
An IEEE 802.11g simulation model with extended debug
capabilities

Sorin Cocorada
University Transilvania of Brasov

Politehnicii 1
500024 Brasov-Romania

 +40268478705

sorin.cocorada@unitbv.ro

ABSTRACT
IEEE 802.11g has become the de facto standard for Wireless
LAN. Most of the 802.11g functionality is implemented in
hardware or firmware; modifying or extending such
communication protocols is a difficult task. In this paper, we
present modifications to the Omnet++ simulation environment to
support an accurate IEEE 802.11g MAC and PHY simulation
model. A solution for debugging the proposed model using
protocol analyzers is also provided.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Wireless Simulation

General Terms
Design

Keywords
IEEE 802.11g, Simulator, Omnet++, Wireshark

1. INTRODUCTION
Wireless local area networks (WLANs) have become an

important component of the Internet infrastructure. IEEE 802.11g
[4] defines the physical layer and medium access control layer for
WLANs as the de facto standard for such networks.

Communication protocols running at the data link layer are
mostly implemented in hardware or firmware because of the
severe timing requirements (amounts of micro-seconds). Under
these circumstances, modifying or extending existing protocols
may be difficult or even impossible.

In order to experiment, modify and extend the IEEE 802.11g
standard, a simulation model of the standard is needed that allows
the efficient evaluation of the system performance. Such a model
must be extensible, modular, easy to understand, and fast.
Until now, several network and protocol simulators have been

released, both open source and commercial ones, but not all of
them support IEEE 802.11g. For example NCTUns [6] provides a
good graphical interface but supports only 802.11b; Pythagor [8]
supports 802.11a/b/g but it is limited to data link layer simulations
and it is not possible to simulate additional protocols running at
higher layers.

Commercial simulators (like Opnet) are focused especially on
designing and optimizing networks by tuning the parameters of
the existing protocols and less on developing new protocols. Ns2
[9] also supports 802.11a/b/g but Omnet++ is more flexible,
provides a better encapsulation for protocols and also includes a
graphical user interface (GUI) for debugging, tracing or
presenting simulations.[7].

The paper is structured as follows. In Section 2, our simulation
model is described including physical and data link layer
modeling, Section 3 describes a simple method for debugging the
proposed model in real time using network protocol analyzers.
Some concluding remarks are provided in the final section.

2. OMNeT++ SIMULATION
ENVIRONMENT DESCRIPTION

Many communication systems are often simulated using
discrete event simulation (for example with the Omnet++
simulator [7] or ns2 simulator [9]). It works as follows: the core of
the method is to use a global time currentTime and an event
scheduler. Events are objects that represent different transitions;
all the events have an associated firing time. The event scheduler
represents a list of events, sorted by increasing firing times. The
simulation kernel selects the first event in the event scheduler,
advances currentTime to the firing time of this event, and
executes the event. The execution of an event may schedule new
events with firing times greater or equal to currentTime, and may
change or delete events that were previously listed in the event
scheduler. The global simulation time currentTime cannot be
modified by an event. Thus, the simulation time jumps from one
event firing time to the next – hence the name of discrete event
simulation. In addition to simulating the logic of the system which
is being modeled, events have to update different statistics
counters.

In order to provide an IEEE 802.11g model, we extended the
simulation environment described in [7]. We have modified INET
Framework 20061020 (running above Omnet++ v3.4b2) PHY
model and MAC layer parameters from 802.11b to 802.11g

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OMNeT++ 2008 March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 …$5.00.

standard specification [4]. These parameters include MAC and
physical layer convergence procedure (PLCP) header formats,
data rates and use of forward error correction (FEC) [2].

