocks fo be transmutted to the feer during the
walking process.

Thus. the system 15 designed 1o have a very
simple two DOF architecmare, Fig. 15, First degree of
freedom i3 given by the lnear axis of direction
necessary for back and forward movement (1) and
the second degree of freedom is represented by the
angular movement of the platfform necessary for side
and twn motion (2) practically creating mfinite
virtual space. System’s limits given by walking



space, linear and angular velocities, acceleration and
inertial forces and moments (felt by the user in
different cases). weights and the lmas of payload
that give system stability, have to be experimented
ad  smmulatad. A very stuctursd and  profound
modelling of these processes needs to be done in
order 0 have proper answers 1o all these questons.
This paper will present the hardware development
performed by the authors in researching this new
walking simulator. There are quite a few apphcations
known in this domain, capable to capture and
represent human walking m virfual eeality in oan
appropriate fashion.

A problem wvet unresolved is creating a human
locomotion model which 15 a key point for
interpreting data into virtual reality. In this sense we
will design a proper model approach in order to
capture, represent and simulate human walking in
virtual environment,

Our system 15 designed to work in different VR
apphications  which include locomotion  like
environment  suunlators,  especially budlding
archirectural simulators.

3.2. Up to date

To design our system we developed a classic
treadmmll using a Energerics Power Bun 3000 HRC
weadmiil,  Fig. 11, having the following
characteristics: 130cm (L) x 30cm (W) band, wiih
incling capabilities between 0 to 15 degrees, capable
of moving a person of 135 kg and providing a stop
Band kev in case of emergency.

Fig. 11. Energetics Power Run 3000 HRC
treadiull

(a) basic structure; (b) DO moter, control and Hall
LSO

The system is powered by two DO motors of 180V,
7.5A. one for moving and the other one for inclining
the band’s dezree.

Initially the treadmill was designed to work with
its own predefined programs: 19 for mnning, 2 for
pulse and 2 nser-defined.

To command and control the band’s movement
and speed we designed a control device, Fig. 12,
which inchudes:

* Laptop

Command and Control program

Ethernet link

Lantronix XPort

Senal link

ATmegal with TART controller

Cralvanic isolation modules with opto-couples

i ATmegil
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Emigins ?--"" UART
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Fig. 12. Speed Control Flow

For controlling motor’s speed and thus band
velooiy we wsad a very sunple techiical solufion
Based on the treadmill’s Hall sensor. The Hall sensor
is wsed for numbering rotational eveles of the DC
motor wheel and determines velocity value of the
band. This offers us a method to control the syvstem’s
speed.

In this sense we designed a user friendly
command  and  control  interface. Fig. 13 for
controlling DC motor speed.

Fiz. 13. Command - control interface

Two working modes were implemented:

o A up/down speed mode with speaific role of
merement’'decrement motor's velocity, manually
by nsing fine incremental unit value

*  An auto adaptive mode nsing a predefined
reference velocity value that enables DC motor
to adapt it"s speed fo this point in a gross
imcremental unit manner

The awto adaptive mode induces an oscillating
phase in motor’s functionality, For this reason, in
present, we are working on a better alzorithm and
program for mecreasing stability, In parallel we are
studyving a proporional-miegratnve-derivaiive (PID)
method vsing Ziegler-Nichols theorv for reducing
system's oscillation.

Another step that we've mades was to redefime the

DC motor controller. and controlling application for



reverse walking. Fig.14 presents a block diagram of a
very simple and effective solution, using a relay as a
switch for changing DC motor’s cwrent polarity, a
diode for protection of super voliage spikes and a
MOSFET transistor for command.

ATREEGH, B

Fig. 14. Block diagram for controlling motor
movement

Thus, a full control of the treadmill speed is
developed in order to have a good response at
different weights and masses. The aim 15 to create an
omui-directional treadmill, capable to rotate 360
degrees payload (about 200kg) consisting of the
treadnull and the user, Fig. 15.

2
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Fig. 15. The proposed two DOF, omni-directional
treadmill: 1- linear motion. 2 - rotative motion

For this puwpose one or several Mavon EC a0 motors
are necessary for rotating the structure, This is a
brushless motor. 48V nominal, 400%W. 7000 RPM
maximnm speed. Conirel of the motor position is
done using an EPOS 7070 conroller. Both motor
and controller are shown in Fiz.16.

Fig. 16. Maxon EPOSTON0

ECe0  (left).
Positioning Controller (rght)

3.3, Future work and direction of development

An important aspect, next to be done, 15 creating
an apphcation necessary tor melimng the band dunng
locomotion on uneven surfaces, This along with an
application will give a high degree of fmmwersion
sensafion m virtual environment.

The final stage of our project will include a series
of computer simulations and a mathematical model of
hman walking that will validate our work.

4. Conclusions

As the literamure synthesis presented in this paper
reveals, current research and cwrrent applications are
still far from the moment when there will be a close
identity between natural walking and walking m
virtual reality. Even though a number of interesting
and innovative ideas were put into practice. as we've
seen, none of them really resolved this 1ssue totally.

The first funcrional fest performed with the
technical solution proposed i this paper validated the
functionality as it was concerved and brings in new
ideas on how to develop such a system and we
anticipate an effective result from the navigation
viewpoint. Parallel research is being currently
conducted on the cognition of walking in order to
derive the necessary rules and algorithms for
wentifying the user walking intention in real fime in
order to be able to command and control the treadnull
such as to compensate kinematically the nser motion
im real fime. Large scale expenimental tests are
planned to be conductad in the nexr stage in order to
assess the wser’s comfort. stability, maximum speed
allowed for walking and many other performance
parametars.

MNevertheless, answers to the existing problems
regarding walking in virtual emvironments will need a
systematic and profound study, both at theoretical
and expenimental level.
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