2.1 Physical layer modeling
 We have modified this simulator in order to consider the effect of
the wireless physical layer in modeling WLANs. Physical layer
parameters like path loss, fading, interference and noise have been
taken into account because of their important effects in simulation
results. The simulation uses Friis propagation model with a path
loss exponent which can be configured at run time. To calculate
the bit error rate (BER) at the receiver, an additive white Gaussian
noise (AWGN) channel has been used and then a Rayleigh fading
channel. To produce more realistic results it is recommended to
back off the transmitter output power for higher OFDM data rates
to reduce the impact caused by the power amplifier non-linear
distortion. During the simulation, a constant noise level is
assumed. The thermal noise level for a 20 MHz channel is
approximately -101.7 dBm and up to 5 dBm noise from the
amplifier chain can be included [5].

Table 1. IEEE 802.11g PHY modes

Mode Modulation Coderate Bitrate

1 BPSK 1/2 6 Mbps

2 BPSK 3/4 9 Mbps

3 QPSK 1/2 12 Mbps

4 QPSK 3/4 18 Mbps

5 16-QAM 1/2 24 Mbps

6 16-QAM 3/4 36 Mbps

7 64-QAM 2/3 48 Mbps

8 64-QAM 3/4 54 Mbps

For a white Guassian noise over the wireless medium, the bit error
probability (Pb) depends on the modulation scheme employed.
For a 2k-ary QAM modulation with Gray coding and k=2, 4, 6 the
approximate bit error probability is calculated using a recursive
algorithm provided in [3], according to:

() ()() ()γγγγ
22

2
2

)2(232)(
−

⋅
−

++=
−

kk

b

k

b P
k

kQQ
k

P (1)

where k represents the number of bits per symbol of a 2k-QAM

constellation,
())(4 γQPb =

and γ=3k/(2k-1)⋅SNIR⋅
(Bandwidth/BitRate).
In case of a Rayleigh fading channel, we used the following
formulas deduced from [1]:

()

()

()

γ
γ

γ
γ

bP

γ
γ

γ
γ

bP

γ
γ

bP

97
9

4
1

724
7

24
13

185
18

4
1

25
2

8
3

8
5

1
1

2
1

64

16

4

+
−

+
−=

+
−

+
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

(2)

where γ represents the average signal to noise ratio per bit. For
802.11g, FEC Viterbi decoding is assumed in the receiver side.
We have used the upper bond probability of error that is given in
[1] under the assumption of binary convolutional coding and hard
decision (HDD) Viterbi decoding. Specifically, for a packet of L
bytes this probability is:

L
bp PLP 8)1(1)(−−= (3)

Then we can upper bound the bit error probability as:

∑
∞

=

≤
freedd

ddb PaP

(4)

where dfree is the free distance of the convolutional code, ad is the
total number of error events of weight d and Pd is the probability
that an incorrect path at distance d from the correct path is chosen
by the Viterbi decoder. Note that (4) is valid for both HDD and
soft decision (SDD); however, Pd is different for HDD and SDD.
The ad coefficients are code dependent but it is generally accepted
that the first five terms in (4) are dominant. For HDD, the
algorithm uses Hamming distance as the metric. When d is odd,
the probability of selecting the incorrect path is:

∑
+=

−−=
d

di

idid
id ppCP

2/)1(

)1((5)

where p is the probability of channel bit error. When d is even,
the probability that an incorrect path at distance d from the correct
path should be chosen by the Viterbi decoder is:

∑
+=

−−+−=
d

di

idid
i

ddd
dd ppCppCP

12/

2/2/
2/)1()1(5.0 (6)

To improve the execution time, a lookup table has been used for
calculating the above combinations.

2.2 Data link layer modeling
To model the data link layer, the existing 802.11b finite state
machine (FSM) has been reused with few modifications to reflect
the 802.11g parameters. Slot time has been reduced from 20μs to
9μs but it can take any other value. The duration field of the
frames transmitted at 802.11g rates has been calculated using the
formula provided in the standard [4]. A small bug in the original
802.11b FSM has been fixed because, according to the 802.11
specifications, stations must back off after transmitting a frame.
The parameters which have been added or extended to the

existing 802.11b model to control the proposed 802.11g model
and their possible values are listed in Table 2.

Table 2. Simulation parameters

Parameters Value

mac.opMode ‘g’ for 802.11g , ‘b’ for 802.11b

mac.slotTime 9us for 802.11g-only

mac.bitrate 6e6, 9e6, 12e6, 18e6, 24e6, 36e6,
48e6, 54e6

mac.AIFSN 2 for DIFS

radio.phyOpMode ‘g’ for 802.11g , ‘b’ for 802.11b

radio.channelModel ‘a’ for AWGN, ‘r’ for Rayleigh

radio.bitrate 6e6, 9e6, 12e6, 18e6, 24e6, 36e6,
48e6, 54e6

3. Debugging the model using Wireshark
Debugging protocols in Omnet++ is done through the graphic
user interface in which packet fields can be inspected as they are
processed. Normally, the protocol analysis is done by means of
dedicated network protocol analyzers such as Wireshark. To
achieve this it is necessary that the packet headers that are
represented in Omnet++ as C++ objects should be first converted
in network byte order using header serializers (Figure 1). In this
approach AirFrame objects are serialized to radiotap headers [5]
using the following fields: MAC timestamp (simulation time),
rate (data rate of the transmitted frame), channel and transmit
power (in dBm), which are relevant for our simulation. A
Ieee80211Frame serializer has also been added. For the other
headers (IPv4, ARP etc) the existing serializers have been
employed. Logical link control (LLC) headers are added only to
Ieee80211 frames which carry data from upper layer protocols.
Serialized packets can be written to a real or virtual network
interface (using libpcap or raw sockets) which supports the
desired encapsulation and from here they can be captured in real
time using Wireshark or another similar tool. The model has been
tested with a madwifi version 0.9.3.3 [5] interface in monitor
mode and with the radio transmitter disabled.

4. CONCLUSION
In this paper, a complete IEEE 802.11g simulation model was
presented along with a real time debugging solution using
network protocol analyzers. The performance of 802.11
transmissions is highly dependent upon the wireless channel
model, transmitter output power, modulations and data rates
which have been considered in this model.
In future works, we are going to investigate the possibility of
using Omnet++ for transmitting IEEE 802.11 frames over the air
and to create a software access point which can be used for
experimenting, modifying and extending the IEEE 802.11
standard features.

5. ACKNOWLEDGMENTS
This work was supported by CNCSIS Romania under contract
90/01.10.2007 (TD_156).

6. REFERENCES
[1] Goldsmith, A. 2005. Wireless Communications. Cambridge

University Press.
[2] Hossein, M., Turletty, T. 2003. Simulation-Based

Performance Analysis of 802.11a Wireless LAN.
Proceedings of the Int’l Symposium on Telecommunications
(Isfahan, Iran, August 16-18, 2003), 758–762.

[3] Yang, L. , Hanzo, L. 2000. A Recursive Algorithm for the
Error Probability Evaluation of M-QAM, IEEE
Communications Letters, Vol. 4, No. 10, (Oct. 2000)

[4] IEEE 802.11g, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications,
Amendment 4: Further Higher Data Rate Extension in the
2.4 GHz Band, http://grouper.ieee.org/groups/802/11/

[5] Multiband Atheros Driver for WiFi http://www.madwifi.org
[6] NCTUns network simulator and emulator

http://nsl10.csie.nctu.edu.tw/
[7] Omnet++ Simulator, http://www.omnetpp.org/
[8] Pythagor simulator

http://www.icsd.aegean.gr/telecom/Pythagor/
[9] The Network Simulator - ns-2 http://www.isi.edu/nsnam/ns/

Figure 1. Converting between object headers and network byte order headers

 …

IPDatagram ARPPacket

Ieee80211Frame

C++ Objects

AirFrame

Headers in network byte order

Radiotap

Ieee80211

IPv4 or ARP

LLC

Header Serializers

